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We present the methodology of the QJHong model, a machine learning predictive model we built to
forecast the COVID-19 daily cases, number of daily deaths, fatality rate, reproductive number, and
overall trends in the United States (both national and individual states). We measure the accuracy
and compare it to other predictive models. Several forecast analyses consistently demonstrate that
the QJHong model outperforms other models submitted to the COVID-19 Forecast Hub with regards
to forecasting national data. The Forecast Hub is utilized by the Centers for Disease Control and
Prevention (CDC) as a means of disseminating official public communications pertaining to the
ongoing pandemic. As such, our model has been identified as a premier performer within this
context.

INTRODUCTION

COVID-19, caused by the SARS-CoV-2 coronavirus,
is an infectious disease that has become the most se-
vere pandemic of the twenty-first century. It has resulted
in over 670 million cases [1] and more than 6.8 million
deaths worldwide, causing a state of international dis-
order. Although first reported in Wuhan, China in De-
cember 2019, the United States has had one of the most
severe experiences, with over 100 million cases and over
1 million deaths. Despite efforts to prevent and con-
trol the spread of the disease, the emergence of vari-
ants [2] that can evade the effects of vaccines [3] has
worsened the situation. Hence, it is crucial to compre-
hend and predict the spread of the disease to enable au-
thorities to take necessary precautions and develop so-
lutions more rapidly. Several models [4], including com-
partmental models such as the SIR (Susceptible-Infected-
Removed) [5, 6] and its variations, most notably the SEIR
(Susceptible-Exposed-Infectious-Removed) [7, 8] models,
machine learning models, and ensemble models [9], have
been developed to forecast the progression of the disease.

The SIR model is a widely used epidemiological model
that divides a population into three groups: susceptible,
infected, and removed. It was developed by Kermack
and McKendrick (1991) [10] and represented as N = S
+ I + R, where N is the total population. The model
uses differential equations to calculate the changes in
each group over time, with the constants representing
the probability of transmission and recovery rate [11],
respectively. Before the virus affects a population, all
groups are assumed to be empty except for the sus-
ceptible group. Two COVID-19 SIR models, BPagano-
RtDriven [6] and IowaStateLW-STEM [5], are commonly
used for forecasting. The SEIR model, a variation of the
SIR model, introduces an Exposed group, E(t), repre-
senting individuals who are infected but not yet conta-
gious. This allows for more specific parameter descrip-

tions. Two recognized COVID-19 SEIR models are CU-
select [8] and UCLA-SuEIR [7]. The ensemble model ag-
gregates multiple models (e.g. SIR, SEIR, machine learn-
ing) to provide a combined forecast, consistently out-
performing individual models for various diseases. The
COVIDhub-ensemble model [12] is an example of this,
incorporating forecasts from over 25 academic, private,
and government-affiliated groups, as well as the CDC.
The model collects death-predicting forecasts from dif-
ferent models, aggregates them, and evaluates their error
with mean absolute error. For inclusion, an individual
model must submit a valid 4-week forecast and is equally
weighted with other eligible forecasts [13].

Here, we propose a “Mobility-Data model,” the
QJHong model we built to forecast COVID-19 daily cases

FIG. 1. Classifying COVID-19 Cases in North America by
Variant: displayed above is a diagram (data sourced from
GISAID [14]) showing the percent of variant prevalence over
time. Note that the time “2020/11/01 to 2021/01/01” is the
time that no variants existed in North America, and all cases
consisted of the wild-type strain. In fact, the wild-type strain
was widely prominent until 2021/07/01, with the plurality of
the “alpha,” “delta,” “gamma,” and “mu” strains.
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and deaths in the United States. The model is based on
machine learning between COVID-19 cases and key pre-
dictive attributes, such as mobility data in Google’s Com-
munity Mobility Reports. Anonymously tracking the lo-
cation history of Google users, it compares movement by
country to a baseline (set before the pandemic, the me-
dian day value from January 3 to February 6, 2020). Fur-
ther, it takes into account the location history of Google
users in often-populated city locations (parks, grocery
stores, transit stations). This comprehensive data [15]
also takes into account the reported data from the pan-
demic’s early stages (February 15, 2020) until October
15, 2022. Other attributes include weather, vaccination,
and status of the pandemic, which we use to represent
people’s awareness and response to the virus. For the cal-
culation of daily deaths, we rely on analytical solutions,
i.e., statistical distributions and differential equations, to
study the relation between cases and deaths, as we find
this approach more reliable and accurate than machine
learning.

