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Abstract 

Gene expression profiles that connect drug perturbations, disease gene expression signatures, and 

clinical data are important for discovering potential drug repurposing indications. However, the 

current approach to gene expression reversal has several limitations. First, most methods focus 

on validating the reversal expression of individual genes. Second, there is a lack of causal 

approaches for identifying drug repurposing candidates. Third, few methods for passing and 

summarizing information on a graph have been used for drug repurposing analysis, with classical 

network propagation and gene set enrichment analysis being the most common. Fourth, there is a 

lack of graph-valued association analysis, with current approaches using real-valued association 

analysis one gene at a time to reverse abnormal gene expressions to normal gene expressions. 

To overcome these limitations, we propose a novel causal inference and graph neural network 

(GNN)-based framework for identifying drug repurposing candidates. We formulated a causal 

network as a continuous constrained optimization problem and developed a new algorithm for 

reconstructing large-scale causal networks of up to 1,000 nodes. We conducted large-scale 

simulations that demonstrated good false positive and false negative rates. 

To aggregate and summarize information on both nodes and structure from the spatial domain of 

the causal network, we used directed acyclic graph neural networks (DAGNN). We also 

developed a new method for graph regression in which both dependent and independent 

variables are graphs. We used graph regression to measure the degree to which drugs reverse 

altered gene expressions of disease to normal levels and to select potential drug repurposing 

candidates. 
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To illustrate the application of our proposed methods for drug repurposing, we applied them to 

phase I and II L1000 connectivity map perturbational profiles from the Broad Institute LINCS, 

which consist of gene-expression profiles for thousands of perturbagens at a variety of time 

points, doses, and cell lines, as well as disease gene expression data under-expressed and over-

expressed in response to SARS-CoV-2. 
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Introduction 

The path to drug development involves long processing: basic research, identification of the 

target compound, hit identification and validation,  hit-to-lead optimization, drug candidate 

selection, preclinical development, three elaborate and lengthy  phases of human clinical trials, 

regulatory review and approval, and post-market monitoring1. New drugs often take 9.5-15 years 

to get into the market  at a cost as high as $2.6 billion with only a fraction of the drugs getting to 

market2. To address these issues, drug repurposing strategies  which can take existing drugs   

approved by FDR to safely treat disease, other compounds that have been studied as potential 

drugs, or advancing previously studied but unapproved drugs, are used to  find new medical 

indications for these old compounds3,4. The advantages of re-purposing drugs are that they can be 

faster, cheaper, less risky and have higher success rates getting to market  than general drug 

discovery approaches3. 

    The major task of drug repurposing is to discover new associations of  drugs with diseases5 . 

The  methods for drug repurposing include (1) genetic association analysis for phenotype 

screening6,7, (2) target discovery using bioinformatics and artificial intelligence9, (3) systems 

biology approaches for identifying  new drug targets or repurposing opportunities10,  (4) use 

drug-repurposing databases such as "Connectivity Map"11 and “LINCS”12 which provide a 

resource for researchers to identify new uses for existing drugs by integrated analysis of  the 

gene expression profiles of drug-treated cells  and  disease-affected cells and (5) using clinical 

data from electronic health records (EHRs)  to predict drug response in humans for many 

repurposing4,13. 
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    Gene expression profiles which can connect drug perturbation, disease gene expression 

signatures and clinical data are valuable resources for discovering potential  drug repurposing 

indications4,14 . A popular approach to using  drug-induced and disease-specific gene expression 

data for identification of potential repurposed drugs is investigation of the ability of the drug to 

reverse over-gene expressions and under-gene expressions in the disease samples to normal gene 

expressions in the control samples14,15.  

    However, the current gene expression reversal approach has several limitations. First 

limitation is that most gene expression reversal methods focus on validation of reversal 

expression of individual genes. Drug efficacy is determined based on the ability to reverse 

altered  expression of individual genes4,14,15. Drug often induce many gene expressions and 

disease is linked to abnormal expression of a quite large number of genes which are not regulated 

properly in the disease. A large number of drug induced gene expressions and disease specific 

abnormal gene expressions are interconnected and form complex networks. Therefore, individual 

gene-based approaches for identifying repurposable drugs are not efficient. 

     Second limitation is a lack of causal approaches to identifying drug-repurposing candidates.  

There are some works on reconstruction of drug-induced gene expression networks and disease 

specific gene expression networks and their integrations for drug repurposing analysis. However, 

these reconstructed networks are undirected networks. Very few methods have been developed 

for reconstruction of large causal  gene expression networks. There has also been a lack of causal 

network approaches to search for drug-repurposing candidates. 

    Third limitation is that very few methods for information passing and summarizing on a graph 

have been used for drug repurposing analysis. Most approaches for massage passing and 

summarizing  are classical network propagation and gene set enrichment analysis16.  
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    Fourth limitation is a lack of graph-valued association analysis. The current approaches to 

reversing abnormal gene expressions to normal gene expressions use real valued association 

analysis, one gene association analysis at a time17.   

    To overcome these limitations,  we propose a causal inference and graph neural network – 

based framework for identification of drug-repurposing candidates. The classical methods for 

learning causal networks  are often formulated as a discrete optimization problem where  the 

search space of causal networks is combinatorial, which seriously limits the size of reconstructed 

causal networks18. Zheng et al19.  formulated  a causal network as a structural equation model 

(SEM), acyclic constraint in term of  smooth continuous function and hence reconstruction of the 

causal network as a continuous optimization problem, avoiding combinatorial formulization. 

Unfortunately, their formulation considered only endogenous  variables. In drug induced gene 

expression causal networks, gene expressions are taken as endogenous variables and dosages of 

drugs are taken as exogenous variables. We extend the SEM with only endogenous variables to 

the SEM with both endogenous and exogenous variables20,21. 

     We use directed  acyclic graph  neural networks (DAGNN) to  aggregates  and summarize 

information from the spatial domain of causal network with  no features for nodes 

and edges which are called  non-attributed22-24. Thus,   DAGNNs that use both the graph 

structure and node features  produce a real number representation which is called summary 

statistic for DAGNN. We calculate representations of DAGNNs for drug’s perturbated gene 

expression causal network and disease’s perturbated gene expression causal networks. Finally, to 

measure degree of reversing altered gene expressions of disease to normal gene expressions by 

drugs, we develop graph regression. Specifically, the representation of DAGNN for causal gene 
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expression network of disease is regressed on the representation of DAGNN for causal gene 

expression networks perturbated  by drugs  to select the candidate drugs25,26.  

   The proposed methods for drug repurposing  are applied to phase I and II L1000 connectivity 

map perturbational profiles from Broad Institute LINCS center under access code GSE70138 and 

GSE92742 which consist of  gene-expression profiles for thousands of perturbagens at a variety 

of time points, doses, and cell lines27, 28, and  under-expressed and over-expressed responses to 

SARS-CoV-2 with access code GSE14750729,30.  

