1	Analysis of Economic and Educational Spillover Effects in PEPFAR Countries
2	
3	Short title: Economic and Educational Effects of PEPFAR
4	
5	William Crown ^{1*} , Dhwani Hariharan ¹ , Jennifer Kates ² , Gary Gaumer ¹ ,
6	Monica Jordan ¹ , Clare L. Hurley ¹ , Yiqun Luan ¹ , A.K. Nandakumar ¹
7	
8	¹ Institute for Global Health and Development,
9	Heller School for Social Policy and Management,
10	Brandeis University, Waltham, MA, USA
11	² KFF, Washington, DC, USA
12	
13	*Corresponding Author: William Crown, PhD., Institute for Global Health and Development,
14	The Heller School for Social Policy and Management, Brandeis University, Waltham, MA USA.
15	Email: wcrown@brandeis.edu
16	
17	

18 Abstract

19	The United States President's Emergency Plan for AIDS Relief (PEPFAR) has been credited with
20	saving millions lives and helping to change the trajectory of the global human
21	immunodeficiency virus (HIV) epidemic. This study assesses whether PEPFAR has had impacts
22	beyond health by examining changes in five economic and educational outcomes in PEPFAR
23	countries: the gross domestic product (GDP) per capita growth rate; the share of girls and share
24	of boys, respectively, who are out of school; and female and male employment rates. We
25	constructed a panel data set for 157 low- and middle-income countries between 1990 and 2018
26	to estimate the macroeconomic impacts of PEPFAR. Our PEPFAR group included 90 countries
27	that had received PEPFAR support over the period. Our comparison group included 67 low- and
28	middle-income countries that had not received any PEPFAR support or had received minimal
29	PEPFAR support (<\$1M or <\$.05 per capita) between 2004 and 2018. We used differences in
30	differences (DID) methods to estimate the program impacts on the five economic and
31	educational outcome measures. This study finds that PEPFAR is associated with increases in the
32	GDP per capita growth rate and educational outcomes. In some models, we find that PEPFAR is
33	associated with reductions in male and female employment. However, these effects appear to
34	be due to trends in the comparison group countries rather than programmatic impacts of
35	PEPFAR. We show that these impacts are most pronounced in COP countries receiving the
36	highest levels of PEPFAR investment.

37

39 Introduction

40	A large literature has demonstrated that health investments are correlated with educational
41	attainment and economic growth [1-7]. However, analysis of the economic and educational
42	impacts of health investments made by specific programs is less common. The United States
43	President's Emergency Plan for AIDS Relief (PEPFAR) is the largest commitment by any country
44	addressing a single disease [8-11]. PEPFAR has been credited with saving 25 million lives and
45	helping to change the trajectory of the global human immunodeficiency virus (HIV) epidemic
46	[12]. In prior analyses, we found that PEPFAR has contributed to large, significant reductions in
47	all-cause mortality, suggesting a mortality effect beyond HIV [13], as well as significant, positive,
48	health spillover effects in the area of maternal and child health, including reductions in
49	maternal and child mortality and increases in childhood immunization rates [13].
50	In this analysis, we seek to assess whether PEPFAR has had impacts beyond health by examining
51	changes in five economic and educational outcomes in PEPFAR countries: the gross domestic
52	product (GDP) per capita growth rate; the share of girls and share of boys, respectively, who are
53	out of school; and female and male employment rates. Since its launch in 2003, PEPFAR has
54	provided approximately \$90 billion in bilateral assistance to address HIV in low- and middle-
55	income countries (LMICs) to provide services directly and to purchase supplies, local labor, real-
56	estate, utilities, and various contracted services. While PEPFAR, as an HIV-focused and targeted
57	
	effort, was not designed to be an economic or educational program, there are several reasons
58	effort, was not designed to be an economic or educational program, there are several reasons to think that such spending could potentially have positive externalities for the economy and on
58 59	

61 absenteeism, 2) better cognition and school performance through less disease in utero and in 62 early life, and 3) greater incentives for education and savings with lengthened life expectancy" 63 [14]. Even more directly, program impacts on mortality and morbidity in the population would 64 be expected to have positive effects on labor supply. 65 In addition, over time, PEPFAR has incorporated interventions that include economic and 66 educational support, such as in its DREAMS program focused on adolescent girls and young 67 women that addresses the drivers of the HIV epidemic [15-17]. In addition, external aid may 68 also act as a direct economic stimulus in countries, impacting their GDP [18]. 69 This analysis aims to add to the limited research and evidence on such effects. A study 70 published in 2015 showed that PEPFAR investments led to increases in male employment in ten 71 PEPFAR-focus countries but did not show similar results for female employment [18]. A paper 72 published in 2017 showed that PEPFAR investments contributed positively to GDP growth rates 73 [19]. Similarly, the Bipartisan Policy Center found that GDP per capita and productivity per 74 worker were positively correlated with the level of PEPFAR investments [20]. There are 75 however no studies that have looked at PEPFAR investments and educational attainment. 76 For the current analysis, we look at a larger set of countries and over a longer period of time 77 than the prior analyses identified. We use a difference-in-difference quasi-experimental design 78 to analyze the change in each of these outcomes in 90 PEPFAR countries between 2004, the 79 first year in which PEPFAR funding began, and 2018, compared to a comparison group of 67 80 low- and middle-income countries (See methodology for more detail). We tested several 81 different model specifications. Our final model controls for numerous baseline variables that

- 82 may also be expected to influence these outcomes and which help to make the PEPFAR and
- 83 non-PEPFAR country groups more comparable.

84 Methods

- 85 We constructed a panel data set for 157 low- and middle-income countries between 1990 and
- 86 2018 to estimate the macroeconomic impacts of PEPFAR. Our PEPFAR group included 90
- 87 countries that had received PEPFAR support over the period. Our comparison group included
- 88 67 low- and middle-income countries that had not received any PEPFAR support or had
- received minimal PEPFAR support (<\$1M or <\$.05 per capita) between 2004 and 2018. Data
- 90 on PEPFAR spending by country were obtained from the U.S. government's
- 91 <u>https://foreignassistance.gov/</u> database [21] and represent U.S. fiscal year disbursements.
- 92 The baseline variables are reported in Table 1:
- 93

Table 1: Baseline Variables			
Variable	Data Source		
1. GDP per capita (current USD)	World Bank Development Indicators, [22]		
2. Recipient of U.S. HIV funding prior to 2004 (dummy variable)	USAID, [21]		
3. Total population	United Nations, Department of Economic and Social Affairs, Population Division, [23]		

