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Abstract 19 

 20 

Most therapeutic development is targeted at slowing disease progression, often long after the initiating 21 

events of disease incidence. Heart failure is a chronic, life-threatening disease and the most common 22 

reason for hospital admission in people over 65 years of age. Genetic factors that influence heart 23 

failure progression have not yet been identified. We performed an exome-wide association study in 24 

8,089 patients with heart failure across two clinical trials, CHARM and CORONA, and one 25 

population-based cohort, the UK Biobank. We assessed the genetic determinants of the outcomes 26 

‘time to cardiovascular death’ and ‘time to cardiovascular death and/or hospitalisation’, identifying 27 

seven independent exome-wide-significant associated genes, FAM221A, CUTC, IFIT5, STIMATE, 28 

TAS2R20, CALB2 and BLK. Leveraging public genomic data resources, transcriptomic and pathway 29 

analyses, as well as a machine-learning approach, we annotated and prioritised the identified genes for 30 

further target validation experiments. Together, these findings advance our understanding of the 31 

molecular underpinnings of heart failure progression and reveal putative new candidate therapeutic 32 

targets. 33 

  34 
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Introduction 35 

 36 

Heart failure is a common, chronic health condition with increasing prevalence. In 2017, an estimated 37 

64.3 million people worldwide were living with heart failure1. Around 2% of adults have heart failure 38 

and, in those over the age of 65, the prevalence increases to 6–10%2-5. Although survival after 39 

diagnosis has improved, death rates remain high, with 5-year survival averaging 50%6. Heart failure is 40 

the leading cause of both hospitalization and readmission amongst older adults7-9. 41 

Studies have estimated the heritability of heart failure at 26%10. Genome-wide association studies 42 

(GWAS) have characterised the contribution of common genetic variants to the aetiology of heart 43 

failure11-13. We recently described the distinct contribution of rare genetic variation to all-cause heart 44 

failure in a case-control study14. We also investigate the genetic differences between heart failure 45 

subtypes based on left ventricular ejection fraction (LVEF) and the burden of Mendelian 46 

cardiomyopathy variants in these patients. We observed an enrichment of variants typically associated 47 

with dilated cardiomyopathy in patients with ischemic heart failure, in particular, protein-truncating 48 

variants in the TTN gene. Our data supported the notion that genes linked to Mendelian 49 

cardiomyopathy could represent therapeutic targets for a broader heart failure indication. Collectively, 50 

the vast majority of genetic studies for common chronic diseases such as heart failure have informed 51 

on disease incidence, with an unclear relationship to disease progression. 52 

Most therapeutic development is targeted at slowing or arresting disease progression in individuals 53 

who already have disease. However, studies of disease progression remain challenging, as they require 54 

extensive, longitudinal clinical data that require expert curation, such as diagnoses, hospitalisation 55 

dates, causes of hospitalisation and death. They also present statistical and computational challenges, 56 

as the most well-known approach for analysis of survival (or time-to-event) analysis, the Cox 57 

proportional hazards model15, does not scale well to large datasets16. Partially overcoming these 58 

challenges, powerful and efficient time-to-event analysis frameworks have recently been applied to the 59 

UK Biobank17-19. For heart failure, these studies have mostly focused on time-to-diagnosis phenotypes 60 

and/or considered only common genetic variants20. 61 

 The aim of this study was to identify rare variants associated with heart failure progression. Rare 62 

variants have typically larger effects on phenotypes and reveal more direct insights into biology that 63 

can be exploited for medicine development21. Specifically, the objectives of this study were to (1) 64 

perform a survival analysis of heart failure patients to identify genes with an excess or depletion of 65 

rare variants in individuals with a detrimental outcome such as shorter time to cardiovascular death; 66 

(2) explore how these results can inform the genetic architecture of heart failure progression; and (3) 67 

evaluate which of the identified progression-associated candidate genes could present potential 68 

candidates for therapeutic development. To address these objectives, we analysed whole-exome 69 

sequencing data from patients with heart failure, representing all broad clinical subtypes, from the 70 

Candesartan in Heart Failure-Assessment of Reduction in Mortality and Morbidity (CHARM) and 71 
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Controlled Rosuvastatin Multinational Trial in Heart Failure (CORONA) clinical trials, and heart 72 

failure patients from the UK Biobank22-24. All three cohort studies had extensive clinical information 73 

available and had been previously studied for heart failure incidence. We applied gene-based 74 

collapsing analyses within each study, followed by meta-analysis to discover genes with an excess of 75 

rare variants associated with two heart failure outcomes, ‘time to cardiovascular death’ and ‘time to 76 

cardiovascular death and/or hospitalisation’. 77 

 78 

 79 

Results 80 

 81 

Description of the study cohorts and analytical approach. In this study, we analysed a total of 82 

8,089 heart failure patients: 2,672 from CHARM, 2,776 from CORONA and 2,641 from the UK 83 

Biobank. From these 8,089 individuals, 1,328 (16.4%) died of cardiovascular death, and 2,451 84 

(30.3%) either died of cardiovascular death or were hospitalised due to heart failure following study 85 

entry (Table 1, Figure 1). 86 

First, we analysed the three study cohorts separately to detect rare variants associated with the two 87 

outcomes ‘time to cardiovascular death’ and ‘time to cardiovascular death and/or heart failure 88 

hospitalisation’. We used gene-level collapsing analyses to classify the genotypes, and Cox 89 

proportional hazards regression with Firth’s penalized likelihood to analyse each individual’s disease 90 

progression (Methods). In gene-level collapsing analyses, the proportion of cases with a qualifying 91 

variant is compared with the proportion of controls with a qualifying variant in each gene. We applied 92 

ten different sets of qualifying variant filters (models) (Methods). Finally, we used a meta-analysis 93 

approach to identify genes with overall evidence of association. 94 

 95 

Rare-variant analysis for time to cardiovascular death in heart failure patients. For time to 96 

cardiovascular death in heart failure patients, the gene-based collapsing meta-analysis identified five 97 

significantly associated genes (p<2x10-7): FAM221A (p=3.85x10-8, hazard ratio (HR) 5.14), CUTC 98 

(p=3.90x10-8, HR 5.13), IFIT5 (p=4.77x10-8, HR 4.77), STIMATE (p=7.68x10-8, HR 4.39) and 99 