Results 

Outline of the computational pipeline for identifying drug repurposing candidates 

We are developing a novel approach for identifying drug repurposing candidates that combines 

graph learning and causation analysis. A schematic of the computational pipeline is depicted in 

Figure 1. Our approach begins by collecting drug perturbated gene expression profiles from 

publicly available resources such as Connectivity Map (CMap) and LINCS. We then reconstruct 

large-scale drug-induced causal networks from these gene expression profiles by formulating 

graph-based causal inference as a continuous optimization problem to learn directed acyclic 

graphs (DAGs) (Methods). To assess the potential of a drug to reverse disease gene expressions, 

we utilize  graph neural networks (GNNs) to summarize information in the drug-induced causal 

networks.   

The next step is to identify the up- and down-regulated gene expressions in the disease and 

construct causal networks using the same methods employed for reconstructing drug-induced 

causal networks. Once we have reconstructed the causal up- and down-expression networks, we 

will summarize their information using GNNs. 
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To assess the ability of drug candidates to reverse gene expressions in disease samples, we will 

perform a regression analysis of disease up- and down-regulated networks on drug-induced 

networks. A negative coefficient obtained from regressing the disease up-regulated network on 

the drug-induced network will indicate that the drug can reverse up-regulated gene expression to 

normal levels. Similarly, a positive coefficient obtained from regressing the disease down-

regulated network on the drug-induced network will indicate that the drug can reverse disease 

down-regulated gene expressions to normal level. 

Finally, we will evaluate the ability of drug candidates to reverse gene expressions in disease 

samples through the regression analysis described above. This approach has the potential to 

significantly accelerate drug discovery and repurposing efforts. 

Reconstruction of causal networks and simulations 

Gene expression causal networks are modeled as DAGs where each node denotes either 

endogenous  gene expression variable or exogenous drug variable and each edge denotes either  

regulatory relationship between endogenous variables or perturbation of exogenous drug variable 

to the endogenous gene expression variables (Methods).  The classical methods for inferring 

DAGs  are often formulated as a discrete optimization problem where we require  a large number 

of search19. The intractable search space seriously limit the size of  reconstructed DAG. To 

overcome combinatorial optimization limitation     and to make the DAG search tractable, Zheng 

et al19 formulate DAG learning  as a continuous optimization problem with acyclic constraints 

and least square loss function.   The widely used gradient  and non-smooth optimization methods 

can be efficiently used to solve continuous optimization problem31,32.  Zheng et al.’s approach to 

learning DAGs considers only the endogenous variables. However, causal gene expression  

networks for drug repurposing  need to consider both endogenous and exogenous variables. 
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Therefore, we extend Zheng et al.’s approach to including both endogenous and exogenous 

variables in the DAGs. Specifically, we consider the structural equation model (SEM) 

(Methods): 

� � �Γ � �B � � ,          (1) 

where � is a  matrix of observed endogenous variable value (gene expression levels), � is a 

matrix of observed exogenous variable values (drug dosages), Γ is a weight matrix describing 

connections between endogenous variables (gene regulation matrix), � is a weight matrix 

describing the contributions of the exogenous variables to the endogenous variables (drugs to 

gene expressions, � is a matrix of errors.  

To evaluate the performance of the proposed causal network analysis, we conducted a series of 

simulation studies to compare the detection power and false discovery rate (FDR). Simulations 

consisted of two parts. The first part was to compare with three classical methods: (1) the 

graphical lasso (GLAAS) method, (2) structural equation model (SEM) and structural equation 

model coupled with integer programming (SEMIP). The second part was to compare with 

GLASS for undirected network. The proposed method was referred to  continuous optimization 

method (COM). In all simulations, we assumed  the density of edges of 0.05 and density of 

exogeneous variable of 0.15. 

In the first part, we randomly generated 1,000 directed acyclic graphs (networks) with 40 nodes. 

The simulation results were summarized in Table 1 where directed graphs were converted to 

undirected graphs when the GLASS was used for simulations. Simulations were carried out for 

500 and 1,000 samples. We observed that in all cases the COM had the smallest FDR. Although 
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the COM had the second largest power for 1,000 samples, the SEM that had the largest power 

for 1,000 samples also had 46% intolerable FDR.  

In the second part,  we increased the number of nodes in the directed acyclic graphs to 200. We 

used 1,000, 2,000 and 5,000 samples in simulations.  All directed graphs were converted to 

undirected graphs when the GLASS was used for simulations.  The simulation results were 

summarized in Table 2 where for the convenience of comparisons, the FDR for both COM and 

GLASS were enforced to have the same rates. We surprisingly observed that  the power of 

detecting the true directed acyclic graphs using the COM was much higher than the power of 

detecting undirected graphs using the GLASS.  

Up-expressed and down-expressed regulatory networks in COVID-19 samples 

A classical approach to drug repurposing is to evaluate the ability of the candidate drug to 

reverse alternative under gene expressions  or over gene expressions to normal gene expressions. 

It  starts with identifying a set of under-expressed and over-expressed genes in COVID-19 

samples. We selected 86 down-expressed genes and 93 up-expressed genes in  response to 

SARS-CoV-2 with access code GSE14750729,30, where gene expression profiling and differential 

expression analysis were performed for post-mortem lung samples from COVID-19-positive 

patients with biopsied healthy lung tissue from uninfected individuals. The classical methods for 

assessing the ability of the drug to reverse the alternative gene expression are using  either one 

by one comparisons or cluster by cluster comparison, which ignores the regulatory relations 

between genes. To evaluate the ability of the drug more accurately for reversing the alternative 

gene expressions, we reconstructed down-expressed (Figure 2) and up-expressed causal 

networks (Figure 3). The under-expressed causal network had four hub genes: Eukaryotic 

Translation Initiation Factor 3 Subunit A (EIF3A), Regulatory Factor X7 (RFX7), Impact RWD 
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Domain Protein (IMPACT)  and Polypeptide N-Acetylgalactosaminyltransferase 7 (GALNT7). 

The over-expressed causal networks had 6 hub genes: dual specificity phosphatase 1(DUSP1),  

TIR domain containing adaptor molecule 1(TICAM1), Zinc Finger Protein 613 (ZNF613), 

TSC22 domain family member 2 (TSC22D2), TNF alpha induced protein 3 (TNFAIP3), and 

retinoic acid receptor responder 2 (RARRES2).    

    The virus SARS-CoV-2, uses its nonstructural protein 1 (Nsp1) to inhibit translation in 

cellular, but not viral,  through competing with the EIF3A complex for binding to the 40S 

ribosomal subunit, which prevent loading  the mRNA from the host cell for starting translation33.  