4. Life expectancy at birth (years)	World Bank Development Indicators, [22]
5. Total fertility rate (births per	World Bank Development Indicators, [22]
woman)	
6. Percent urban population (of	World Bank Development Indicators, [22]
total population)	
7. School enrollment, secondary	World Bank Development Indicators, [22]
(% gross)	
8. WB country income	World Bank, [24]
classification	
9. HIV prevalence (% of population	World Bank Development Indicators, [22]
ages 15-49)	To address missing values in some cases, additional data
	were obtained from the Global Burden of Disease
	Collaborative Network, [25]
10. Per capita donor spending on	OECD Creditor Reporting System database, [26]
health (non-PEPFAR) (constant \$)	
	OECD Creditor Reporting System database, [26]

	11. Per capita domestic health	World Bank Development Indicators, [22]		
	spending, government and			
	private, PPP (current \$)			
94	L Notes: GDP=gross domestic product; HIV	I /=human immunodeficiency virus; OECD=Organization		
95	for Economic Cooperation and Developm	nent; PEPFAR= US President's Emergency Plan for AIDS		
96	Relief; PPP=purchasing power parity; US	AID= United States Agency for International		
97	Development; WB=World Bank; WDI=wo	orld development indicators.		
98				
99	Impact estimates of PEPFAR are obtained	d with a difference-in-differences econometric model		
100	that utilizes PEPFAR participation beginn	ing in 2004. Impact estimates are made for all PEPFAR		
101	recipient countries as a group, as well as for the 31 countries that submitted Country			
102	Operational Plans (COPs) during the period. The largest Impacts of PEPFAR would be expected			
103	in the COP countries because they receiv	red the largest funding amounts and country teams		
104	were actively engaged in the planning pr	ocess for the investment of program dollars. The		
105	comparison group of LMICs includes 46 ι	unfunded countries and 18 minimally funded countries.		
106				
107	We estimate impacts of PEPFAR on five e	economic and educational outcome measures including		
108	the GDP per capita growth rate, percenta	age of female adults employed, percentage of male		
109	adults employed, girl's educational disen	gagement (ratio of primary school age females out of		
110	school to the population of primary scho	ol age females), and boy's educational disengagement		
111	(ratio of primary school age males out of	school to the population of primary school age males).		
112				

113 DID methods have been widely used in the program evaluation literature to estimate treatment 114 effects as a non-parametric alternative to parametric sample selection models [27]. DID can be 115 thought of as an extension of quasi-experimental design to account for unobserved variables 116 potentially correlated with both an intervention and the outcome that are assumed to remain 117 fixed over time. The method can be used when two periods of data are available for countries 118 that receive an intervention (in this case, PEPFAR funding) and those that do not (the 119 comparison group). In the baseline period, PEPFAR countries have not yet received any PEPFAR 120 program dollars (although they may have received external HIV funding, which we control for, 121 as described below). Characteristics of the comparison group countries are also measured in 122 the baseline period. The first group of PEPFAR countries began receiving funding in 2004 and 123 their outcomes are observed in the second (follow-up) period. We also measure the outcomes 124 for countries in the comparison group in the same follow-up period. If we assume that 125 countries may also have unobserved characteristics, λi , that are correlated with outcomes but 126 that these characteristics remain fixed over time (e.g., unobserved health endowment), DID 127 provides a method to control for these fixed, unobserved characteristics. The outcome 128 equations for periods 1 and 2 are shown in equations 1a and 1b, respectively: 129

120

130 (1a) $Y_{i1}=B_0 + B_1 X_{i1} + B_2 \lambda_i + \epsilon_{i1}$

131 (1b)
$$Y_{i2}=B_0 + B_1 X_{i2} + B_2 \lambda_i + B_3 T_i + \epsilon_{i2}$$

132

Calculating the change in outcomes and explanatory variables between time 1 and time 2, and
re-estimating the outcome equation, is equivalent to subtracting equation (1a) from (1b):

135

 136
 (2)
$$(Y_{12}-Y_{11})=(B_0-B_0)+B_1(X_{12}-X_{11})+B_2(\lambda_i-\lambda_i)+B_3T_i+(\epsilon_{12}-\epsilon_{11})$$

 137

 138
 Which simplifies to:

 139

 140
 (3) $(Y_{12}-Y_{11})=B_1(X_{12}-X_{11})+B_3T_i+(\epsilon_{12}-\epsilon_{11})$

 141

 142

 143

 144

 144

Operationally, the DID model is easy to implement and generates three key parameter values of 145 146 interest. A time dummy variable captures the overall differences in the mean value of the 147 dependent variable between the baseline period and the follow-up period for the comparison 148 group. A dummy variable=1 for PEPFAR countries and 0 for comparison group countries and 149 measures the differences between the two groups prior to the intervention. Finally, the 150 coefficient on the variable representing the interaction between PEPFAR and the time dummy 151 variables measures the program impact of PEPFAR. 152 153 The countries that received substantial PEPFAR support during 2004 to 2018 were not a 154 random sample of LMICs. As a result, we also estimate DID models controlling for several 155 covariates to achieve better balance with the comparison group. These covariates include the 156 urban population percentage, HIV prevalence rate, life expectancy, whether the US had

- 157 provided HIV aid prior to PEPFAR, and others (all measured in 2004 baseline values; see Table
- 158 1).
- 159
- 160 Table 2 reports the descriptive statistics for all PEPFAR countries, the subset that are COP
- 161 countries, and the comparison group countries. There are 90 PEPFAR countries in the database,
- 162 of which 31 are COP countries. PEPFAR distributed aid to nearly half of the countries in the
- 163 world over the period, comprising three-quarters of the global population. The average
- 164 population size of PEPFAR countries is 62 million compared to 12.8 million for the comparison
- 165 group countries.
- 166

167 Table 2. Descriptive Statistics – All PEPFAR, COP, and Comparison Group Countries

Variable	All PEPFAR Funded	COPs	Comparison Group
Variable	LMICs	COFS	(non-PEPFAR LMICs)
Number of countries	90	31	67
Total population 2018	5,609,546,475	2,680,309,948	860,246,053
Cumulative PEPFAR disbursements 2004- 2018	\$40,920,244,737	\$39,783,701,262	\$8,025,017
Cumulative PEPFAR disbursements per capita, 2004-2018	\$3,094.20	\$2,974.10	\$0.40

Cumulative other donor health aid per capita (non-PEPFAR donor + non-HIV donor+US), 2004-2018	\$9,428.40	\$3,805.50	\$4,525.90
Cumulative health spending per capita (domestic) [2000-2016]	\$365,066	\$85,261	\$588,474
BL GDP/capita	\$1,761.90	\$1,092.60	\$4,654.60
BL HIV prevalence rate	3	7	0.2
BL life expectancy at birth	61.1	55.1	71.3
BL population urban	41.70%	33.80%	58.00%
BL % adult. pop > primary education secondary	55.80%	43.40%	82.00%
No. countries receiving U.S. HIV aid before 2004	54	25	2
BL fertility	4	4.4	2.6

168 **Source:** Authors' tabulations of panel dataset

Notes: BL=baseline; COP=Country Operational Plans; GDP=gross domestic product; HIV=human
 immunodeficiency virus; LMICs=low- and middle-income countries; PEPFAR= US President's
 Emergency Plan for AIDS Relief.