TAS2R20 (p=2.57x10-7, HR 3.93) (Table 2, Figure 2A-E). The meta-analysis for these five genes was 100 

based on the survival analysis of the three contributing studies, with at least five carriers per study. 101 

None of the single-study analysis results for time to cardiovascular death in heart failure patients 102 

passed the significance threshold of p<2x10-7, demonstrating the power of meta-analysis for this 103 

phenotype to discover novel rare-variant based signals (Supplementary Tables 1-3). The meta-104 

analysis also revealed a significant association for CHRNA9 (p=1.89x10-7, HR 4.72) but the supporting 105 

survival analysis in CHARM was violating the proportionality hazard assumption; therefore, we did 106 

not report this association result. 107 
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We assessed the distributions of the qualifying variants along the length of each of the five 108 

identified genes (Figure 3A-E). We found that the observed associations with the lowest p-values 109 

were driven by at least eight variants per gene, and were evenly distributed across the length of the 110 

gene sequence (Supplementary Table 4). 111 

 112 

Rare-variant analysis for the composite of time to cardiovascular death and/or heart failure 113 

hospitalisation. For the second of the two outcomes investigates, the composite of time to 114 

cardiovascular death and/or heart failure hospitalisation, the gene-based collapsing meta-analysis 115 

identified two significantly associated genes (p<2x10-7): CALB2 (p=4.82x10-9, HR 4.47) and BLK 116 

(p=5.46x10-8, HR 6.91) (Table 2, Figure 2F-G). While the meta-analysis for CALB2 result was based 117 

on the survival analysis of the three studies, with at least five carriers per study, the result for BLK was 118 

only based on the CORONA and UK Biobank studies, as there was only one carrier for BLK in 119 

CHARM. The proportionality hazard assumption was not met for CALB2 in CHARM, but after 120 

removal of the study from the analysis, the meta-analysis result remained significant (p=2.15x10-8, HR 121 

5.48). 122 

We report one significant result from the single-study analysis for time to cardiovascular death 123 

and/or heart failure hospitalisation in heart failure patients: RAD54L in the flexible non-synonymous 124 

model in CHARM (p=6.64x10-8, HR 3.96; Supplementary Tables 5-7). RAD54L in the 125 

corresponding analysis in CORONA and the UK Biobank was not significantly associated with heart 126 

failure progression (p>0.1 and number of qualifying variant carriers >30 in both cohorts). Different 127 

genetic architecture across the studies could reflect underlying clinical differences, due to the differing 128 

recruitment criteria employed. 129 

We assessed the distributions of the qualifying variants along the length of the identified genes 130 

(Figure 3F-G) and found that the observed associations with the lowest p-values were driven by 13 131 

variants for the CALB2 gene and seven variants for BLK (Supplementary Table 4). We found these 132 

variants to be evenly distributed across the length of the gene sequence (Supplementary Table 4). 133 

 134 

Orthogonal genetic evidence in support of rare-variant meta-analysis results. To investigate to 135 

what extent the discovered genes from our rare-variant meta-analyses are associated with related 136 

phenotypes in complementary data sources, we annotated the genes with orthogonal genetic evidence: 137 

(1) curated common-variant association studies for cardiovascular diseases from the Cardiovascular 138 

Disease Knowledge Portal (https://cvd.hugeamp.org/); (2) known Mendelian cardiomyopathy-causing 139 

genes; and (3) a gene prioritisation method that leverages external data sources using a machine-140 

learning (ML) approach (Mantis-ML)25. 141 

We collated the curated evidence from published GWAS from the Cardiovascular Disease 142 

Knowledge Portal for the seven candidate genes from the meta-analysis for both tested outcomes 143 

(Table 3). We found genome-wide significant associations with cardiovascular traits in the genomic 144 
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regions of CUTC, IFIT5, STIMATE, CALB2 and BLK. There were also genome-wide significant 145 

associations with lipids traits in the regions of CUTC, STIMATE, CALB2 and BLK, and with 146 

anthropometric traits in the regions of FAM211A, CUTC, STIMATE, CALB2 and BLK (Table 3A). A 147 

limitation of this comparison is that a majority of the reported associations had the UK Biobank 148 

included in the meta-analysis, and the relationship between the GWAS index variants and causal genes 149 

at the loci requires further experimental confirmation. However, we did not detect genome-wide 150 

significant associations in either the region or the gene for the most relevant reported phenotypes, i.e., 151 

heart failure, non-ischemic cardiomyopathy, atrial fibrillation, any cardiovascular disease, myocardial 152 

infarction, and hypertension. Only IFIT5, STIMATE and CALB2 had suggestive associations (p<1x10-153 
5) for any cardiovascular disease (IFIT5 and STIMATE) or hypertension (STIMATE and CALB2) 154 

(Table 3B). The lowest p-values observed in the CUTC region were for heart rate (p=2.73x10-9), 155 

height (p=1.80x10-28) and atrial fibrillation (p=1.79x10-4) (Table 3B). 156 

Among the known rare or low-frequency variants in cardiomyopathy-causing genes previously 157 

identified such as TTN, MYH7 and MYBPC3 for heart failure incidence and LMNA and LAMP2 for 158 

heart failure progression, we observed a non-significant association of ultra-rare variants in MYBPC3 159 

with time to cardiovascular death (p=2.05x10-6, HR 4.38), but not for the other reported genes. Most of 160 

these cardiomyopathy-causing genes had a very low number of pathogenic variant carriers, making 161 

interpretation challenging. However, TTN pathogenic variants were more frequent, indicating that TTN 162 

might be specifically associated with heart failure incidence rather than progression, which has been 163 

reported previously26. 164 

Finally, we applied Mantis-ml, a ML framework leveraging publicly available gene annotation data 165 

to prioritise disease-gene associations25. We used this orthogonal method to investigate the extent to 166 

which the significant genes from our rare-variant meta-analyses (p<0.01) are similar to genes known, 167 

or predicted with high confidence, to be associated with relevant phenotypes (i.e., the top-ranked 168 

genes from Mantis-ml conditioned on heart failure or cardiomyopathy). These similarities were 169 

quantified using a step-wise hypergeometric test (Methods). For both outcomes, we found the overlap 170 

in relevant phenotypes to be greater for the qualifying variant models that capture functional variants 171 

than for the synonymous negative control model (Supplementary Figs. 1A, 1B). In addition, 172 

collapsing the 33 heart failure/cardiomyopathy disease classes available to a single metric (i.e., taking 173 

either the maximum or the AUC), we found significantly superior performance of the pooled 174 

qualifying variant model compared to the synonymous model for both, time to cardiovascular death 175 