One of the major pathways that RFX7 is involved in is the ciliary signaling pathway34. There 

have been studies that suggest that ciliary dysfunction may contribute to the pathogenesis of 

COVID-1935. Impact plays the role in dysregulation of   mitochondrial function which may cause 

COVID-1936.  Gene GALNT7  is involved in the O-glycosylation pathway. The surface glycan is 

involved in viral entry, infection, transmission, antigen, antibody responses, and disease 

progression which implies that Gene GALNT7 plays an important role in pathogenesis and 

therapy of COVID-1937.  

    In the over-expressed causal networks, we also observed hub-genes that play an important role 

in pathogenesis of  COVID-19. The DUSP10/MKP5 protein  was upregulated in lung tissue 

samples from patients with severe COVID-19 compared to non-COVID-19 controls38, and has 

been implicated in the MAPK/ERK, JNK and p38 pathways39, which are associated with virus 

infection40.  TICAM1 plays a critical role in the innate immune response by activating the Toll-

like receptor (TLR) signaling pathway, NF-kB pathway and Apoptosis pathways41 which lead to 

the production of pro-inflammatory cytokines and interferons in response to viral  infections and 

plays the role of Immunogenetics in COVID-1942. Gene ZNF613 is  involved in multiple 
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signaling pathways and cellular processes, including Wnt signaling, cell cycle regulation, TGF-β 

signaling, and epigenetic regulation. TSC22D2 is involved in the TGF-β, MAPK, P53,  

Glucocorticoid signaling pathways which regulate cell growth, differentiation, and survival. It 

has been shown to be associated with COVID1943. TNFAIP3 is a negative regulator of the NF-

κB pathway. It functions to inhibit the activation of NF-κB44. TNFAIP3 also inhibits the activity 

of other pro-inflammatory signaling pathways such as MAPK and IRF345. SARS-CoV-2 early 

infection signature identifies TNFAIP3 as one of   potential key infection mechanisms and drug 

targets46. RARRES2 is involved in the chemokine,  adipokine, MAPK and PI3K/Akt signaling 

pathways, resulting in the activation and migration of immune cells. and regulates the 

differentiation and activation of immune cells47. It was reported that  RARRES2 levels were 

higher in the serum of COVID-19 patients compared to healthy controls, and that RARRES2 

levels were an independent risk factor of mortality48.  We observed that TICAM1 and TNFAIP3 

were involved in NF-kB pathway, TNFAIP3, DUSP10, RARRES2,  and TSC22D2 were 

involved in MAPK pathway, and ZNF613 and TSC22D2 were involved in TGF-β pathway.  

Drug induced causal networks and targets 

To identify potential  drug  targets, we reconstructed drug induced causal networks  using phase I 

and II L1000 perturbational profiles of 978 genes  from Broad Institute LINCS center under 

access code GSE70138 and GSE9274228 and 4 drugs: ritonavir, chloroquine, ruxolinib and 

ribavirin. The number of samples used for drugs ritonavir, chloroquine, ruxolinib and ribavirin,  

was 149, 232, 204 and 187, respectively.  Perturbated gene expressions were taken as 

endogenous variables and dosages of drug were taken as exogenous variables.  The reconstructed 

causal networks for drugs chloroquine, ritonavir,  ruxolinib and ribavirin  were presented in 

Figures 4, 5, Figures S1 and S2, respectively.  
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    Chloroquine is a drug that has been used for the prevention and treatment of malaria, as well 

as for the treatment of certain autoimmune diseases such as rheumatoid arthritis and lupus. 

Chloroquine has been shown to have immunomodulatory effects, including the inhibition of 

cytokine production and the suppression of T-cell activation. Figure 4 showed that the drug  

chloroquine potentially targeted  9 genes: Fas Cell Surface Death Receptor (FAS), interleukin 13 

receptor subunit alpha 1(IL13RA1), SET domain containing 1B, histone lysine methyltransferase 

(SETD1B), GDP-L-fucose synthase (TSTA3), BTG Anti-Proliferation Factor 2 (BTG2), hypoxia 

up-regulated 1 (HYOU1), NPC intracellular cholesterol transporter 1 (NPOC1),  Rho guanine 

nucleotide exchange factor 5 (ARHGEF5) and peroxisomal biogenesis factor 19 (PEX19).        

FAS is involved in the extrinsic apoptotic pathway49. Dysregulation of this pathway has been 

implicated in various diseases, including cancer and autoimmune disorders.  Drugs that target 

this pathway are being developed as potential cancer therapeutics50. IL13RA1 is a key player in 

the immune system and has been identified as a potential drug target for various diseases, 

including asthma, chronic obstructive pulmonary disease (COPD), and cancer51.  BTG2 is a 

protein that has been implicated in various cellular processes. Small molecules that can modulate 

the activity of BTG2 could potentially be developed into drugs that could be used to treat cancer 

or other diseases52. HYOU1 has been implicated in various diseases, including cancer, 

neurodegenerative diseases, and cardiovascular diseases and is a potential therapeutic target for 

cancer53. ARHGEF5  plays a role in the regulation of cytoskeletal dynamics and is involved in 

various cellular processes such as cell migration, adhesion, and proliferation54. Studies have 

shown that targeting ARHGEF5 may inhibit tumor growth and invasion55. In addition, 

ARHGEF5 has been implicated in the development of inflammatory diseases such as asthma and 

rheumatoid arthritis. Mutations in PEX19 are associated with a range of human diseases, 
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including Zellweger syndrome and other peroxisome biogenesis disorders56. Studies have shown 

that inhibiting PEX19 can inhibit tumor growth and increase sensitivity to chemotherapy. This 

suggests that targeting PEX19 could also be a potential therapeutic approach for these diseases57. 

    Ritonavir is an antiretroviral medication that is primarily used to treat HIV (human 

immunodeficiency virus) infection58. Recently, ritonavir has also been used to treat other viral 

infections, such as hepatitis C and coronavirus including SARS-CoV-259. Figure 5 showed that 

the drug  ritonavir had three target genes: tissue factor pathway inhibitor (TFP1/TRAP), keratin 

80 (KRT80) and ankyrin repeat domain 66 (ANKRD66).  TFP1/TRAP1 is a member of the heat 

shock protein 90 (HSP90) family, which is involved in regulating the folding and stability of 

various proteins. In cancer cells, TFP1/TRAP1 has been found to be upregulated and associated 

with tumor progression and drug resistance60. Several small molecule inhibitors of TFP1/TRAP1 

have been developed and tested in preclinical studies, obtaining positive results and suggesting  

that TFP1/TRAP1 could be a potential therapeutic  target for cancer, including breast, lung, and 

pancreatic cancer61. ANKRD66 has a high likelihood to interact with GABRP that is identified 

as a promising drug target for colorectal cancer62.  Some studies show that miR-155 represents as 

a potential target for treating psoriatic skin lesions while KRT80 is a target gene of miR-15563. 