METHODOLOGY

Forecasting new cases: machine learning

In this study, we have developed a machine learning
model to calculate the reproductive number R, which en-
ables us to predict future daily new cases. Our model
incorporates various key predictive attributes, includ-
ing mobility data, weather, vaccination rates, and recent
COVID-19 status, as well as recurrent features such as
the reproductive numbers from 60, 30, and 15 days ago,
and location for state-level modeling. We utilize the XG-
Boost method to learn the relationship between our fea-
tures and targets.

We have found that predicting future cases is a much
greater challenge compared to forecasting deaths, as
the pandemic is constantly evolving, and new attributes
emerge as the dominant attribute changes. Since the be-
ginning of the pandemic, key factors have shifted from
mobility during lockdown to temperature and weather,
and from variant types such as alpha, delta, and omi-
cron to vaccination rates. As a result, relying solely on
past data to make predictions for the future may not
be reliable. Our approach is to (1) accurately predict
new deaths from cases, as described in the next section,
and (2) forecast new cases as best as possible by incor-
porating the most important features to capture the key
dominating attributes.

Forecasting new deaths: analytical fitting

To calculate daily deaths, we rely on analytical so-
lutions such as statistical distributions and differential

FIG. 2. Forecasts generated by our model for the US na-
tional fatality rates. The latest forecast is depicted in red,
while previous forecasts are displayed in pale red. The actual
fatality data, represented by black ”+” symbols, and the cor-
responding seven-day average, represented by the black curve,
are also shown. It is worth noting that the previous forecasts
align closely with the actual fatality data.

FIG. 3. Forecasts generated by our model for the US national
case rates. The latest forecast is depicted in red. The actual
case data, represented by black “+” symbols, and the corre-
sponding seven-day average, represented by the black curve,
are also shown. It is worth noting that the previous forecasts
align closely with the actual case data.

equations to study the mathematical relationship be-
tween cases and deaths. Our approach is more reliable
and accurate than machine learning, as we have found
a clear and simple mathematical relation between cases
and deaths.

The Poisson process is utilized to describe the transi-
tion from cases to deaths. Let N(t) denote the new daily
cases on day t, D(t) the corresponding fatality on the
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FIG. 4. Forecasts generated by our model for the US fatality
rates. This forecast utilizes the Poisson process to forecast
these rates. The latest forecast is depicted in blue. The ac-
tual fatality rate data, represented by red “•” symbols is also
shown. It is worth noting that the previous forecasts align
closely with the actual case data.

same day, and γ the fatality rate. While it may appear
that D equals N mulitplied by γ, deaths do not occur in-
stantaneously and concurrently with cases. Rather, they
conform to the Poisson process, where the number of
deaths on day t is given by

D(t) =
∑
t′<t

D(t′) =
∑
t′<t

λN(t′)e−λ(t−t′) · γ.

Consider N(t′) ·γ as the number of deaths that will even-
tually occur as a result of cases from day t′, but which
are statistically distributed over time according to the
Poisson distribution with decay parameter λ. In other
words, the daily count of deaths on day t is obtained by
summing up small counts from all preceding days t′ < t,
where the deaths are inevitable due to the fatality rate
N(t′) ·γ, but the actual death occured on day t following
a Poisson distribution λe−λ(t−t′). This presents the sta-
tistical count of individuals who are expected to die on
day t.

To predict future death counts, we conduct parameter
fitting for λ and γ based on past relationships between
D and N . Using these two parameters, along with a
projection of future cases N , we can make forecasts for
future deaths D. To account for the variation of fatality
rate over time, we make the assumption that the fatality
rate follows a basic exponential relationship in the short
term. This enables us to project into the near future and
make predictions for fatality.

γ(t′) = γ(t) · e−α(t′−t)

.