(pmax=1.6x10-5 and pAUC=8.0 x10-4) and time to cardiovascular death and/or hospitalisation for heart 176 

failure (pmax=5.1x10-5 and pAUC=3.9x10-4) (Supplementary Fig. 1C). Taken together, these results 177 

showed that the features of the most significantly associated genes from our meta-analysis share 178 

similarities with the features of genes already known, or strongly predicted, to be associated with 179 

relevant phenotypes, supporting our genetic data. 180 

 181 
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Expression analysis in heart tissues aids gene prioritisation for further validation. Next, we 182 

assessed the expression patterns of the candidate causal genes underlying the genetic associations for 183 

heart failure progression. Normalized gene expression data collected by the GTEx Project27 were 184 

interrogated for the seven candidates genes from the meta-analysis for both tested outcomes (Table 2). 185 

We used the 54 different tissues sampled by GTEx as well as a subset of 16 cardiovascular tissues. 186 

The overall tissue expression analysis revealed that CUTC, STIMATE and IFIT5 are expressed in 187 

almost all tissues analysed; CALB2 and BLK are expressed in multiple tissues but not all; and 188 

TAS2R20 and FAM221A have comparatively low expression across all tissues analysed 189 

(Supplementary Fig. 2A). CUTC was the gene most strongly expressed in the heart. In cardiovascular 190 

tissue, a similar gene grouping was observed, with CUTC highest in skeletal muscle, CALB2 in 191 

adipose, and BLK in whole blood and spleen tissues (Supplementary Fig. 2B). 192 

Next, we analysed differential expression of the candidate genes in tissues from ventricular 193 

myocardial biopsies in heart failure with preserved/reduced ejection fraction (HFpEF/HFrEF), 194 

(idiopathic) dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), ischemic 195 

cardiomyopathy (ICM), and controls from three separate public transcriptomics studies (Figure 4, 196 

Supplementary Table 8)28. CUTC, IFIT5, TAS2R20, FAM221A and BLK showed significant 197 

differential expression between the healthy and diseased heart. Among these, CUTC was most 198 

consistently dysregulated, being downregulated across studies and heart failure aetiologies. TAS2R20 199 

and BLK have low expression in the heart, making the results challenging to interpret. FAM221A, 200 

IFIT5 and TAS2R20 showed significant differential expression between HFpEF vs HFrEF patients in 201 

the right ventricle (Figure 4, Supplementary Fig. 2, Supplementary Table 8). 202 

Taken together, based on all transcriptional datasets, we highlight CUTC as a potential therapeutic 203 

target for heart failure progression that warrants further experimental validation and assessment. 204 

 205 

Functional enrichment analysis identifies molecular functions and pathways of candidate genes. 206 

To identify potential molecular functions and pathways underlying the genetic associations, we 207 

performed a gene ontology analysis of the candidate genes. We tested 1298 unique genes ranked by 208 

their lowest fixed model p-value across the ten non-synonymous collapsing analysis models from the 209 

time to cardiovascular death meta-analysis. We found enrichment (adjusted p<0.05) for the following 210 

molecular functions: adenyl ribonucleotide binding (GO:0032559, p=8.91x10-4); adenyl nucleotide 211 

binding (GO:0030554, p=1.43x10-3); lamin binding (GO:0005521, p=1.49x10-3); among others 212 

(Supplementary Fig. 3A, Supplementary Table 9). 213 

We also performed the analysis for the 956 unique genes from the time to cardiovascular death 214 

and/or hospitalisation for heart failure meta-analysis. This analysis revealed enrichment for the 215 

following molecular functions and biological pathways: ion binding (GO:0043167, p=3.42x10-3); 216 

glycine, serine and threonine metabolism (KEGG:00260, p=4.17x10-3); among others 217 

(Supplementary Fig. 3B, Supplementary Table 9). 218 
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 219 

Discussion 220 

 221 

The identification of determinants of disease progression is critical for drug development, as most 222 

clinical trials assess the efficacy and safety of treatments that slow or arrest disease progression in 223 

patients with disease or prevent secondary events in specific patient groups. However, in contrast to 224 

the relatively large number of genetic studies on the incidence of common chronic diseases, including 225 

heart failure, there are few published studies investigating the genetic basis of disease progression. 226 

In our study, we implemented a survival analysis for rare variants based on collapsing analysis and 227 

Cox proportional hazards regression with Firth’s penalized likelihood. We analysed the whole-exome 228 

sequencing data of 8,089 heart failure patients from three clinically well-defined studies: two clinical 229 

trials, CHARM and CORONA, and one population-based study: the UK Biobank. We performed 230 

meta-analysis and reported results found in at least two studies and supported by at least five carriers 231 

per study. We report seven genes not previously associated with heart failure progression with hazard 232 

ratios between 3.93 and 6.91. Specifically, we identified five candidate genes for cardiovascular death 233 

risk in heart failure patients: FAM221A, CUTC, IFIT5, STIMATE and TAS2R20, and two candidate 234 

genes for the composite of cardiovascular death and/or heart failure hospitalisation risk in heart failure 235 

patients: CALB2 and BLK. 236 

Importantly, none of these identified candidate gene loci have previously been associated with 237 

heart incidence through common-variant association studies, suggesting distinct genetic aetiology for 238 

heart failure progression compared to incidence. However, when evaluating the prior evidence of 239 

association with disease incidence, we found that all but two candidate gene loci (i.e., FAM221A and 240 

TAS2R20) harboured genome-wide significant, common-variant associations with cardiovascular 241 

traits, including heart rate, ascending aorta diameter and blood pressure. 242 

We showed that several of the candidate genes are expressed in relevant cardiovascular tissues. In 243 

particular, CUTC is expressed strongly in heart tissues. Using heart single-cell RNA-seq data, we 244 

demonstrated that CUTC is expressed by all cardiac cell types with highest fractional expression in 245 

cardiomyocytes (Supplementary Fig. 4). Further, we demonstrated differential expression of five out 246 

of seven candidate genes between diseased and healthy hearts and/or between heart failure subtypes. 247 

Finally, ML-based enrichment analysis supported our gene ranking from the meta-analysis, 248 

especially for the cardiovascular death outcome, as indicated by step-wise hypergeometric analyses. 249 