    Ruxolitinib is a medication that is primarily used to treat certain types of blood cancers and 

bone marrow disorders64. In addition, some studies have also shown that  ruxolitinib has  

potential  in treating other diseases such as graft-versus-host disease (GVHD) and certain types 

of lymphomas65. Figure S1 showed that the drug ruxolitinib had seven target genes: TERF2 

interacting protein (TERF21P), Clathrin Light Chain B (CLTB), ribonuclease/angiogenin inhibitor 

1 (RNH1), testis expressed 10 (TEX10), ubiquitin conjugating enzyme E2 A (UBE2A), RAB11, 

family interacting protein 2 (RAB11FIP2), Eukaryotic Translation Initiation Factor 1B (EIF1B).  
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Among them, TERF2IP is a potential target gene for cancer, cardiovascular diseases, and 

neurological disorders66, TEX10 has been shown to play a role in cell growth and proliferation, 

making it a potential target for cancer therapies67,  UBE2A-related XLID is linked to intellectual 

disability68, RAB11FIP2  has played a crucial role in maintaining the structure and function of 

neuronal synapses69 and EIF1B  is a protein that plays a role in the initiation of protein synthesis 

in eukaryotic cells. It has been implicated in various cellular processes, including viral infection, 

cell growth, and cancer70. 

    Ribavirin is an antiviral drug that targets viral replication by inhibiting viral RNA synthesis 

and leads to the eventual clearance of the infection. Therefore, ribavirin has been used to treat a 

variety of viral infections, including hepatitis C virus (HCV) and respiratory syncytial virus 

(RSV)71-72.  

    We found that a total of ten genes: protein kinase cAMP-activated catalytic subunit alpha 

(PRKACA), hypoxia up-regulated 1(HYOU1), DnaJ heat shock protein family (Hsp40) member 

C15 (DNAJC15),  integrin linked kinase (ILK), TNFAIP3 interacting protein 1 (TNIP1), ATM 

Interactor (ATMIN), ST6 N-acetylgalactosaminide alpha-2,6-sialyltransferase 2 

(ST6GALNAC2), Neudesin neurotrophic factor (NENF), CCAAT enhancer binding protein zeta 

(CEBPZ) and leucine rich repeat containing 4 (LARC41) were target of drug Ribavirin (Figure 

S2). The gene PRKACA can be considered a drug target. PRKACA encodes the catalytic subunit 

alpha of protein kinase A (PKA), which is an enzyme that plays a role in various cellular 

signaling pathways, including those involved in metabolism, cell growth, and differentiation. It is 

reported that there are several drugs that target PKA, either directly or indirectly used in the 

treatment of certain diseases, such as cancer and  genetic mutations in PRKACA have been 

found in some cases of cortisol-producing adrenal tumors, and drugs that specifically target these 
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mutations are currently being developed and tested in clinical trials73. Research has shown that 

HYOU1 is upregulated in response to various stressors and that it plays a role in protecting cells 

from stress-induced damage. As a result, HYOU1 has been implicated in the pathogenesis of 

several diseases, including cancer, cardiovascular disease, and neurodegenerative disorders74. 

Some studies have investigated the potential use of DNAJC15 inhibitors as a therapeutic 

strategy. For example, one study finds that small molecule inhibitors of DNAJC15 are able to 

inhibit the growth of cancer cells in vitro and in vivo, suggesting that targeting DNAJC15 can be 

a promising approach for cancer therapy75. There is growing interest in targeting ILK as a 

potential therapeutic strategy, and several ILK inhibitors have been developed and are currently 

being evaluated in preclinical and clinical studies76. There is some evidence to suggest that 

TNIP1 may be a potential drug target for  inflammation in certain disease models, such as 

rheumatoid arthritis and lupus. Additionally, small molecule inhibitors of the interaction between 

TNIP1 and TNFAIP3 have been developed and tested in preclinical models of inflammation77. It 

is reported that  CEBPZ promotes the migration and invasion of breast cancer cells and  CEBPZ 

knockdown in liver cancer cells leads to decreased cell proliferation and increases apoptosis78. 

Investigation of the potential of the drug to reverse the disease gene expression changes  

Disease gene expression  reversion  has been extensively used to discover new potential 

treatment for existing drugs79. There are a quite large number of up or down regulated gene 

expressions. We can examine  expression reversion one gene at a time. However, such approach 

has some limitations. First, it overlooks correlation between two gene expressions. Second, it 

may be infeasible to require that every up or down expressed gene reverses its expressions. 

Therefore, we constructed networks to represent all disease gene expressions as we showed in 

the previous section. Then, graph neural networks (GNNs) that  use both the graph structure 
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and node features to produce a representation were used for regression. 

     Specifically,  GNNs utilized iterative message passing between neighboring nodes in a 

network followed by pooling to update node representations and produce node and graph 

representations. A GNN was composed of multiple layers, with each layer computing 

representations for all nodes in the network by aggregating information from neighboring nodes 

and pooling all node representations to generate a network-level representation. The node and 

network-level representations  then were passed to the next layer. After several iterations, the 

GNN outputed node and network-level representations, which were subsequently used in 

regression to assess the potential for reversing disease gene expressions. 

         Initially, we employed GNNs to represent and summarize both directed and undirected 

networks of gene expressions in response to drug action, as well as directed expression networks 

that showcase up or down-regulation in disease samples. We then utilized the GNN to 

summarize the network level of gene expression changes associated with disease, which were 

subsequently regressed on both drug-directed and undirected perturbation networks. The 

regression coefficient served as a measure of the potential of the drug to reverse the gene 

expression changes associated with the disease. 

    Table 3 presents the results of a regression analysis that examined the potential for four drugs - 

Chloroquine, Ribavirin, Ritonavir, and Ruxolitinib - to reverse disease gene expressions. Both 

directed and undirected networks were used to model drug perturbation expression and up/down 

expression networks in the disease. The results revealed several noteworthy features. 

Firstly, the directed network approach had greater power in detecting the potential effect of 

reversing disease gene expressions with drugs. The analysis showed a negative coefficient of 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 2, 2023. ; https://doi.org/10.1101/2023.07.29.23293346doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.29.23293346
http://creativecommons.org/licenses/by-nd/4.0/


18 

 

disease up-expression network regressed on the Chloroquine and Ritonavir directed perturbation 

network. However, we observed a positive coefficient for the disease up-expression network 

regressed on the Chloroquine and Ritonavir undirected perturbation networks. 

    Secondly, the signals indicating the reversal of up-disease expressions were stronger than 

those indicating the reversal of down-disease expressions. We found significant effects of 

reversing up-disease expressions using Ritonavir, Chloroquine, and Ruxolitinib, but did not 

observe significant effects of reversing down-disease expressions using any of the four drugs. 