RESULTS AND DISCUSSION

Results

As exhibited on Figure 2, our fatality data seven-day
average forecast (black curve) well-aligns with the pre-
vious forecasts (pale red). However, it is necessary to
perform a logical walkthrough of the timelines at which
COVID-19 cases, deaths, and fatality rates align with
our forecast. This is facilitated by the “times of preva-
lence” of the Alpha, Beta, Delta, and Omicron variants.
In other words, our model precisely depicts the trends of
each variant, and even accounts for real-time implemen-
tations of vaccine shots, boosters, and historical COVID-
19 quarantine restrictions.

We compiled a plethora of COVID-19 databases, such
as the CDC COVID-19 timeline, the GISAID Tracking
of Variants tool, and several other publications through
online search. It must also be taken into consideration
that the timeframes mentioned below are rough estimates
of the “times of prevalence.” In other words, there is
not an objectively defined time when a specific variant
is overtaken by another variant; there do exist overlays
between multiple variants at the same time (as shown
in Figure 1). Thus, the boundaries listed below are not
rigid.

First, the Alpha (B.1.1.7) and Beta (B.1.351) variants
arose in the US in December of 2020 and January of
2021 [18], respectively. Here, we are making the decision
to group the Beta variant with the Alpha variant, for
two reasons. First, for the proximity of times at which
both variants were discerned in the US, as aforemen-
tioned above, and second, because the Beta variant was
quite rare in the US, only having 3,155 total cases in the
US, and at its peak (week of 4/19/2021), only consisting
of 0.8% of all North American COVID-19 cases [14]. We
are characterizing this time period from March of 2021 to
June of 2021. Our model displays a spike in daily cases
and deaths, but a decreased fatality rate. This is consis-
tent with real-life data, as the Alpha and Beta variants
are indeed more fatal and transmissible than the original,
wild-type strain. In fact, Washington et al. [19] report
that the Alpha variant was 40 to 50 percent more trans-
missible than the original strain in the United States;
Pearson et al. [20] report, assuming that natural immu-
nity provides full protection against the virus, that the
Beta variant is 50 percent more transmissible than the
original strain. Building off the estimate of the Beta vari-
ant’s transmissibility made by Pearson et al., it is safe to
assume, in a non-ideal world, that the variant is, in fact,
even more contagious. However, beginning in December
of 2020, the COVID-19 vaccines were also being intro-
duced to the United States, which is acknowledged by
the downtrend in all three statistics from early 2021 until
June of 2021. A study published by Al-Aly et al. proved
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FIG. 5. Evaluation results of You-Yang Gu’s YYG [16] and Steve McConnell’s COVIDComplete [17] on the weekly US national
fatality rates. Panel (a) depicts the weekly ranking distributions of the top percentile models collected by the COVID19 Forecast
Hub, along with median weekly rankings, root mean square errors, and mean absolute errors of the four-week forward forecast.
Our model was determined to be the best model in terms of ranking and one of the top three models in terms of errors. Panel
(b) showcases the weekly model scores evaluated by Steve McConnell, where the highest scores (100%) were awarded to the
top-performing models. Our model was ranked second in this evaluation.

that vaccinations lower the risk of death from COVID-
19 by 34% [21]. Furthermore, 44% of the US population
was fully vaccinated by June 15, 2021 [22] (date chosen
because it is near the end of this “time of prevalence”).
For this reason, both the fatality rate and daily new cases
were at their lowest level in 2021, and daily deaths were
quite close to their lowest level in 2021 around June 15,
2021. Thus, it is corroborated that COVID-19 vaccina-
tions play a vital role in preventing the deleterious effects

of the disease. Next, the Delta (B.1.617.2) variant arrived
in the US in July of 2021 [18]. We are characterizing
this time period from July of 2021 to December of 2021.
This variant is represented by the spike in daily cases
and deaths, and a slight increase in fatality rate. This is
logical because the Delta variant has been declared the
more severe variant; in fact, the fatality rate should have
severely increased, but COVID-19 vaccine booster shots
were being introduced in the latter half of this “time of
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FIG. 6. Graphical representation of Steve McConnell’s
Forecast Evaluation Rankings [17], comparing our model,
QJHong (depicted in red), with five other models (Ensem-
ble, Johns Hopkins, Columbia, Georgia Tech, and University
of Massachusetts-Amherst) for predicting COVID-19 cases on
a weekly basis. The evaluation spanned from August 1, 2020,
to June 4, 2022.