Functional enrichment analysis highlighted known pathways in cardiovascular disease, such as lamin 250 

binding (enrichment supported by SUN1, TMEM201, SUN2, SYNE1 and PLCB1), and novel pathways, 251 

such as glycine, serine and threonine metabolism (supported by GLDC, PGAM1 and ALDH7A1)29,30. 252 

CUTC was the only gene that showed an association with both tested endpoints, as well as strong 253 

expression in the heart and differential expression between diseased and healthy heart tissues. CUTC 254 

encodes a member of the CUT family of copper transporters that are associated with copper 255 
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homeostasis and involved in the uptake, storage, delivery and efflux of copper31-33. Defective copper 256 

metabolism has been linked to various cardiovascular diseases, including heart failure. Mutations in 257 

genes encoding copper chaperones/transporters associate with cardiac disease in humans and mice34. 258 

Notably, the ongoing TRACER-HF trial (NCT03875183) evaluates the effects of a copper-binding 259 

agent INL1 in patients with HFrEF. INL1 is hypothesized to redistribute copper from high-260 

concentration gradient (e.g., the circulation) to copper-depleted tissues (e.g., ischemic myocardial 261 

tissue), inducing heart regeneration. Although the exact function of CUTC remains to be determined, 262 

it has been suggested that it might act as an enzyme with Cu(I) as a cofactor rather than a copper 263 

transporter31. Moreover, CUTC participates in cardiac conduction and ion channel transport pathways 264 

based on the PathCards database (https://pathcards.genecards.org) and our co-expression network 265 

analysis suggested a role in muscle physiology and mitochondrial function (Supplementary Fig. 4). 266 

These pathways are all highly relevant biofunctions in heart failure pathophysiology. Our tractability 267 

assessment further revealed that CUTC contains a high-quality ligand pocket and is predicted 268 

druggable using small molecules (Supplementary Table 10). Taken together, CUTC may represent 269 

an attractive new candidate therapeutic target in heart failure. 270 

Of note, alternative CUTC transcripts overlap COX15, encoding the Cytochrome C Oxidase 271 

Assembly Homolog. Despite a larger number of rare variant carriers than CUTC, COX15 was not 272 

significantly associated with either cardiovascular death or the composite of cardiovascular death 273 

and/or heart failure hospitalisation in our analyses (Supplementary Tables 11, 12). Diseases 274 

associated with COX15 include Mitochondrial Complex IV Deficiency, Nuclear Type 6 and Fatal 275 

Infantile Cardioencephalomyopathy Due To Cytochrome C Oxidase Deficiency. It has been proposed 276 

that CUTC and COX15 functions in partnership as they share a bidirectional promoter35. 277 

STIMATE and CALB2 are involved in calcium binding, signalling or channel activity. Calcium 278 

pathways are fundamental for electrical signalling in the heart36. Several known mechanisms of 279 

cardiac pathologies are underlined by calcium channels36. A major class of drug targets already exist 280 

for calcium channel regulation37,38. Calcium antagonists have been used to treat ischemia, a common 281 

cause of heart failure39. IFIT5 and BLK, are involved in immune system function. It is established that 282 

inflammation plays an important role in chronic heart failure, after myocardial infarction or other 283 

myocardial damage, and heart failure is associated with circulating inflammatory cytokines that can 284 

predict clinical outcomes40. Whether inflammation plays a causal role remains to be established41. A 285 

number of taste receptors including TAS2R20 are expressed in human heart and the role of these 286 

receptor in cardiac physiology and pathophysiology is not well understood yet42. It is notable that 287 

TAS2R20 RNA expression is significantly increased in the myocardium in HFpEF patients but not in 288 

HFrEF patients, suggesting that TAS2R20 may have a specific role in HFpEF. 289 

In our meta-analysis, we did not discover any significantly associated protective genes. Such genes 290 

would be particularly promising for drug development as a protective effect of loss of function mimics 291 

the therapeutic inhibition of a drug. We observed previously in genetic analyses of heart failure 292 
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incidence that detrimental association of rare variants are more prevalent than protective associations, 293 

because they are enriched for loss-of-function variants14. 294 

We acknowledge that our study had limitations. Due to the paucity of exome-wide investigation of 295 

the role of rare variants in heart failure progression, we were currently unable to replicate our findings 296 

in an independent study cohort. More collaborative research is needed to address this limitation of our 297 

study, e.g., through the HERMES consortium that aims to assess the contribution of common genetic 298 

variants to heart failure progression20. Further, we note that the definition of heart failure amongst the 299 

cases was heterogeneous, for example, with respect to the presence or absence of cardiomyopathy, and 300 

different LVEF categories (HFrEF vs HFpEF). Due to the study of rare variants, stratifying patients 301 

according to phenotypic subtypes would have substantially reduced power. Additionally, for heart 302 

failure incidence and cardiomyopathy-associated rare variants, we previously detected some 303 

overlapping genetic architecture between heart failure subtypes14, supporting our combined approach 304 

in this study. Future larger studies would facilitate stratified analyses. Finally, our study focussed on 305 

individuals of European ancestry because there are insufficient numbers of patients of other ancestries. 306 

Further studies are needed to replicate our findings in other ancestry groups. 307 

In conclusion, by rare-variant collapsing meta-analysis, we have identified seven candidate genes 308 

significantly associated with heart failure progression: FAM221A, CUTC, IFIT5, STIMATE, TAS2R20, 309 

CALB2 and BLK. Pending replication, several of these genes could represent promising drug targets 310 

for heart failure, as supported by their tissue expression and function. 311 

  312 
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Methods 313 

 314 

Ethics statement. Sites participating in the CHARM and CORONA studies received approval from 315 

local ethics committees for their conduct22,23. Only patients who gave written informed consent for 316 

genetic analysis and for whom a DNA sample was available were included in the present study. The 317 

present study was performed in accordance with the policies on bioethics and human biologic samples 318 

of AstraZeneca. The protocols for UK Biobank are overseen by the UK Biobank Ethics Advisory 319 