172

173 GDP per Capita Growth Rate

174 Fig 1 shows the 1990-2018 trends in the GDP per capita growth rate for all PEPFAR countries, 175 COP countries, and the comparison group countries. In general, the comparison group 176 countries exhibit significantly greater variability than the PEPFAR countries over the entire 177 period. From 2000 to 2004, the trends in GDP per capita are similar and vary within a narrow 178 band—although not strictly parallel as required by the DID methodology. For all countries, 179 growth rates peak in 2004 and then decline over most of 2004-2018, with a slight increase in 180 growth in the PEPFAR countries at the end of the period. Although all countries continue to 181 experience GDP growth per capita, the rate of growth slows more in the comparison group 182 countries than either the total PEPFAR group of countries or the COP countries. At around the 183 time of the 2009 global recession, GDP per capita growth rates for all PEPFAR countries and 184 COP countries began to exceed those of comparison group countries and remained higher 185 throughout the remainder of the follow-up period. Although the PEPFAR program was formally 186 introduced in most countries in 2004, it should be noted that efforts to address the HIV 187 pandemic were underway in many countries prior to 2004. There is a substantial increase in 188 GDP per capita in PEPFAR countries and comparison group countries over 2003-2004 but this is 189 unlikely to be a result of HIV programmatic spending as growth rates were highest in the 190 comparison group countries.

191

192 Fig 1. Trends in GDP per Capita Growth Rate, 1990-2018 for PEPFAR, COP and Non-PEPFAR

- 193 Countries
- 194
- 195 Source: Authors' tabulations
- Notes: Vertical line indicates the formal year of initiation of the PEPFAR program; COP=Country Operational Plans;
 GDP=gross domestic product; PEPFAR= US President's Emergency Plan for AIDS Relief.
- 198

199 Table 3 reports the key DID model results for GDP growth per capita growth rate for all PEPFAR 200 countries and COP countries relative to comparison group countries. Two sets of model results 201 are reported: DID models that do not include any baseline control variables and those that do. 202 In general, the unadjusted models closely mirror the descriptive trends in GDP among the 203 different comparison groups. The PEPFAR ALL and PEPFAR COP parameter estimates measure 204 the baseline differences in GDP per capita growth rate for these countries relative to the 205 comparison group at baseline. The unadjusted model results indicate that GDP per capita 206 growth rates were roughly 2 percentage points lower in both groups of PEPFAR countries than 207 comparison group countries at baseline and these differences were highly significant 208 statistically. The sign and significance of baseline differences were similar in the adjusted 209 models. The parameter estimates for the TIME variable measure the trend in the comparison 210 group relative to the baseline. Although the plot of GDP per capita growth rate shows 211 fluctuation in the comparison group over time, there is no discernible trend, and the variable is 212 statistically insignificant in both the adjusted and unadjusted models. Finally, the INTERACTION 213 variable measures the impact of PEPFAR on GDP per capita growth rate. For the PEPFAR ALL

- 214 group, the PEPFAR effect is positive and statistically significant. As expected, the magnitude of
- 215 the PEPFAR impacts was highest for the PEPFAR COP countries (2.50 versus 2.07 for the broader
- 216 group of PEPFAR countries in the adjusted models). It should be noted that the adjusted R-
- 217 squares for all models are very low, indicating that PEPFAR explains a small amount of the
- 218 variability in GDP per capita growth rate.
- 219

220 Table 3. DID Models of GDP Per Capita Growth Rate

GDP Growth	Unadjusted Model Total PEPFAR	Adjusted Model Total PEPFAR	Unadjusted Model COPs	Adjusted Model COPs
	Coefficient (t- statistic)	Coefficient (t- statistic)	Coefficient (t- statistic)	Coefficient (t- statistic)
Constant	2.875***	7.691**	2.875***	13.50***
	(0.247)	(2.515)	-0.268	-4.097
Time	-0.287	-0.112	-0.287	-0.125
	(0.333)	(0.343)	(0.360)	(0.373)
PEPFAR	-1.977***	-1.754***	n/a	n/a
	(0.317)	(0.389)	n/a	n/a
PEPFAR COPs	n/a	n/a	-1.950***	-2.100**
	n/a	n/a	(0.444)	(0.796)

	2.276***	2.072***	n/a	n/a
Interaction - PEPFAR				
	(0.429)	(0.434)	n/a	n/a
	n/a	n/a	2.623***	2.504***
Interaction - COPs				
	n/a	n/a	(0.610)	(0.615)
Adj. R-squared	0.015	0.035	0.01	0.025
N	4,192	3,865	2,558	2,283

221 **Source:** Authors' analyses.

222 Notes: ***p < 0.001 **p < 0.01. Adj=adjusted; COP=Country Operational Plans;

DID=difference-in-difference; n/a=not applicable; PEPFAR= US President's Emergency Plan forAIDS Relief.

225

226 Female Primary School Disengagement

227 Fig 2 reports the trends in female primary school disengagement for all PEPFAR countries, COP 228 countries, and comparison group countries from 1990-2018. Baseline levels of disengagement 229 are substantially higher in the PEPFAR countries relative to comparison group countries. There 230 is a gradual improvement in female primary school disengagement rates in the comparison 231 group countries over 1990-2004 but this appears to flatten out after 2004. Over the period 232 1997/98 to 2003, there is a steep improvement in female primary school disengagement rates 233 in PEPFAR countries. Following the introduction of PEPFAR in 2004, rates of female 234 disengagement for PEPFAR appear to converge toward the comparison group countries--235 particularly for PEPFAR countries that prepare COPs.