prevalence,” which retaliated against a more drastic in-
crease in fatality rate [23]. Kuehn [24] finds that after
being vaccinated with the Johnson & Johnson vaccine
and an mRNA-based booster shot, the former is 78% ef-
fective in protecting against COVID-19 hospitalizations.
Further, 90% protection against COVID-19 hospitaliza-
tion is established after a total of 3 mRNA vaccinations.
It is essential to define that ”Fully vaccinated” denotes
receiving both doses of two-dose vaccinations, such as
Pfizer-BioNTech or Moderna, or the sole dose of one-dose
vaccinations, such as Johnson & Johnson.

Finally, the Omicron (B.1.1.529) variant arrived in the
US in November of 2021 [18]. We are characterizing
this time period from January of 2022 to present-day.
This variant is characteristic of increased transmissibil-
ity, yet a lower rate of death. Our model is consistent
with this information, as it displays a spike in daily cases
and deaths, yet a decreased fatality rate. However, the
Omicron variant has been proclaimed as a less deadly
variant; this is consistent with our model, as it displays
a decreased fatality rate. However, it must be noted that
there is a decreasing susceptibility to the virus in early
2022 due to increased seroprevalence within the popula-
tion. It must be noted, regarding our model, the QJHong
Encounter model, that because it is a machine-learning
model that relies on past, inputted data, that an in-
creased sample size of the amount of days that a spe-
cific variant has been of prevalence increases the future
predictability of the virus’ trends. This is because the
model can become more accustomed to the specific vari-
ant’s characteristics, such as transmissibility or fatality
rate.

FIG. 7. Results of the evaluation conducted by the DELPHI
program [25] at Carnegie Mellon University, which assessed
the 4-week forward absolute errors of various models on a
weekly basis. The performance of most models was found to
be volatile, making it challenging for models to consistently
achieve top performance. However, over a prolonged period of
analysis, QJHong and Ensemble emerged as two of the leading
models, consistently outperforming most models (represented
by filled gray dots) while only a few models occasionally per-
formed better (represented by open gray circles). It should
be noted that although some models were more accurate in
certain weekly evaluations, our model demonstrated superior
long-term accuracy when evaluated against the vast majority
of models.

Evaluations

The model in question has garnered a reputation for
being among the most effective models for predicting fa-
talities due to COVID-19 in the United States. This
paper provides a summary of three separate evalua-
tions conducted by independent sources, namely You-
Yang Gu’s YYG, Steve McConnell’s CovidComplete,
and Carnegie Mellon University’s DELPHI. Figures 5-7
present evidence that our model consistently outperforms
a collection of models included in the COVID19 Forecast
Hub project. As illustrated in Figure 5, the evaluation
conducted by YYG revealed that our model exhibited the
highest level of effectiveness among all models evaluated,
based on the ranking metric. Additionally, our model
performed within the top three models in terms of errors.
Figures 6 and 7 indicate that, as per the weekly model
scores evaluated by Steve McConnell using COVIDCom-
plete’s ranking system, which awards the highest scores
of 100% to the best-performing models, our model was
ranked as the second-best model. According to the eval-
uations conducted by DELPHI, our model demonstrated
exceptional long-term accuracy and often outperformed
the ensemble model, which is considered one of the best
models and widely recognized as the benchmark model.
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CONCLUSIONS

In conclusion, we have presented the methodology of
the QJHong model, a machine learning predictive model
developed to forecast COVID-19 trends in the United
States. Through rigorous evaluation and comparison
with other models, our analyses have consistently shown
that our model outperforms other models submitted to
the COVID-19 Forecast Hub in terms of forecasting na-
tional data. It is worth noting that the Forecast Hub is a
key platform utilized by the Centers for Disease Control
and Prevention (CDC) to disseminate official public com-
munications related to the ongoing pandemic. Hence, our
model has been identified as a premier performer within
this context, indicating its potential usefulness in guid-
ing decision-making and resource allocation in the fight
against COVID-19.
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