Committee. For more information see https://www.ukbiobank.ac.uk/ethics/. 320 

 321 

CHARM and CORONA studies. The CHARM programme enrolled heart failure patients of >18 322 

years of age into three distinct trials and randomly assigned them to receive candesartan or placebo: 323 

patients with LVEF >40% (CHARM Preserved; NCT00634712); patients with LVEF ≤ 40% and 324 

treated with angiotensin converting enzyme inhibitor (CHARM Added; NCT00634309); and patients 325 

with LVEF ≤ 40% and intolerant to angiotensin-converting enzyme inhibitor treatment (CHARM 326 

Alternative; NCT00634400)22. In the CHARM study, heart failure cause could be defined as ischemic, 327 

idiopathic, hypertensive or other causes22. The CORONA study enrolled patients of >60 years of age 328 

with chronic heart failure of ischemic cause and a LVEF ≤ 40% and randomly assigned them to 329 

receive rosuvastatin or placebo (NCT00206310)23. An overview of the patient characteristics of the 330 

trials is provided in Table 1. 331 

In the CHARM and CORONA trials, the same two endpoints (i.e., cardiovascular death and a 332 

composite of cardiovascular death and/or heart failure hospitalisation) were defined by the clinical 333 

teams. For CHARM, cardiovascular death or unplanned admission to hospital for the management of 334 

worsening congestive heart failure was the primary outcome for the trial. All deaths were classified as 335 

cardiovascular unless an unequivocal non-cardiovascular cause was established. An heart failure 336 

hospital admission was defined as an admission to hospital because of heart failure with evidence of 337 

worsening heart failure22. For CORONA, the primary outcome was death from cardiovascular causes, 338 

nonfatal myocardial infarction, or nonfatal stroke. Deaths were classified as due to cardiovascular 339 

causes unless a definite non-cardiovascular reason was identified. Hospitalization for heart failure 340 

required documentation that worsening heart failure was the principal reason for hospitalization23. 341 

 342 

UK Biobank. The UK Biobank is a large prospective cohort study with 500,000 participants aged 40 343 

to 69 years recruited from the general population in the United Kingdom24. The UK Biobank ICD10 344 

codes (International Statistical Classification of Diseases and Related Health Problems, Tenth 345 

Revision codes) were interrogated for the following heart failure phenotypes: I11.0, I13.0, I13.2, 346 

I25.5, I42.0, I42.5, I42.8, I42.9 and I50.x11. Overall, 11,076 individuals with at least one primary or 347 

secondary hospital in-patient diagnoses code (Data-Field ID 41270), and/or at least one underlying 348 

(primary) cause of death in the death register (Data-Field ID 40001) in those categories, were 349 
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considered as heart failure patients. In order to more closely match a clinical study design, only cases 350 

with heart failure diagnosis codes dated prior to recruitment were included in the analyses. 351 

Measurements of LVEF were not performed for the UK Biobank patients, as it was only available for 352 

a small number of individuals randomly selected from the biobank (Table 1). 353 

For our analysis, we defined two endpoints: cardiovascular death (CVD) and a composite of 354 

cardiovascular death and/or heart failure hospitalisation (CVD_HFHOSP). In the UK Biobank, 355 

cardiovascular death was defined as a primary cause of death (Data-Field ID 40001) with any ICD10 356 

codes in the Chapter IX (Diseases of the circulatory system), which correspond to I00-I99 codes. 357 

Heart failure hospitalisation was defined as a hospitalisation at least 28 days after the first diagnosis, 358 

with the same code used for the heart failure patient definition. To match the modelling approach used 359 

in the clinical studies, the date of recruitment was used to calculate the time to event. The end of 360 

follow-up was considered to be the date of the last major UK Biobank update (01/09/2019). 361 

 362 

Exome-sequencing. For CHARM, CORONA and UK Biobank, exomes were captured with the IDT 363 

xGen Exome Research Panel V1.0 (Integrated DNA Technologies, Coralville, IA, USA) and 364 

sequenced according to standard protocols on Illumina’s NovaSeq 6000 (Illumina, San Diego, CA, 365 

USA) platform. Exome sequencing for CHARM and CORONA was performed using 150bp paired-366 

end reads at the Institute for Genomic Medicine at the Columbia University Medical Center, as 367 

previously described14. Exome sequencing for the UK Biobank using 75-bp paired-end reads and 368 

initial sample-level QC the UK Biobank was performed at Regeneron Pharmaceuticals, as previously 369 

described14,43,44. Quality control of the genetic data performed by Regeneron included sex discordance, 370 

contamination, unresolved duplicated sequences and discordance with microarray genotyping data45. 371 

Sequence data from all three studies was processed through the AstraZeneca’s Centre for 372 

Genomics Research bioinformatics pipeline using a custom-built Amazon Web Services cloud 373 

compute platform running Illumina DRAGEN Bio-IT Platform Germline Pipeline v3.0.7. The reads 374 

were aligned to the GRCh38 genome reference, followed by single-nucleotide variant (SNV) and indel 375 

calling. SNVs and indels were first annotated using SnpEFF v4.34 against Ensembl Build 38.92. 376 

Variants were then annotated using the Genome Aggregation Database (gnomAD) minor allele 377 

frequencies (gnomAD v2.1.1 mapped to GRCh38), missense tolerance ratio (MTR) and REVEL 378 

scores46-48. 379 

 380 

Sample and variant quality control (QC). The pre-QC dataset consisted of 3,090 CHARM, 2,906 381 

CORONA and 2,868 UK Biobank participants. The following samples were removed: discordance 382 

between self-reported sex and genomic predicted sex based on X:Y coverage ratio; >4% 383 

contamination according to VerifyBamID v1.0.5; <95% of CCDS (release 22) bases covered with at 384 

least 10-fold coverage; related (up to third degree with KING v2.2.3), probability of European 385 

Ancestry <0.98 (<0.99 for UK Biobank) based on PEDDY v0.4.2 predictions; and individuals within 386 
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four standard deviations of principal components 1-4 (Supplementary Table 13)49-51. The final 387 

filtered dataset for analysis consisted of 2,672 CHARM, 2,776 CORONA and 2,641 UK Biobank 388 

samples (Figure 1, Table 1). 389 

 390 

Gene-level collapsing analyses. We first performed, in the three cohorts separately, gene-based 391 

collapsing analyses to identify patients carrying at least one qualifying variant in each protein-coding 392 

gene. A qualifying variant is defined as a variant that passes certain filter criteria specific to each 393 

genetic model. Supplementary Table 14 summarises the genetic models used for the analyses. We 394 

analysed ten non-synonymous models (nine of which are dominant and one recessive), plus an 395 

additional synonymous variant model as a negative control52. 396 

The data was modelled using Cox proportional hazards regression with Firth’s penalized 397 

likelihood, which provides a solution to the non-convergence of the likelihood function, more 398 

frequently observed with rare-variant analysis: coxphf53,54. Genotypes were encoded as binary variable 399 

after the first step of collapsing analysis. The coxphf method has been shown to be appropriate for 400 

genome-wide time-to-event analysis, both in terms of controlling type I error rates, and power for 401 

variants with low minor allele frequency18. In CHARM and CORONA, age at recruitment, sex and 402 

treatment arm were used as covariates in all analyses. The coxphf default of confidence intervals and 403 

tests based on the profile penalized log likelihood was used. In the UK Biobank, age at recruitment 404 