     Table 3 presents the estimated effect of reversing the disease expression network. However, it 

should be noted that this does not guarantee the reversal of disease expressions for all genes. In 

Table 4, we presented the potential roles of four drugs in reversing the disease expressions of 11 

individual genes. Of these genes, seven were up-expressed (DUSP, TICAM1, TP5D1, CCL27, 

TNFAIP3, TNNT3, CLEC7A), and four were down-expressed (EIF3A, GALNT7, RFX7, 

IMPACT). While Table 3 showed  that three drugs (Chloroquine, Ritonavir, and Ruxolinih) 

reversed the up-disease expression network, they did not reverse all seven up-expression genes. 

In contrast, all four drugs showed some potential for reversing either up-expressed or down-

expressed genes, as indicated in Table 4. Notably, none of the four drugs showed significant 

roles in reversing the down-disease expression network, as seen in Table 3. Upon reviewing 

Table 4, we found that with the exception of CCL27, the disease expressions of all 10 genes 

were effectively reversed by at least one drug. This suggested that a combination of four drugs 

might  have the potential to reverse the majority of disease expressions. This indicated promising 

therapeutic potential for reversing the disease-associated gene expressions using drug 

combinations. 

Target paths in disease up- and down- expression networks 
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In order to elucidate how drugs can reverse disease-related changes in gene expression, we have 

provided additional evidence in Figures 6 and 7. Specifically, we showed that administering 

Ritonavir led to the formation of complex directed networks that were associated with both up- 

and down-regulated gene expression patterns. Our analysis of these networks, presented in Table 

4, revealed that Ritonavir treatment specifically targeted three hub genes, namely DUSP1, 

TICAM1, and TNFAIP3, in the up-regulated network. Notably, reductions in the expression of 

these hub genes resulted in the activation of multiple downstream pathways, leading to the 

formation of highly interconnected and complex networks with 37 genes. 

     After reviewing the pathways, we discovered that they led to the following genes: CXCL3, 

MMP9, IL1A, IKZF3, ZFP36, EGR1, and CCL27. Further research in the literature revealed that 

each of these genes had been linked to COVID-19. 

 Studies showed that the CXCL3 gene was involved in the immune response to viral infections, 

including COVID-19. CXCL3 encoded for a chemokine protein that was produced by various 

cells of the immune system and was involved in the recruitment of immune cells to the site of 

infection. 

 In COVID-19 patients, CXCL3 has been found to be significantly upregulated in the lungs, 

indicating its potential role in the disease pathogenesis. Additionally, studies have suggested that 

targeting CXCL3 could be a potential therapeutic strategy for COVID-19, as it could help 

regulate the immune response and reduce inflammation in the lungs80. 
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There was limited research on the association of the MMP9 gene with COVID-1981. The study 

found that individuals with the mutation had higher levels of MMP9, which was associated with 

inflammation and lung injury, leading to worse outcomes in COVID-19 patients. 

Several studies investigated the association of IL1A gene expression with COVID-1982.  IL1A 

might play a role in the pathogenesis of severe COVID-19 and might serve as a potential 

biomarker for disease severity and prognosis. 

ZFP36 was a gene that encoded a protein involved in the regulation of inflammation and immune 

responses. There had been several studies investigating the association of ZFP36 gene expression 

with COVID-1983 . Their findings suggested that ZFP36 might play a role in the regulation of 

inflammation and immune responses in COVID-19, and might serve as a potential therapeutic 

target.  

     EGR1 was a gene that encoded a transcription factor involved in the regulation of cellular 

growth and differentiation. There had been several studies investigating the association of EGR1 

gene expression with COVID-1984. EGR1 might play a role in the regulation of immune 

responses and inflammation in COVID-19, and might serve as a potential therapeutic target. 

CCL27 was a chemokine that played a role in the recruitment of immune cells to sites of 

inflammation. Several studies identified CCL27 as one of the chemokines that was significantly 

upregulated in the lungs of COVID-19 patients compared to healthy controls85.  
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IKZF3  was a gene that encoded a transcription factor involved in the regulation of immune cell 

differentiation and function. There was evidence to suggest that other members of the IKZF3  

might be involved in the pathogenesis of COVID-1986. 

Table 4 summarized our analysis of the networks, indicating that Ritonavir treatment specifically 

targeted three hub genes, EIF3A, GALNT7, and RFX7, in the down-regulated network. 

Interestingly, upregulation of these hub genes led to the activation of multiple downstream 

pathways, resulting in the formation of highly interconnected and complex networks involving 

50 genes. 

In Figure 7, we observed that Ritonavir directly targets MMP1, which is a down-regulated gene 

in the disease. Additionally, MMP1 expression was found to be associated with the expression of 

RFX7 (reverse regression coefficient = 0.25 and P-value =0.0004). Furthermore, EGR1 was 

identified as a targeted gene of Ritonavir and was significantly associated with the expression of 

RFX7 (reverse regression coefficient = 0.56 and P-value = 0.00005), as shown in Figure 7. Three 

genes, GALNT7, MMP1 and EGR1 transcriptionally regulated  RFX7, which in turn regulated 

25 genes in the down-regulated expression network in COVID-19 .  

    RFX7 is transcription factor. It is reported that RFX7 may also have a role in neurological and 

metabolic disorders. It  limits metabolism of NK cells and promotes their maintenance and 

immunity87. A Multi-omics analysis identifies RFX7 targets involved in tumor suppression and 

neuronal processes88.  

    MMP1 is a drug target gene89. There are several drugs that target MMP1 for the treatment of 

various diseases, including small molecule inhibitors and monoclonal antibodies. EGR1 is also a 

drug target gene. EGR1 is a transcription factor that plays a role in the regulation of cell growth, 
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differentiation, and apoptosis, and its dysregulation has been implicated in various diseases, 

including cancer, cardiovascular disease, and inflammatory disorders. There are several drugs in 

development that target this gene for the treatment of various diseases90. 

     Further analysis revealed that paths originating from the three hub genes, EIF3A, GALNT7, 

and RFX7, in the down-regulated network were reversed in the disease state. Remarkably, these 

paths eventually converged on gene  C4BPA. 

    There have been some studies investigating the association between C4BPA and COVID-19. 

Overall, several  studies suggest that C4BPA may play a role in the immune response to SARS-

CoV-2 and that genetic variations in the C4BPA gene may influence susceptibility to severe 

COVID-1991.  

Discussion 

In this study, we have proposed a novel approach for identifying potential drug repurposing 

candidates that utilizes a combination of graph learning and causation analysis. A key challenge 

in conducting causal inference in drug repurposing studies is developing a robust and large-scale 

causal network (DAG) with thousands of nodes. However, the classical methods for inferring 

DAGs are often limited by a discrete optimization problem that requires an extensive search, 

resulting in an intractable search space that seriously limits the size of the reconstructed DAG. 