236	
237	Fig 2. Female Primary School Disengagement, 1990-2018
238	
239	
240	Source: Authors' tabulations
241	Notes: Vertical line indicates the formal year of initiation of the PEPFAR program; COP=Country Operational Plans;
242	PEPFAR= US President's Emergency Plan for AIDS Relief.
243	
244	Table 4 reports the key unadjusted and adjusted DID model results for female primary school
245	disengagement for all PEPFAR countries and COP countries relative to comparison group
246	countries. The definitions of all key variables are the same as previously described for the GDP
247	per capita growth models. The PEPFAR ALL and PEPFAR COP coefficients indicate very large
248	differences in baseline levels of primary school disengagement for females relative to
249	comparison group countries. The unadjusted model results indicate that rates of female
250	primary school disengagement were more than 19 percent higher in all PEPFAR countries than
251	in comparison group countries at baseline; the baseline differences were about 18 percent
252	higher in COP countries. However, after controlling for baseline characteristics, these baseline
253	differences were no longer statistically significant for the COP countries. The parameter
254	estimates for the TIME variable show that, after controlling for other baseline variables, levels
255	of disengagement in the comparison group trended upward by approximately 4-5 percentage
256	points across the unadjusted and adjusted PEPFAR ALL and COP models from 2004-2018.
257	Controlling for the baseline differences and trends in the comparison group countries, the
258	INTERACTION variable measuring the impact of PEPFAR on female primary school

- 259 disengagement in the adjusted models is large and highly significant for both the PEPFAR ALL
- group (-9.18 percentage points) and the COP group (-12.58 percentage points). The magnitudes
- 261 of these treatment effects were similar in the unadjusted models. Moreover, the adjusted R-
- squares for the models range from 0.67 to 0.61, indicating that these models explain a
- significant amount of the variation female primary school disengagement trends.
- 264

265 Table 4. DID Models of Female Primary School Disengagement

Female Education	Unadjusted model PEPFAR	Adjusted model PEPFAR	Unadjusted model COPs	Adjusted model COPs
	Coefficient (t-	Coefficient (t-	Coefficient (t-	Coefficient (t-
	statistic)	statistic)	statistic)	statistic)
Constant	11.54***	68.15***	11.54***	67.94***
	(1.053)	(6.647)	-0.785	-9.077
Time	-4.915***	-4.551***	-4.915***	-4.113***
	(1.365)	(0.928)	(1.019)	(0.835)
PEPFAR	19.37***	5.895***	n/a	n/a
	(1.320)	(1.049)	n/a	n/a
PEPFAR COPs	n/a	n/a	18.31***	1.598
	n/a	n/a	(1.250)	(1.735)

	-9.271***	-9.185***	n/a	n/a
Interaction - PEPFAR				
	(1.713)	(1.143)	n/a	n/a
	n/a	n/a	-11.60***	-12.58***
Interaction - COPs				
	n/a	n/a	(1.658)	(1.304)
Adj. R-squared	0.220	0.669	0.291	0.609
N	1,669	1,577	969	901

266 **Source:** Authors' Analyses

267 Notes: ***p < 0.001 **p < 0.01; Adj=adjusted; COP=Country Operational Plans; DID=difference-in-difference;

268 n/a=not applicable; PEPFAR= US President's Emergency Plan for AIDS Relief.

269

270 Male Primary School Disengagement, 1990-2018

271 Fig 3 reports the trends in male primary school disengagement for all PEPFAR countries, COP

countries, and comparison group countries from 1990-2018. As with females, baseline levels of

273 male disengagement were substantially higher in the PEPFAR countries relative to comparison

- 274 group countries and displayed similar trends in the baseline and follow-up periods to those of
- 275 females. Following the introduction of PEPFAR, rates of male disengagement for PEPFAR
- appear to converge toward the comparison group countries--particularly for PEPFAR countries
- that prepared COPs.

278

279 Fig 3. Trends in Male Primary School Disengagement

280

282 Notes: Vertical line indicates the formal year of initiation of the PEPFAR program; COP=Country Operational Plans;
 283 PEPFAR= US President's Emergency Plan for AIDS Relief.

284

285	Table 5 reports the key DID model results for male primary school disengagement for all
286	PEPFAR countries and COP countries relative to the comparison group countries. As with the
287	models for females, the PEPFAR ALL and PEPFAR COP variables indicate very large differences in
288	baseline levels of primary school disengagement for males relative to comparison group
289	countries. The results from the unadjusted models indicate that rates of male primary school
290	disengagement were roughly 17 percentage points higher in all PEPFAR countries and 18
291	percentage points higher in COP countries at baseline. Not surprisingly, these differences were
292	highly significant statistically. The parameter estimates for the TIME variable show that levels
293	of disengagement in the comparison group decreased by roughly 3 percentage points from
294	2004-2018. Controlling for the trend in the comparison group countries, the INTERACTION
295	variable measuring the impact of PEPFAR on male primary school disengagement was large and
296	highly significant for both the PEPFAR ALL group (-7.96 percentage points) and the COP group (-
297	12.51 percentage points). Moreover, the adjusted R-squares for the models range from 0.60 to
298	0.58, indicating that PEPFAR and the baseline control variables explain a significant amount of
299	the variation in these trends.

300

301 Table 5. DID Models of Male Primary School Disengagement

Male Education	Unadjusted	Adjusted	Unadjusted	Adjusted
	model	model	model COPs	model COPs

	PEPFAR	PEPFAR		
	Coefficient (t-	Coefficient (t-	Coefficient (t-	Coefficient (t-
	statistic)	statistic)	statistic)	statistic)
Constant	9.054***	34.46***	9.054***	48.40***
	(0.873)	(5.992)	-0.659	-8.146
Time	-3.010**	-2.863***	-3.010***	-2.577***
	(1.132)	(0.837)	(0.855)	(0.749)
PEPFAR	17.10***	7.023***	n/a	n/a
	(1.094)	(0.945)	n/a	n/a
PEPFAR COPs	n/a	n/a	18.12***	5.782***
	n/a	n/a	(1.049)	(1.557)
Interaction - PEPFAR	-8.382***	-7.962***	n/a	n/a
	(1.420)	(1.031)	n/a	n/a
Interaction - COPs	n/a	n/a	-12.34***	-12.51***
	n/a	n/a	(1.392)	(1.171)
Adj. R-squared	0.225	0.598	0.331	0.577
N	1,669	1,577	969	901

2	n	0
J	υ	2

- 303 Source: Authors' analysis
- 304 Notes: ***p < 0.001 **p < 0.01 Adj=adjusted; COP=Country Operational Plans; DID=difference-in-difference;
- 305 n/a=not applicable; PEPFAR= US President's Emergency Plan for AIDS Relief.