(Data-Field ID 21022) and sex (Data-Field 22001) were used as covariates in all analyses. For the 405 

collapsing survival analysis, the Bonferroni multiplicity adjusted threshold was set at p=2.7x10-7 (α = 406 

[0.05 / (18,500 genes * 10 non-synonymous models)]). This threshold was supported by permuting the 407 

data using R perm function (n=1) within the synonymous model, comparing with observed p-values 408 

with quantile-quantile plots and estimating the genomic inflation factor λ (Supplementary Fig. 5). 409 

The proportionality of hazards assumption was examined for the top genes by using the Schoenfeld 410 

residuals against the transformed time. 411 

 412 

Meta-analysis. We conducted a meta-analysis using PLINK v1.90 on the beta-values and standard 413 

errors extracted from the coxphf results. We computed both fixed and random effect meta-analysis 414 

models, and we only reported results supported by at least five carriers in each study. We computed 415 

both fixed and random effects meta-analysis models and reported random effects results with a 416 

heterogeneity index I2>40. Consistent with the survival analysis, the meta-analysis Bonferroni 417 

multiplicity adjusted threshold was set at p<2.7x10-7 (α = [0.05 / (18,500 genes * 10 non-synonymous 418 

models)]). Quantile-quantile plots for the meta-analysis were generated with (permutation-based) 419 

expected p-values from data permuted prior to the collapsing survival analysis using the R perm 420 

function (n=1) (Supplementary Figs. 6A, 6B). 421 

 422 
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Sensitivity analysis. Analyses were conducted with additional covariates such as BMI and prior 423 

diabetes to assess the robustness of results when relevant for the genes with significant results 424 

(p<2.7x10-7) in the meta-analysis of CHARM, CORONA and the UK Biobank for both tested 425 

outcomes. Detailed clinical information supporting the analyses are reported in Table 1. Sensitivity 426 

analyses did not change the observed results (Supplementary Table 15). 427 

 428 

RNA expression. We interrogated median TPM-normalized gene expression for 54 tissues sampled in 429 

948 donors provided by GTEx v827. We defined a subset of 16 cardiovascular tissues as follows: 430 

Adipose - Subcutaneous, Adipose - Visceral (Omentum), Adrenal Gland, Artery - Aorta, Artery - 431 

Coronary, Artery - Tibial, Heart - Atrial Appendage, Heart - Left Ventricle, Kidney - Cortex, Kidney - 432 

Medulla, Liver, Muscle - Skeletal, Pancreas, Spleen, Thyroid, Whole Blood. 433 

In addition, we extracted and analysed data from three published myocardial transcriptomic 434 

analyses: (1) HFpEF (n=41), HFrEF (n=30) and controls (n=24); (2) DCM (n=166), HCM (n=28) and 435 

controls (n=166) (GSE141910, The Myocardial Applied Genomics Network; 436 

https://www.med.upenn.edu/magnet/); and (3) idiopathic DCM (n=82), ICM (n=95) and controls 437 

(n=136) (GSE57338)55. 438 

 439 

Annotation with GWAS data. For the genes most significantly associated with heart failure 440 

progression, we compiled genetic evidence from the curated GWAS results of external studies 441 

available in the Cardiovascular Disease Knowledge Portal (https://cvd.hugeamp.org/). First, we listed 442 

the association with the lowest genome-wide significant p-values in the region, where associations are 443 

clumped by linkage disequilibrium and classified into three phenotypes group: cardiovascular, lipids 444 

and anthropometric. Then, we used the Cardiovascular Disease Knowledge Portal Genomic Region 445 

Miner tool to extract the lowest variant associations across each region or in the gene for the following 446 

six phenotypes: heart failure, non-ischemic cardiomyopathy, atrial fibrillation, any cardiovascular 447 

disease, myocardial infarction, or hypertension. 448 

 449 

Step-wise hypergeometric enrichment analysis with Mantis-ml. Mantis-ml is a method for gene 450 

prioritisation, leveraging publicly available gene annotation data from multiple resources to derive 451 

genetic association scores for a user-specified disease25. Harnessing data from resources such as 452 

OMIM, ExAC, Essential Mouse Genes, GnomAD, MSigDB, GTEx and genic-intolerance scores 453 

(RVIS and MTR) among others, we used this tool to assess to what extent the most significant genes 454 

from the meta-analysis are similar to genes known to be associated with heart failure or 455 

cardiomyopathy. 456 

We performed a step-wise hypergeometric test between the study-ranked list of genes with a fixed 457 

p-value<0.01 for one of the outcomes (Supplementary Tables 11, 12) and 18,626 genes pre-ranked 458 

by their Mantis-ml association scores for 33 diseases containing either ‘heart failure’ or 459 
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‘cardiomyopathy’ (i.e., 26 from OpenTargets, four from HPO, three from Genomics England). An 460 

overview of these diseases is provided in Supplementary Table 16. The resulting step-wise 461 

hypergeometric curves are shown in Supplementary Fig. 1. 462 

This test quantifies the overlap between the list of genes identify in this heart failure progression 463 

study and the list of genes ranked according to independent data sources by Mantis-ml. The p-values 464 

generated are converted to Phred scores. Enrichment performance were assessed and p-values 465 

obtained using the one-sided Mann-Whitney U test. 466 

 467 

Gene ontology enrichment analysis. A functional enrichment analysis was performed using 468 

g:Profiler for the same lists of genes ordered on fixed p-value as done for the annotation with Mantis-469 

ml, i.e., the genes with a fixed effect p-value<0.01 for each of the outcomes (Supplementary Tables 470 