To overcome the limitations of combinatorial optimization, we have formulated DAG learning as 

a continuous optimization problem with acyclic constraints. Through large-scale simulations, we 

have demonstrated that our proposed method for DAG learning is robust and has high power in 

reconstructing DAGs with up to 1,000 nodes.  
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To illustrate that our approach has significant potential for identifying drug repurposing 

candidates, the proposed methods were applied to  L1000 perturbational profiles of 978 genes  

from Broad Institute LINCS center under  4 drugs: ritonavir, chloroquine, ruxolinib and ribavirin 

to reconstruct drug induced causal networks, and to up- and down-gene expressions in post-

mortem lung samples from COVID-19-positive patients to  reconstruct  disease causal 

expression networks. To our knowledge, this has been the first time to construct causal networks 

with up to 1,000 nodes.  

The causal network approach is a powerful tool for identifying potential drug repurposing 

candidates. Here are some advantages of using this approach: 

(1) Uncovering causal relationships: Causal network analysis can reveal causal relationships 

between different genes, proteins, and pathways, providing insights into the mechanisms 

underlying disease. We have showed that administering Ritonavir leads to the formation 

of complex directed networks with 85 genes that were associated with  up- or down-

regulated gene expression patterns.   

(2) DAG analysis revealed that Ritonavir reversed disease  up- and down- gene expressions 

to normal level, but the undirected network analysis completely failed.   

(3)  By identifying the causal factors that contribute to the disease, the approach can help 

identify new drug targets and repurposing candidates. Causal network analysis elucidated 

that how drugs  reversed disease-related changes in gene expression.  It  revealed that 

Ritonavir treatment specifically targeted three hub genes, namely DUSP1, TICAM1, and 

TNFAIP3, in the up-regulated network. After reviewing the pathways, we discovered that 

they lead to the following genes: CXCL3, MMP9, IL1A, IKZF3, ZFP36, EGR1, and 

CCL27. Further research in the literature revealed that each of these genes has been 
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linked to COVID-19. Causal network analysis also found that Ritonavir treatment 

specifically targeted three hub genes, EIF3A, GALNT7, and RFX7, in the down-

regulated network, which lead to three drug target genes: MMP1, EGR1 and C4BPA.  

(4) Prediction of drug efficacy: The causal network approach can predict the efficacy of a 

drug by identifying the causal relationships between drug targets and disease pathways. 

This can help prioritize repurposing candidates for further investigation. 

(5) Reducing cost and time: Repurposing drugs can save time and cost compared to 

developing new drugs. The causal network approach can help identify repurposing 

candidates with a higher likelihood of success, reducing the time and cost of drug 

development. 

To investigate the potential of the causal network approach for identification of  drug 

repurposing candidates,  we examined four drugs: Ritonavir, Chloroquine, Ribavirin, and 

Ruxolitinib. Our results showed that reversing up-disease expressions using Ritonavir, 

Chloroquine, and Ruxolitinib had significant effects, while we did not observe significant effects 

of reversing down-disease expressions using any of the four drugs. Additionally, we found that 

Ritonavir was slightly more likely to be a better candidate for treating COVID-19 than the other 

three drugs. However, due to the small sample size of publicly available Nirmatrelvir induced 

gene expression data, we were unable to estimate the effects of reversing disease gene 

expressions to a normal level using Nirmatrelvir and Paxlovid. 

In this study, GNNs  are used to  investigate the potential for reversing disease gene expressions. 

They  have several advantagesfor investigating  such potential: 

Advantages: 
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(1) Capturing complex relationships: GNNs can capture complex and non-linear 

relationships between genes and their expressions, making them useful for modeling the 

complex interactions that occur in gene expressions and drug responses. 

(2) Integration of multiple data types: GNNs can integrate multiple types of data  to provide 

a more comprehensive view of disease mechanisms. 

(3) Predictive power: GNNs have demonstrated excellent predictive power for various tasks, 

including drug discovery and predicting gene-disease associations. 

(4) Scalability: GNNs can be scaled to handle large datasets, making them suitable for 

analyzing large-scale biological data. 

However, there are also some limitations to using GNNs for investigating the potential for 

reversing disease gene expressions: 

Limitations: 

(1) Interpretability: The complex structure of GNNs makes it challenging to interpret the 

model's results and understand the underlying mechanisms. 

(2) Although GNNs reveal that disease up- or down-expressions are reversed at the network 

level, it does not necessarily mean that the disease expressions of all genes are restored to 

normal levels. Our observation shows that Ritonavir reversed the disease up-expression 

network, but it only restored three disease gene expressions out of the seven hub genes in 

the disease up-expression network. 

(3) Generalization: GNNs may have difficulty generalizing to new datasets or diseases that 

have different biological mechanisms or genetic backgrounds. 

(4) Biased representation: GNNs can be biased towards the data used for training, which may 

lead to overfitting or inaccurate predictions when applied to new datasets. 
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Overall, while GNNs have several advantages for investigating the potential for reversing 

disease gene expressions, it is essential to carefully consider their limitations and ensure that 

their results are validated by experimental studies. 

Our study has revealed that none of the four drugs tested were able to reverse all 11 hub genes in 

the up- and down-expression networks associated with the disease. However, with the exception 

of one gene, all 10 other genes showed significant improvement in disease expression after 

treatment with at least one of the drugs. This suggests that a combination of the four drugs may 

be able to effectively reverse the majority of disease expressions. These findings indicate that the 

proposed approach allows to find a promising therapeutic strategy for addressing the disease-

associated gene expressions using drug combinations. 

Repurposing drugs for treating diseases presents a significant challenge due to the complex 

networks formed by a large number of pathways between drug targets and disease genes. 

Although we have developed an approach to reconstruct causal networks up to 1,000 nodes, we 

still lack efficient methods for integrating multimodal data from genomic, transcriptomic, 

epigenetic, proteomic, and metabolic sources across multiple cell types. Furthermore, 

reconstructing large-scale cascade DAGs with thousands of nodes, starting from drug targets 

through multiple directed paths (transcriptomic, epigenetic, proteomic, metabolic) and ending 

with diseases, remains a challenge. One of the most significant limitations of the drug 

repurposing approach is the lack of a bridge between the drug signature and the reverse disease 

signature. While the use of rapidly developing artificial intelligence tools and molecular biology 

technologies shows promise for developing a general and efficient framework for identifying 

drug repurposing candidates, we still have a long way to go. 
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Methods 

Structural equation model 

Let � � 	��, … , ����  be a vector of the M endogenous variables, e.g., gene expressions and 

� � 	��, … , ��  �� be a vector of K exogenous variables, e.g., drug dosage. We denote the errors 

by �. We assume that �	�� � 0  and that e is uncorrelated with the exogenous variables in X. We 

also assume that ei is homoscedastic and nonautocorrelated20. Assume that the sample size is  �, 

the number of endogenous variables is �,  and the number of exogenous variables is � . Then,  

structural equation model (SEM)  are given by 

� � �Γ � �� � �, 

where   

� � ���� � ���� � ���� � ���� � ���, … , ���  

� � ���� � ���� � ���� � ���� � ��� , … , ���  

Γ � � ��� � ���� � ���� � ���� � �Γ�, … , Γ�� , � � ���� � ���� � ���� � ���� � ���, … , ���, Γ, � are parameter 

matrices, and 

� � ���� � ���� � ���� � ���

� � 	��, … , ��� . 