306

307 Trends in Female Employment Rates

- 308 Fig 4 reports the trends in employment rates for females aged 15 and over. Although the
- 309 baseline trends appear to be parallel, there is only a hint of an upward trend in the comparison
- 310 group during the follow-up period while employment rates for women remained flat during this
- 311 period. Despite no evidence of trends, it is apparent that employment rates for women are
- 312 substantially higher in all PEPFAR countries and COP countries relative to comparison group
- 313 countries.
- 314

315 Fig 4. Trends in Female Employment Rates, 1990-2018

316

317

318 Notes: Vertical line indicates the formal year of initiation of the PEPFAR program; COP=Country

319 Operational Plans; PEPFAR= US President's Emergency Plan for AIDS Relief.

320

321 The DID models for females are reported in Table 6. As anticipated based on the trends in Fig 4,

- 322 the PEPFAR ALL and PEPFAR COP parameter estimates from the unadjusted models are 15.00
- 323 and 21.28, respectively, indicating large and statistically significant differences in female

 period. The TIME coefficient estimates from the unadjusted models indicate that comparison group employment increased by about 2.5 percentage points in the follow-up period relative baseline. After controlling for baseline differences in female employment rates between the PEPFAR and comparison groups, the INTERACTION variable measuring PEPFAR program imp is negative and statistically significant for both the PEPFAR ALL and COP groups. However, the 	۱
 327 baseline. After controlling for baseline differences in female employment rates between the 328 PEPFAR and comparison groups, the INTERACTION variable measuring PEPFAR program imp 	
328 PEPFAR and comparison groups, the INTERACTION variable measuring PEPFAR program imp	to
329 is negative and statistically significant for both the PEPFAR ALL and COP groups. However, t	ct
	is
does not seem to be due to a programmatic impact of PEPFAR but, rather, an upward trend	n
and employment in the comparison group while employment rates remained unchanged in PEPF	٩R
332 countries.	

334	Table 6. DID Model of Female Employment Rates
-----	---

	Unadjusted	Adjusted	Unadjusted	Adjusted
Female Employment	model PEPFAR	model PEPFAR	model COPs	model COPs
	Coefficient (t-	Coefficient (t-	Coefficient (t-	Coefficient (t-
	statistic)	statistic)	statistic)	statistic)
Constant	35.64***	156.7***	35.64***	93.83***
	(0.628)	(5.680)	-0.615	-7.539
Time	2.484**	2.869***	2.484**	2.869***
	(0.858)	(0.805)	(0.840)	(0.695)

PEPFAR	15.00***	2.084*	n/a	n/a
	(0.790)	(0.885)	n/a	n/a
PEPFAR COPs	n/a	n/a	21.28***	15.88***
	n/a	n/a	(1.006)	(1.416)
Interaction - PEPFAR	-1.94	-2.416*	n/a	n/a
	(1.080)	(0.991)	n/a	n/a
Interaction - COPs	n/a	n/a	-2.846*	-3.313**
	n/a	n/a	(1.374)	(1.102)
Adj. R-squared	0.147	0.334	0.265	0.543
Ν	3,948	3,612	2,324	2,044

335 Source: Authors' analysis.

336 Notes: ***p < 0.001 **p < 0.01 * p< 0.05. Adj=adjusted; COP=Country Operational Plans;

337 DID=difference-in-difference; n/a=not applicable; PEPFAR= US President's Emergency Plan for338 AIDS Relief.

339

340 Trends in Male Employment Rates, 1990-2018

341 Fig 5 reports the trends in employment rates for males aged 15 and over. As with female

342 employment the trends in the PEPFAR and comparison groups are basically horizontal lines

343 over both the baseline and follow-up periods. In the follow-up period there is evidence of an a

344 very modest trend in employment rates for males in the comparison group countries.

345 346 Fig 5. Trends in Male Employment Rates, 1990-2018 347 348 349 Notes: Vertical line indicates the formal year of initiation of the PEPFAR program; COP=Country Operational Plans; 350 PEPFAR= US President's Emergency Plan for AIDS Relief 351 352 The DID model for male employment is shown in Table 7. The PEPFAR ALL and PEPFAR COP 353 parameter estimates from the unadjusted models indicate that baseline employment levels 354 were about 4.5 percentage points higher in PEPFAR ALL countries and 5.6 percentage points 355 higher in COPs countries relative to the comparison group. There are no statistically significant 356 employment trends for males in the comparison group countries. Finally, in the models that 357 adjusted for baseline variables, the parameter estimates for the PEPFAR program INTERACTION 358 term were statistically significant and negative for the ALL PEPFAR and COP countries. As with 359 females, this appears to be due to a slight increase in employment in the comparison group 360 while employment in PEPFAR countries remained flat over time. 361

362 Table 7. DID Models of Male Employment Rates

	Unadjusted	Adjusted		
Male Employment	model	model	Unadjusted	Adjusted
	moder	moder	model COPs	model COPs
	PEPFAR	PEPFAR		
	Coefficient (t-	Coefficient (t-	Coefficient (t-	Coefficient (t-

	statistic)	statistic)	statistic)	statistic)
Constant	66.72***	28.96***	66.72***	-8.904*
	(0.413)	(3.578)	-0.383	-4.405
Time	-0.444	-0.22	-0.444	-0.22
	(0.564)	(0.507)	(0.523)	(0.406)
PEPFAR	4.497***	-0.557	n/a	n/a
	(0.520)	(0.557)	n/a	n/a
PEPFAR COPs	n/a	n/a	5.645***	5.338***
	n/a	n/a	(0.627)	(0.827)
Interaction - PEPFAR	-1.389	-1.657**	n/a	n/a
	(0.710)	(0.625)	n/a	n/a
Interaction - COPs	n/a	n/a	-1.451	-1.650*
	n/a	n/a	(0.856)	(0.644)
Adj. R-squared	0.031	0.314	0.055	0.460
N	3,948	3,612	2,324	2,044

363 Source: Authors' analysis.

364 Notes: ***p < 0.001 **p < 0.01 * p < 0.05. Adj=adjusted; COP=Country Operational Plans; DID=difference-in-

365 difference; n/a=not applicable; PEPFAR= US President's Emergency Plan for AIDS Relief.

367 Sensitivity Analyses

368	A large number of sensitivity analyses were conducted in addition to the main results reported
369	here. Separate sets of models were estimated for the different PEPFAR country groups
370	stratified by income classification (low and middle), as well as three five-year time periods. In
371	general, the largest program impacts were observed for COP countries or countries where
372	PEPFAR made the largest investments (which overlap significantly with COP countries). We also
373	ran all models with and without China and India, the two most populous countries in the world,
374	to assess whether they were influencing the results. In both cases, the results were similar.
375	Results for these sensitivity analyses are reported in the online S1 Appendix. We also
376	performed statistical tests for violations of the parallel trends assumption [28]. These tests
377	indicated that the parallel trends assumption was not supported in some cases. Further
378	research should be conducted to determine the sensitivity of the estimates in cases where the
379	parallel trends assumption is violated.
380	
381	Discussion
382	This study confirms previous literature demonstrating that PEPFAR is associated with increases
383	in economic growth [19, 20], measured here by the GDP per capita growth rate. We show that
384	these impacts are most pronounced in COP countries.
385	
386	In addition, we demonstrate the impacts of PEPFAR on two measures not previously reported
387	in the literaturegirls' and boys' primary educational disengagement. PEPFAR was found to