11, 12)56. The data sources tested were Gene Ontology (GO, molecular function, cellular component, 471 

biological process), KEGG and miRTarBase. The background set of gene used to compute the 472 

functional enrichment was the 18,948 genes list from the Consensus Coding Sequence (CCDS, release 473 

22), over annotated genes. Multiple testing correction for p-values was computed by applying the 474 

default g:SCS method. 475 

 476 

Tractability assessment. For the genes most significantly associated with heart failure progression, 477 

we assessed the amenability to intervention by different drug modalities, including small molecules, 478 

antibodies, PROTAC and others, using the Open Target Platform (https://platform.opentargets.org/). 479 

The genes were categorized based on ‘buckets’ representing different levels of tractability, ranging 480 

from high confidence (lower number) to uncertain tractability (higher number), as previously 481 

described57. In addition, genes were also classified according to their ‘target development level’ (TDL) 482 

into either of four classes (i.e., Tclin, Tchem, Tbio or Tdark) using the Target Central Resource 483 

Database (TCRD, http://juniper.health.unm.edu/tcrd/). In brief, Tclin are proteins through which 484 

approved drugs act (i.e., mode-of-action drug targets); Tchem are proteins known to bind small 485 

molecules with high potency; Tbio are proteins with well-studied biology, having a fractional 486 

publication count above 5; and Tdark are understudied proteins that do not meet criteria for the above 487 

3 categories, respectively (Supplementary Table 10). 488 

 489 

Co-expression network analysis. To further explore the CUTC function, we performed co-expression 490 

analysis using GeneNetwork v2.0 (https://www.genenetwork.nl/), which predicts pathway and human 491 

phenotype associations using 31,499 public human RNA-seq samples (Supplementary Fig. 4).58 492 

 493 

 494 

Data availability 495 

 496 
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Summary statistics from the rare-variant collapsing analyses are available within the article and its 497 

Supplementary Information files. Access to the UK Biobank data can be gained via the UK Biobank 498 

website: https://bbams.ndph.ox.ac.uk/ams/. 499 

 500 

 501 

Code availability 502 

 503 

Sequence data were processed through a custom-built Amazon Web Services cloud compute platform 504 

running Illumina DRAGEN Bio-IT Platform. SNVs and indels were annotated using SnpEFF v4.3 505 

against Ensembl v38.92. The software used in this study are referenced in the manuscript and are 506 

available online: Mantis-ml (https://github.com/astrazeneca-cgr-publications/mantis-ml-release), 507 

QQperm (https://cran.r-project.org/web/packages/QQperm/index.html). 508 

 509 
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Tables 703 

 704 

Table 1. Characteristics of patients included in the analysis. 705 
 706 

 CHARM CORONA UK Biobank Total 

Number of patients, n 2,672 2,776 2,641 8,089 

Age, mean ± SD 66.5 ± 10.9 72.5 ± 6.9 61.9 ± 6.1 67.1 ± 9.3 

Men, n (%) 1,788 (66.9%) 2,139 (77.1%) 2,016 (76.3%) 5,943 (73.5%) 

Treatment (interventional) 1,346 (50.4%) 1,391 (50.1%) NA NA 

LVEF, mean ± SD 0.38 ± 0.15 0.31 ± 0.06 NA* 0.35 ± 0.12 

BMI (kg/m2), mean ± SD 28.6 ± 5.8 27.4 ± 4.5 30.2 ± 5.6 28.7 ± 5.4 

Current smoker, n (%) 384 (14.4%) 250 (9.0%) 334 (12.6%) 968 (12.0%) 

Myocardial infarction, n (%) 1,490 (55.8%) 1,692 (61.0%) 1,312 (49.7%) 4,494 (55.6%) 

Diabetes, n (%) 768 (28.7%) 763 (27.5%) 850 (32.2%) 2,381 (29.4%) 

Atrial fibrillation, n (%) 801 (30.0%) 1,931 (69.6%) 1,260 (47.7%) 3,992 (49.4%) 

CV death 504 (18.9%) 358 (12.9%) 466 (17.6%) 1,328 (16.4%) 

CV death and/or HF hospitalisation 895 (33.5%) 843 (30.4%) 713 (27.0%) 2,451 (30.3%) 

 707 
*LVEF only available for 66 UK Biobank individuals. BMI: body mass index; CV: cardiovascular; HF: heart 708 
failure; LVEF: left ventricular ejection fraction; N: number of patients; NA: not available; SD: standard 709 
deviation. 710 
  711 
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Table 2. Gene-based collapsing meta-analysis results for ‘time to cardiovascular death’ (top) or ‘time to cardiovascular death and/or hospitalisation 
for heart failure’ (bottom). 
 
Gene Genetic model* N (studies) P HR (95% CI) SE Q I2** Total 

N (carriers) 
CHARM 

P (carriers)†

CORONA 

P (carriers) †

UK Biobank

P (carriers) †

Time to cardiovascular death 

FAM221A Flexible non-synonymous 3 3.85E-08 5.14 (2.87, 9.21) 1.35 0.20 38.02 25 1.38E-02 (8) 6.48E-01 (7) 1.77E-04 (10)

CUTC Flexible non-synonymous (MTR) 3 3.90E-08 5.13 (2.85, 9.13) 1.35 0.50 0 19 1.67E-02 (5) 1.70E-01 (6) 6.32E-04 (8) 

IFIT5 Flexible damaging 3 4.77E-08 4.77 (2.72, 8.33) 1.34 0.36 2.20 24 2.47E-02 (8) 9.19E-04 (8) 5.91E-02 (8) 

STIMATE Flexible non-synonymous 3 7.68E-08 4.39 (2.56, 7.52) 1.32 0.50 0 25 4.28E-02 (6) 8.69E-04 (10) 4.28E-02 (9) 

TAS2R20 Flexible non-synonymous, 

Flexible non-synonymous (MTR) 

3 2.57E-07 3.93 (2.34, 6.63) 1.31 0.26 25.85 34 3.44E-02 (10) 1.54E-04 (16) 7.69E-01 (8) 

Time to cardiovascular death and/or hospitalisation for heart failure 

CALB2 Flexible non-synonymous 3 4.82E-09 4.47 (2.71, 7.39) 1.30 0.20 37.83 21 6.94E-02 (8) 3.05E-02 (6) 1.07E-04 (7) 

BLK Ultra-rare 2 5.46E-08 6.88 (3.43, 13.84) 1.43 0.86 0 10 NA 1.49E-03 (5) 7.67E-03 (5) 

 

Fixed-effects meta-analysis p-value<2.7x10-7; *genetic model details in Supplementary Table 14; **filtered on I2≤40; †filtered on carrier count ≥5 from input (a posteriori); 

P: Fixed-effects meta-analysis p-value; HR: hazard ratio; CI: confidence interval; SE: standard error; Q: Cochran’s Q p-value testing for heterogeneity59; I2: percentage of 

variation across studies that is due to heterogeneity rather than chance60; CHARM/CORON/UK Biobank P: coxphf p-value for CHARM/CORONA/UK Biobank; MTR, 

missense tolerance ratio. 
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Table 3. Summary of supporting genetic evidence from (A) Cardiovascular Disease Knowledge Portal and (B) published GWAS on several 
cardiovascular outcomes. 
 