Parameter estimation and optimization in the SEM 

After introducing the matrix exponential as a constraint to ensure the network's acyclicity, the 

optimization problem for learning DAGs using SEMs are reduced to 
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min������,
����� ��Γ, �, �; �, �� � �

��
��  �Γ  X���

� � ���Γ�� � ������ ,        (2) 

Subject to h�Γ� � Tr�����  � � 0, 

where �. ��  denotes  frobenius matrix norm, �. �� denotes &� norm and  ' denotes an element 

multiplication.  

Now the combinatorial optimization problem is transformed to equality constrained continuous, 

but nonsmooth optimization problem. Solutions consists of two major steps: (1) using Lagrange 

multiplier method to transform the equality constrained optimization problem into a sequence of 

non-constrained optimization problem and (2) solving non-smooth optimization problem. 

Transform the Equality Constrained Optimization Problem into Unconstrained 

Optimization Problem 

The classical augmented Lagrange multiple method is employed to convert the constrained 

optimization (2) into an unconstrained optimization problem: 

The primal problem: 

(�)� � min� *� �Γ, �, �, +, ); �, �� � ��Γ, �, �; �, �� � �

�
|-�Γ�|� � )-�Γ� , (3) 

where  

��Γ, �, �; �, �� � �

��
��  �Γ  X���

� � ���Γ�� � ������ , 
�

�
|-�Γ�|� is an augmentation term 

and  )-�Γ� is a Lagrange term. 

The dual problem: 

max� (�)� .          (4) 
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     The optimization problem (3) can be separated into smooth optimization and nonsmooth 

optimization problem:  

*��Γ, �, �, +, ); �, �� � 0�Γ, �, +, ); �, �� � ���Γ�� � ������ ,   (5) 

where  

0�Γ, �, +, ); �, �� � �

��
��  �Γ  X���

� � �

�
|-�Γ�|� � )-�Γ�     

is the smooth part of the objective function. For simplicity of notation, we define �Γ�� �
�1�2�Γ��� and ���� � �1�2�����. Let 3 � 4Γ�5 � 63�3�

7 and 8 � 1�2�3� Then, equation (5) 

can be rewritten as 

*��W �, +, ); �, �� � 0�W, +, ); �, �� � ��3�� ,      (6) 

where 

0�W, +, ); �, �� � �

��
��  :3��

� � �

�
|-�Γ�|� � )-�Γ�, : � 	�, �� .  (7) 

Newton's classic method is an efficient approach for solving unconstrained smooth optimization 

problems, but it is not suitable for nonsmooth optimization problems. To address this, we will 

use proximal methods, which can be seen as an extension of Newton's method that enables us to 

solve nonsmooth optimization problems92. In general, the optimization problem (5) can be solved 

by the proximal method92,93. In other words, to solve the optimization problem (5), at each 

iteration we often expand the function  0�Γ, �, +, ); �, �� in a neighborhood of the current iterate  

�Γ� , ��� by a Taylor expansion:  

0�ω, +, ); �, �� < 0�8� , +, ); �, �� � �=�
� 0��8�  8� � �

�
�8�  8��>��8�  8�,  (8) 
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where 

0�8� , +, ); �, �� � �

��
�1�2���  �? :�1�2�3���

� � �

�
|-�Γ�|� � )-�Γ� , >�  is the Hessian matrix 

and  8  is viewed as 1�2�3�. 

The Hessian matrix >�  can be approximated by BFGS correction94.  We can show that BFGS 

correction ��  is given by,       

���� � �� � ����
�

��
���

 ������
���

��
�����

 ,         (9) 

where 

@� � =�0�8����  =�0�8�� ,       (10) 

A� � 8���  8�  .         (11) 

Thus, equation (8) can be reduced to 

0�ω, +, ); �, �� < 0�8� , +, ); �, �� � B�
�A� � �

�
A�
���A�  ,    (12) 

where B� � =�0�8��. 

    Combining equations (5) and (12), optimization problem (5) at iteration C can be reduced to  

*�8, �, D� � B�
�D � �

�
D���D � �|8� � D|� .      (13) 

    Coordinate descent algorithms, which solve optimization problems by successively perform 

optimization along coordinate directions and often have a closed form solution, can be used to 

solve nonsmooth optimization problem (13). Let ��  be an unit vector with the E�� component 

being 1 and all other components being zero. For simplicity, the changes of the E�� component of 
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3� � D is denoted by F� � D� � G��  where G is a search variable.  For the E�� component, 

equation (13) is reduced to 

min�
�

�
���G� � HB� � ��D��IG � �JF� � D� � GJ

�
 .      

The solution is  

D�
��� � D�

� � G� ,         

where 

G� �  F�  D� � sign�F� � D�  ������ �

���
� MNF� � D�  ������ �

���
N  !

���
O
�

 ,   

�P�� � max �0, P� . 

Graph neural networks provide a general and flexible framework for describing and 

analyzing network data. 

Graph neural networks (GNNs) provide a condensed representation of an input graph.  The key 

insight behind GNNs is that the representation of a node in a graph should be influenced by the 

representations of its neighbors. This is achieved through a message-passing scheme, where each 

node aggregates information from its neighbors, updates its own representation, and then sends a 

message to its neighbors.  

Consider a graph Q � �R, ��, where R denotes � nodes and � � ����� denotes a set of edges. Let 

-"
#  denote an embedding of node 1 in the � layer. Learning GNN is implemented by the 

following iterative algorithm: 

��"
#$� � �SQ�-�

#$�,  -"
#$�,  ��"#$�� ,        (14) 
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TQQ"
# � TQQ#�U ��"

#$�|E V W�X�Y ,        (15) 

-"
# � Z[\]C��#H-"

#$�,  TQQ"
#I, � � 1, … , &,       (16) 

-% � _�PD[`a�-"
&, 1 V R� ,         (17) 

where W�X� denotes a neighborhood of the node 1, MSG, AGG, Combine and Readout are 

implemented by feedforward neural networks.  