388	have large and statistically significant impacts on improving primary school engagement for				
389	both boys and girls. Again, the PEPFAR impacts were greatest in COP countries.				
390					
391	In contrast to a prior analysis [18] we do not find evidence for positive impacts of PEPFAR on				
392	rates of employment for females and males. Rates of employment for both females and males				
393	were essentially flat over the entire 1990-2018 period for the cohorts of all PEPFAR countries,				
394	COP countries, and comparison group countries. In the long run, it would be anticipated that				
395	reduced mortality as well as greater primary school educational engagement by both girls and				
396	boys should be reflected in higher rates of labor force participation and economic growth.				
397	However, such trends can take many years before they become evident. We consistently find				
398	that the positive macroeconomic externalities of PEPFAR on GDP growth and school				
399	engagement were the largest in COP countries, generally those that received the most money				
400	and engaged in intensive program planning.				
401					
402	Limitations				
403	Modeling the macroeconomic and educational spillover effects of PEPFAR is challenging due				
404	the complexity of the mechanisms through which substantial spending from a program like				
405	PEPFAR may work its way through a country's economy over time. For example, in addition to				
406	the potential impacts of health investments on mortality and morbidity, and subsequent				
407	impacts on labor supply and productivity, direct and indirect income effects of PEPFAR				
408	investments may contribute to aggregate demand. Investments in health care infrastructure				
409	generate income for health care workers which is then spent creating subsequent income for				

410 i	people working in	other sectors.	This income is then	respent and, via Key	/nesian

- 411 macroeconomic multipliers, generates potential benefits worth multiples of the original
- 412 expenditure. Together, the demand and supply side effects generated by PEPFAR would be
- 413 expected to have a positive impact on economic growth. In the long run, however, economic
- 414 growth enhances the ability of a society to invest in further educational and health care
- 415 infrastructure creating a positive feedback loop stemming from the original PEPFAR investment.
- 416 Many of these issues are discussed by Piabuo and Tieguhong (2017) in their review of the
- 417 literature on health expenditure and economic growth [4].
- 418 The differences-in-differences approach attempts to address these complexities by focusing

419 attention on the program intervention itself. This requires making a strong assumption that the

420 effects of factors not included in the model are fixed over time and are eliminated through the

- 421 differencing procedure. Still, it is important to note that even with strong statistical methods,
- 422 estimation is challenging in the presence of feedback effects (e.g., better health results in

423 greater economic growth and greater economic growth improves health).

424 Acknowledgments

- 425 The authors thank Adam Wexler and Stephanie Oum from KFF, Washington DC, for data
- 426 retrieval and dataset preparation.
- 427

428 References

- 429 1. Bloom D, Kuhn M, Prettne K. Health and Economic Growth, IZA DP No. 11939. IZA
- 430 Institute of Labor Economics. 2018. [cited: 2023 Apr 10]. Available from:
- 431 2023https://www.iza.org/publications/dp/11939/health-and-economic-growth
- 432 2. Bloom DE, Khoury A, Kufenko V, Prettner K. Spurring Economic Growth through Human
- 433 Development: Research Results and Guidance for Policymakers. IZA Discussion Papers,
- 434 No. 12964, Institute of Labor Economics: Bonn. 2020. [cited: 10 Apr 10]. Available from:

435 https://www.econstor.eu/bitstream/10419/215360/1/dp12964.pdf

- 436 3. Collin M, Weil D. The Effect of Increasing Human Capital Investment on Economic
- 437 Growth and Poverty: A Simulation Exercise, World Bank, WPS8590. 2018. [cited: 2023

438 Apr 10]. Available from:

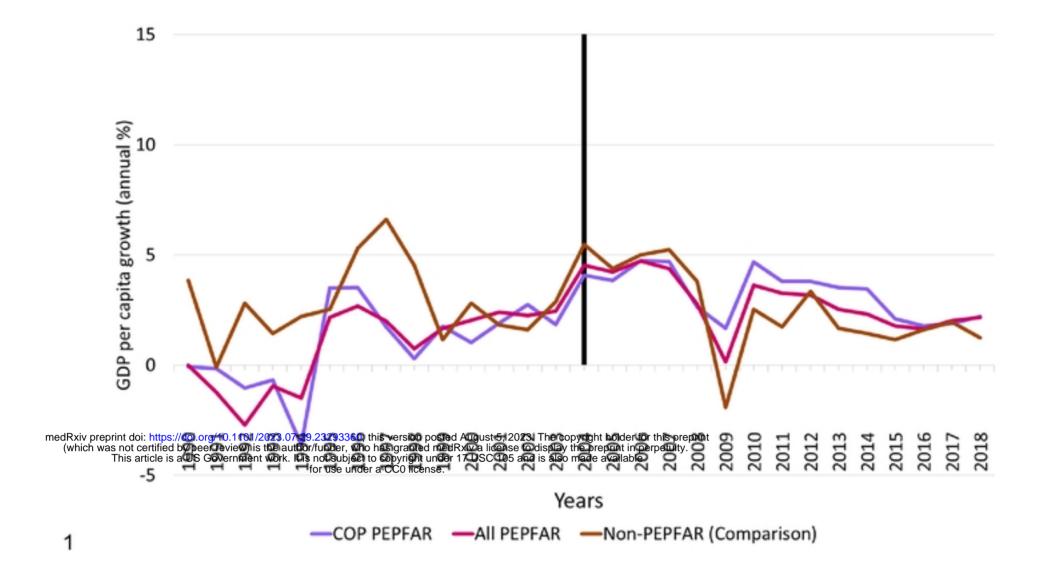
df

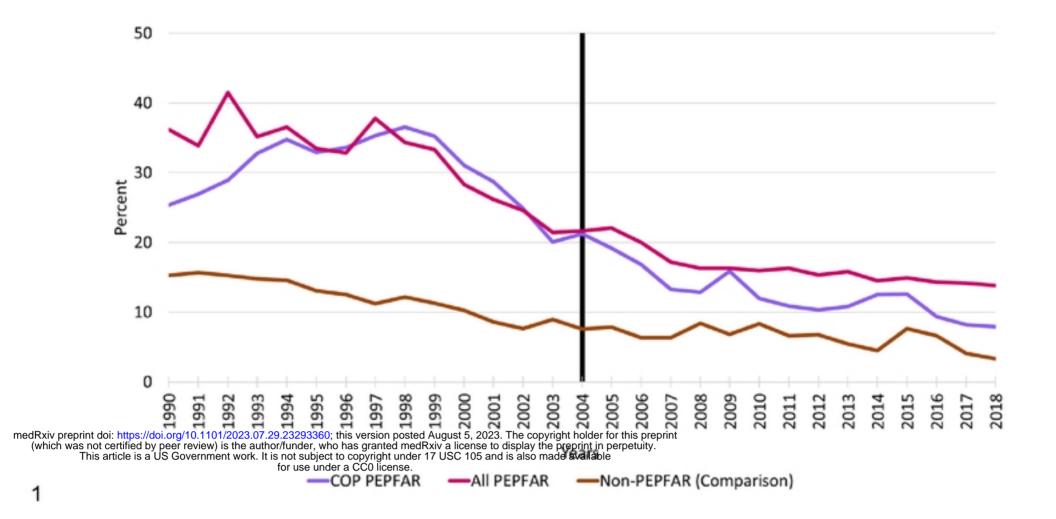
1.