 A) Cardiovascular Disease Knowledge Portal B) Published GWAS data 

Gene Cardiovascular Lipids Anthropometric Heart failure Non-ischemic cardiomyopathy Atrial fibrillation Any cardiovascular disease Myocardial infarction Hypertension 

 Trait P beta Trait P beta Trait P beta P beta P beta P beta P beta P beta P beta 

FAM221A       Height 3.52E-76 ▼-0.0007 1.29E-04 ▲ 1.06 5.03E-02 ▲ 1.07 8.76E-05 ▲ 5.82 1.71E-04 ▲ 1.04 9.32E-03 ▲ 3.38 4.57E-03 ▲ 1.02

CUTC Heart rate 2.73E-09 ▼-0.100    Height 1.80E-28 ▼-0.0003 1.67E-03 ▲ 1.86 8.07E-03 ▼ 0.85 1.79E-04 ▲ 1.52 6.82E-03 ▼ 0.95 1.25E-02 ▲ 13.52 2.20E-05 ▼ 0.95

IFIT5 
Diastolic blood 

pressure 

1.74E-08 ▲0.011       
2.72E-03 ▲ 2.59 2.37E-03 ▼ 0.81 1.76E-03 ▲ 1.20 2.32E-06 ▲ 1.02 1.62E-02 ▼ 0.08 1.38E-04 ▲ 1.23

STIMATE Pulse pressure 1.03E-13 ▲0.007 TGs 8.92E-19 ▼ -0.023 Height 8.09E-83 ▼-0.0006 2.08E-03 ▲ 1.04 1.27E-04 ▲ 1.20 5.00E-03 ▲ 2.16 1.00E-07 ▼ 0.95 7.35E-04 ▲ 1.17 6.26E-06 ▲ 1.02

TAS2R20          2.21E-03 ▲ 1.07 1.77E-03 ▲ 1.50 4.28E-03 ▲ 1.73 6.80E-03 ▼ 0.99 2.74E-02 ▼ 0.86 4.19E-03 ▼ 0.86

CALB2 
Ascending aorta 

diameter 

2.90E-34 ▼-0.190 LDL-C 2.57E-292 ▲0.033 BMI 2.42E-22 ▼-0.020 
1.34E-03 ▲ 1.04 2.22E-03 ▼ 0.84 8.40E-04 ▲ 1.37 1.22E-04 ▼ 0.96 3.81E-02 ▼ 0.85 3.20E-06 ▼ 0.96

BLK 
Systolic blood 

pressure 

2.07E-22 ▼-0.013 TGs 9.71E-30 ▲0.027 BMI 1.20E-25 ▼-0.012 
7.22E-04 ▼ 0.94 2.72E-03 ▼ 0.85 6.31E-03 ▲ 1.29 1.84E-03 ▲ 1.02 1.27E-03 ▲ 48.34 6.14E-05 ▲ 1.05

 

From the Cardiovascular Disease Knowledge Portal, we retrieved the most significant common-variant associations (p≤5x10-8) for cardiovascular, lipid and anthropometric 

traits at each gene region, clumped by linkage disequilibrium. 
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Figures 
 
Figure 1. Study design. 
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Figure 2. Forest plot of the significant results (p<2.7x10-7) from the meta-analysis of CHARM, 

CORONA and the UK Biobank for time to cardiovascular death (A-E) and time to 
cardiovascular death and/or hospitalisation for heart failure (F-G). 
 

 
 
A, FAM221A in the flexible non-synonymous model; B, CUTC in the flexible non-synonymous 

(MTR) model; C, IFIT5 in the flexible damaging model; D, STIMATE in the flexible non-

synonymous model; E, TAS2R20 in the flexible non-synonymous and/or in flexible non-synonymous 

(MTR) model; F, CALB2 in the flexible non-synonymous model; G, BLK in the ultra-rare model. 
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Figure 3. Lollipop plots depicting the individual variants across the candidate genes from the 

meta-analysis of time to cardiovascular death (A-E) and time to cardiovascular death and/or 
hospitalisation for heart failure (F-G). 

 

 
 
Variants in patients with event at the top and no-event at the bottom. More details on variants 

identified in heart failure patients with detrimental events in Supplementary Table 4. A, FAM221A 

in the flexible non-synonymous model (ENST00000344962); B, CUTC in the flexible non-

synonymous (MTR) model (ENST00000370476); C, IFIT5 in the flexible damaging model 

(ENST00000371795); D, STIMATE in the flexible non-synonymous model (ENST00000355083); E, 

TAS2R20 in the flexible non-synonymous and/or in flexible non-synonymous (MTR) model 

(ENST00000538986); F, CALB2 in the flexible non-synonymous model (ENST00000302628); G, 

BLK in the ultra-rare model (ENST00000259089). Lollipop plots were produced with the cbioportal 

mutation mapper tool61,62. 
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Figure 4. Heatmaps showing the differential expression in cardiac tissue from patients with 

heart failure vs controls of candidate genes from the meta-analysis of time to cardiovascular 
death and time to cardiovascular death and/or hospitalisation for heart failure. The heatmaps 

show A, magnitude of change (logFC; red: upregulated in HF vs control; blue: downregulated in HF 

vs control), and B, significance (-log10(adj. p-value)). ns: not significant (adj. p>0.05), na: not 

assessed. 

 

 
 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 5, 2023. ; https://doi.org/10.1101/2023.07.28.23293350doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.28.23293350
http://creativecommons.org/licenses/by/4.0/