Directed acyclic graph neural networks 

Directed Acyclic Graph  Neural Networks (DAGNNs) are a type of neural network that can 

model and analyze complex data structures with a directed acyclic graph. Algorithm for updating 

node representations is based on those of all their predecessors sequentially, such that nodes 

without successors digest the information of the entire graph. The DAGNN learning algorithm is 

given by20 

\"
# � TQQ"

# � ∑ )"'
# �-"

#$�,  -'
# �-'

#
'�(�"  ,        (18) 

)"'
# H-"

#$�,  -'
# I � softmax'�(�" �HF�

#I�-"
#$� � HF�

#I�-'
# � HF)

#I�f�`, 1��,   

 (19)  

-"
# � g#�-"

#$�, \"
# �,       (20) 

-% � gZ�max  pool"�*�j+
& -"

# , � j max  pool'�,�j+
& -k'

# �� ,    

 (21) 

where l�1� denotes the set of direct predecessors of 1, m denotes the set of nodes without 

(direct) successors, -"
#$� is defined as a query, -'

#  is defined as a key,  or a value, the weighting 

coefficients )"'
#  are defined by the standard attention mechanism and calculated by equation 
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(19), F�
# , F�

# , F)
#  are model parameters, f�`, 1� are representation of edge �`, 1�, g# is the 

combine operator that combines the message \"
#  with  the previous representation of 1, -"

#$�,  

and gZ represents a fully-connected layer.  

Learning algorithm can be a bidirectional process. The directions of the edges in G can be 

optionally inverted to create a reverse (TQ Qk. The representation of node 1 in Qk at the �-th layer 

is denoted by -k"
# . After  & layers of (bidirectional) processing, the graph level representation is 

generated by the computed node representations. The representations across layers are 

concatenated, a max-pooling across nodes are performed, and a fully-connected layer  is applied 

to produce the output -%
20.  

Graph regression 

Regression can be extended to graph regression where both sides of regression are graph 

representations. The GNNs and DAGNN can be used to summarize information of undirected 

graph and DAG. Suppose that we regress one graph on another graph. Let f be representation of 

the graph at the graph level and n be representation of another graph at the graph level.  The 

representation can be a single value or vectors of values.   

Let's consider the regression of one graph on another graph. Let f be the representation of the 

graph at the graph level, and n be the representation of another graph at the graph level. These 

representations can be a single value or vectors of values, depending on the chosen approach. 

Graph regression allows us to model the relationship between graph-level representations, 

enabling tasks such as prediction, inference, and analysis across graphs. 

Define a regression: 

f � o � pn .           (22) 
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Then,  the regression (22)  that uses representations of graphs as dependent variable and 

independent variables is referred as graph regression.  

Data availability 

All datasets used in this work are publicly available from the following sources: The gene 

expression data for SARS-CoV-2 were obtained from  GSE147507 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE147507) . The CMap and L1000 data 

were downloaded from GSE 92742 and GSE 70138 (perturbational profiles from Broad Institute 

LINCS center, phase I and II) (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE92742 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70138).  

Code availability  

The code for reconstruction of  DAG is submitted to github 

https://github.com/SplinterTao/DAG.   We relied on open source libraries for reconstruction of 

undirected graph and implementations of GNN and DAGNN.  
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Table 1. Power and false discovery rate (FDR) for construction of network with 40 nodes 
Method Power FDR Number of variates Number of samples 
SEM 80 35 40 500 

SEMIP 76 32 40 500 

COM 82 32 40 500 

GLASS 75 39 40 500 

SEM 95 46 40 1000 

SEMIP 82 34 40 1000 

COM 88 23 40 1000 

GLASS 84 44 40 1000 
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Table 2. Power and false discovery rate (FDR) for construction of causal network with 200 
nodes. 

Performance N=1000 N=2000 N=5000 
FDR 0.19 0.17 0.11 

Power  0.59 0.71 0.74 
  N=1000 N=2000 N=5000 

FDR 0.19 0.17 0.11 

Power  0.35 0.4 0.39 
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Table 3. Possibility of reversing up-expressed and down-expressed networks to normal expressions using fou
drugs .   
Drugs Type of Networks Up-expressed Down-expressed 
    Mean Reg. Coefficient Mean Reg. Coefficien
Chloroquine Directed 0.204 *-0.106(0.004) 0.096 -0.055(0.11)
  Undirected 0.454 *0.011(0.13) 0.336 -0.032(0.39)
Ribavirin Directed 0.324 0.042(0.06) 0.565 0.046(0.07) 
  Undirected 0.492 0.137(0.007) 0.394 -0.03(0.19)) 
Ritonavir  Directed -0.127 *-0.329(0.0045) 0.325 0.023(0.35) 
  Undirected 0.481 0.005(0.57) -0.357 0.09(0.02) 
Ruxolinib  Directed 0.423 *-0.072 (0.04) 0.327 0.082(0.72) 
  Undirected -0.079 *-0.232*(0.09) 0..423 -0.045(0.08)
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Table 4. Possibility of reversing over-expressed and under-expressed genes to normal expressions using four
drugs. 
  Ribavirin Ritonavir Ruxolinib  Chl
Genes Coefficient P-value Coefficient P-value Coefficient P-value Coefficie
DUSP1 -0.16 0.37 -0.34 0.08 -0.04 0.62 -1.72 
TICAM1 0.11 0.08 -0.2 0.17 -0.08 0.009 -0.35 
TP5D1 0.06 0.17 0.06 0.75 0.14 0.0002 -1.28 
CCL27 0.07 5.6E-01 0.11 3.2E-01 0.61 2.0E-06 0.09 
TNFAIP3 -0.31 0.009 -0.39 0.04 0.052 0.001 -1.34 
TNNT3 -0.32 0.007 0.15 0.02 0.34 0.04 1.62 
CLEC7A 0.18 0.3 0.19 0.019 -0.77 0.0002 -1.88 
EIF3A -0.03 0.72 0.21 0.03 0.23 0.004 0.92 
GALNT7 -0.09 0.44 0.04 0.37 0.05 0.31 -0.88 
RFX7 -0.31 0.03 0.32 0.042 0.04 0.24 -0.71 
IMPACT 0.27 0.02 -0.15 0.11 0.08 0.19 -0.01 
 

 

 

 

 

 

 

 

 

 

 

 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 2, 2023. ; https://doi.org/10.1101/2023.07.29.23293346doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.29.23293346
http://creativecommons.org/licenses/by-nd/4.0/


49 

 

 

 

 

 

 

 

Figure Legend 

Figure 1. Outline of the computational pipeline for identifying drug repurposing candidates. 

Figure 2.  Network of down-regulated genes associated with diseases.        

Figure 3. Network of up-regulated genes associated with diseases. 

Figure 4. Network of gene expressions induced by Chloroquine with causal implications. 

Figure 5. Network of gene expressions induced by Ritonavir with causal implications 

Figure 6. The administration of Ritonavir to reverse disease up-expressions gave rise to 

intricate directed networks. 

Figure 7. The administration of Ritonavir to reverse disease down-expressions gave rise to 

intricate directed networks 
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Figure S Legend 

Figure S1. Network of gene expressions induced by Ruxolitinib with causal implications. 

Figure S2. Network of gene expressions induced by Ribavirin with causal implications. 
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