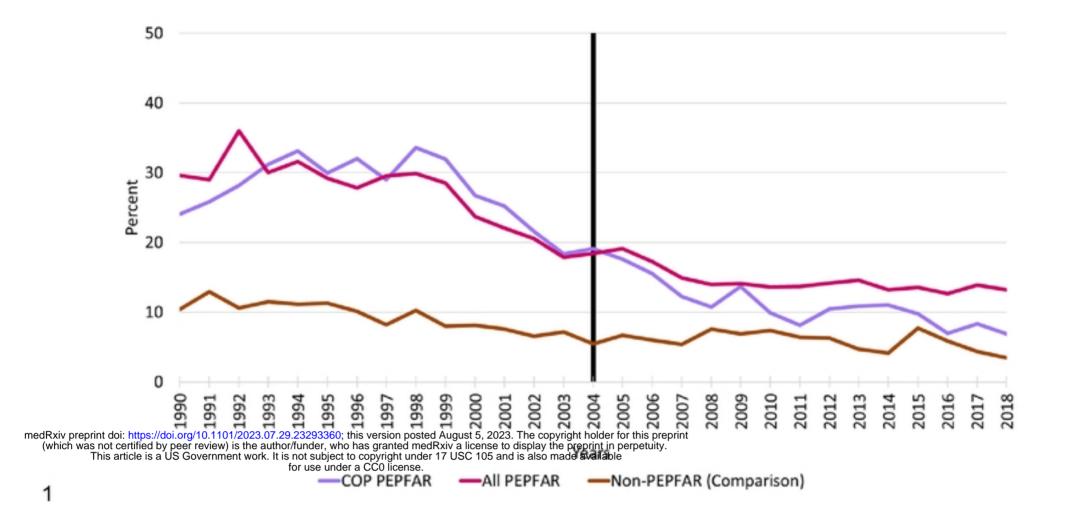
- 439 https://documents1.worldbank.org/curated/en/786861537902769850/pdf/WPS8590.p
- 440
- 441 4. Piabuo S, Tieguhong J. Health expenditure and economic growth A review of the
- 442 literature and an analysis between the economic community for central African states
- 443 (CEMAC) and selected African countries. Health Econ Rev. 2017;7:23.
- 444 https://healtheconomicsreview.biomedcentral.com/articles/10.1186/s13561-017-0159-
- 445

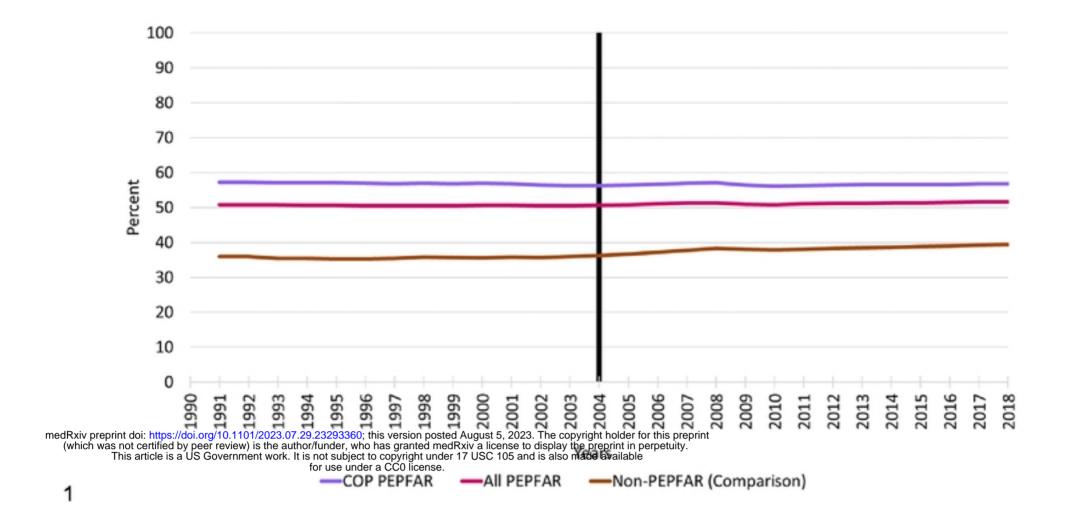
446	5.	Remes J, Wilson M	Ramdoral A. How Investing in Health Has a Significant Economic

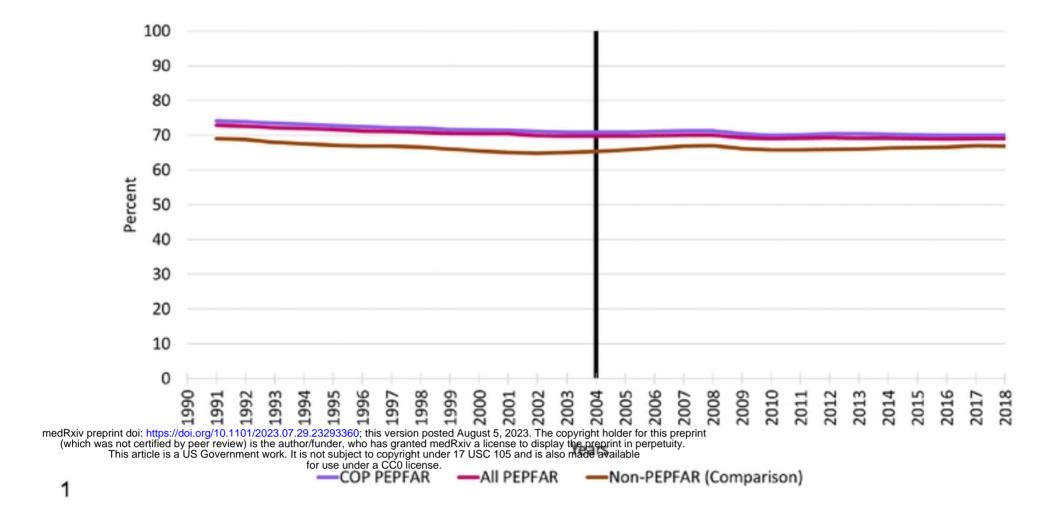
- 447 Payoff for Developing Countries. Brookings Institute. 2020. [cited: 2023 Apr 10].
- 448 Available from: https://www.brookings.edu/blog/future-
- 449 development/2020/07/21/how-investing-in-health-has-a-significant-economic-payoff-
- 450 for-developing-economies/
- 451 6. Vogl TS. Education and Health in Developing Economies, Working Papers 1453,
- 452 Princeton University, Woodrow Wilson School of Public and International Affairs,
- 453 Research Program in Development Studies. 2012. [cited: 2023 Apr 10]. Available from:
- 454 https://rpds.princeton.edu/sites/g/files/toruqf1956/files/media/vogl_ed_health_review
- 455 .pdf
- 456 7. World Bank. Human Capital Project. 2020. [cited: 2023 Apr 10]. Available from:


457 https://www.worldbank.org/en/publication/human-capital


- 458 8. Bor J, Tanser F, Newell ML, Bärnighausen T. In a study of a population cohort in South
- 459 Africa, HIV patients on antiretrovirals had nearly full recovery of employment. Health Aff
- 460 (Millwood). 2012;31(7):459–469.
- 461 9. Guo Y, Li X, Sherr L. The impact of HIV/AIDs on children's educational outcome: A critical
 462 review of the global literature. AIDs Care. 2012;24(8):993-1012.
- 463 10. Resch S, Korenromp E, Stover J, Blakley M, Krubiner C, Thorien K, et al. Economic returns
 464 to investment in AIDS treatment in low and middle income countries. PloS One.
- 465 2011;6(10):e25310.


- 466 11. Thirumurthy H, Galárraga O, Larson B, Rosen S. HIV treatment produces economic
- 467 returns through increased work and education, and warrants continued US support.
- 468 Health Aff (Millwood). 2012;31(7):1470–1477.
- 469 12. US Department of State. About Us PEPFAR. 2022. [cited: 2023 May 17]. Available
- 470 from: https://www.state.gov/about-us-
- 471 pepfar/#:~:text=Since%20its%20inception%20in%202003,significantly%20strengthening
- 472 %20global%20health%20security
- 473 13. Kates J, Nandakumar A, Gaumer G, Hariharan D, Crown W, Wexler A, et al. Assessing
- 474 PEPFAR's Impact: Analysis of Mortality in PEPFAR Countries. KFF; 2021. [cited: 2023 May
- 475 30]. Available from: https://www.kff.org/global-health-policy/issue-brief/assessing-
- 476 pepfars-impact-analysis-of-mortality-in-pepfar-countries/
- 477 14. Barofsky J, Nosair W. Investments in Health For Poverty Reduction: New Evidence and
- 478 Data Challenges. Brookings Institute; 2013. [cited: 2023 Jun 2]. Available from:
- 479 https://www.brookings.edu/blog/africa-in-focus/2015/10/08/investment-in-health-for-
- 480 poverty-reduction-new-evidence-and-data-challenges/
- 481 15. Crown W, Kates J, Nandakumar A, Gaumer G, Hariharan D. Assessing PEPFAR's Impact:
- 482 Analysis of Economic and Educational Spillover Effects in PEPFAR Countries. 2022. [cited:
- 483 2023 May 30]. Available from: kff.org/global-health-policy/issue-brief/assessing-
- 484 pepfars-impact-analysis-of-economic-and-educational-spillover-effects-in-pepfar-
- 485 countries/
- 486 16. US Department of State. PEPFAR DREAMS Guidance. 2021. [cited: 2023 May 31].
- 487 Available from:


- 488 https://static1.squarespace.com/static/5a29b53af9a61e9d04a1cb10/t/611ed11ed7ee4f
- 489 73abf24803/16294 09569489/2021-08-
- 490 17+DREAMS+Guidance+Final+March+2018+Update_PEPFAR+Solutions.pdf
- 491 17. US Department of State. PEPFAR 2022 Country and Regional Operational Plan
- 492 (COP/ROP) Guidance for all PEPFAR-Supported Countries. 2022. [cited: 2023 May 31].
- 493 Available from: https://www.state.gov/wpcontent/uploads/2022/02/COP22-Guidance-
- 494 Final_508-Compliant-3.pdf
- 495 18. Wagner Z, Borofsky J, Sood N. PEPFAR funding associated with an increase in
- 496 employment among males in ten sub-Saharan African countries. Health Affairs.
- 497 2015;34(6). https://doi.org/10.1377/hlthaff.2014.1006.
- 498 19. Kim Y, Whang T. The effects of the President's Emergency Plan for AIDS Relief on the
- 499 economies and domestic politics of focus countries. Global Economic Review.
- 500 2017;46(4):441–63. https://doi.org/10.1080/1226508X.2017.1367316.
- 501 20. Daschle T, Frist W. Building Prosperity, Stability, and Security Through Strategic Health
- 502 Diplomacy: A Study of 15 Years of PEPFAR, BiPartisan Policy Center. Washington DC; July
- 503 2018
- 504 21. US Department of State, USAID. Foreignassistance.gov. 2023. [cited: 2023 May 17].
- 505 Available from: https://foreignassistance.gov/
- 506 22. World Bank. World Development Indicators. [cited: 2023 May 17]. Available from:
- 507 https://datatopics.worldbank.org/world-development-indicators/


- 508 23. United Nations Department of Economic and Social Affairs, Population Division. World
- 509 Population Prospects 2019, Online Edition. Rev. 2019. Available from:
- 510 https://population.un.org/wpp/
- 511 24. World Bank. Data: World Bank Country and Lending Groups. [cited: 2023 May 30].
- 512 Available from: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-
- 513 25. Institute for Health Metrics and Evaluation (IHME). Global Burden of Disease Study 2019
- 514 (GBD 2019) Data Resources. 2020. [cited: 2023 May 30]. Available from:
- 515 https://ghdx.healthdata.org/gbd-2019, http://ghdx.healthdata.org/gbd-results-tool
- 516 26. Organization for Economic Co-operation and Development (OECD). Creditor Reporting
- 517 System (CRS). [cited: 2023 May 30]. Available from:
- 518 https://stats.oecd.org/Index.aspx?DataSetCode=crs1
- 519 27. Wooldridge J. Econometric Analysis of Cross Section and Panel Data, 2nd Edition.
- 520 Cambridge, MA/London: Penguin Random House/MIT Press; 2011.
- 521 28. Rambachan A, Roth J. A more credible approach to parallel trends. Review of Economic
- 522 Studies. 2023;15:1-37.

