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ABSTRACT 

 

Background: Multisystem inflammatory syndrome in children (MIS-C) is a rare but 

serious hyperinflammatory complication following infection with severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2). The mechanisms underpinning 

the pathophysiology of MIS-C are poorly understood. Moreover, clinically 

distinguishing MIS-C from other childhood infectious and inflammatory conditions, 

such as Kawasaki Disease (KD) or severe bacterial and viral infections is challenging 

due to overlapping clinical and laboratory features. We aimed to determine a set of 

plasma protein biomarkers that could discriminate MIS-C from those other diseases. 

Methods: Seven candidate protein biomarkers for MIS-C were selected based on 

literature and from whole blood RNA-Sequencing data from patients with MIS-C and 

other diseases. Plasma concentrations of ARG1, CCL20, CD163, CORIN, CXCL9, 

PCSK9 and ADAMTS2 were quantified in MIS-C (n=22), KD (n=23), definite bacterial 

(DB; n=28) and viral (DV, n=27) disease, and healthy controls (n=8). Logistic 

regression models were used to determine the discriminatory ability of individual 

proteins and protein combinations to identify MIS-C, and association with severity of 

illness. 

Results: Plasma levels of CD163, CXCL9, and PCSK9 were significantly elevated in 

MIS-C with a combined AUC of 86% (95% CI: 76.8%-95.1%) for discriminating MIS-C 

from other childhood diseases. Lower ARG1 and CORIN plasma levels were 

significantly associated with severe MIS-C cases requiring oxygen, inotropes or with 

shock. 

Conclusion: Our findings demonstrate the feasibility of a host protein biomarker 

signature for MIS-C and may provide new insight into its pathophysiology. 
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INTRODUCTION 

 

Although children have been generally less severely affected than adults by COVID-

19 infection, a small proportion of children develop a rare but serious 

hyperinflammatory condition termed Multisystem Inflammatory Condition in Children 

(MIS-C) or Pediatric Inflammatory Multisystem Syndrome temporally associated with 

COVID-19 (PIMS-TS) (1) MIS-C usually develops 2-6 weeks following SARS-CoV-2 

infection, with children presenting with febrile illness and a multisystem 

hyperinflammatory state that shows some overlapping clinical characteristics with 

other infectious and inflammatory childhood disorders including Kawasaki Disease 

(KD) and severe bacterial infections such as Toxic Shock Syndrome (TSS) (2,3,4). 

 

MIS-C leads to critical illness in ~70% of affected children and, as of July 2023, the 

CDC have reported 9,499 cases meeting the full clinical definitions of this novel 

disorder (5). MIS-C has been reported to have a higher incidence in older children, 

males, and in children of Black, Asian, or Hispanic ethnicity (6,7,8). Common 

symptoms of MIS-C include persistent fever, oral mucosal inflammation, conjunctivitis, 

skin rash, elevated inflammatory markers, gastrointestinal involvement, cardiac 

manifestations, multisystem organ dysfunction, and shock (9). 

 

KD is an acute systemic vascular disease of unknown etiology affecting predominately 

the coronary arteries in infants and children (10,11). The standard treatment for KD 

patients is high-dose intravenous immunoglobulin (IVIG) which can quickly alleviate 

symptoms and reduce the incidence of coronary artery aneurysms (12). As there is 

currently no diagnostic test for KD, the diagnosis heavily relies on clinical signs and 
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symptoms which include high levels of markers of inflammation and mucosal changes. 

Approximately 40% of patients with MIS-C will meet the diagnostic criteria for KD and 

due to the overlapping clinical and laboratory features, IVIG was recommended as a 

first-line treatment for MIS-C (5,13). However, recent evidence has shown that 

treatment of MIS-C with corticosteroids has the same outcome as IVIG treatment, 

which is important because corticosteroids are cheap and readily available in low- and 

middle-income countries (14,15). A diagnostic test to distinguish between these two 

diseases would therefore greatly benefit treatment and patient outcome.  

 

Host-derived protein biomarkers have been successfully used to distinguish bacterial 

from viral infection in children (16). It has been reported that elevated levels of soluble 

biomarkers associated with inflammation, vascular endothelial injury, mucosal 

immune dysregulation, septic shock, and cardiac and GI involvement have been 

observed in MIS-C (2,6,7,8,17,18,19,20). From a proteomic perspective, it has also 

been suggested that there are clinical similarities between MIS-C and secondary 

causes of Hemophagocytic Lymphohistiocytosis such as Macrophage Activation 

Syndrome (HLH/MAS) and Thrombotic Microangiopathy (TMA), in addition to its 

clinical similarities with KD and TSS (19). These studies have singled out potential 

individual biomarkers of MIS-C, such as Cysteine–Cysteine Motif Chemokine Ligand 

20 (CCL20), C-X-C Motif Chemokine Ligands 9 and 10 (CXCL9, CXCL10), Interferon-

gamma (IFN-g), Interleukins 6, 7, 8 and 10 (IL-6, IL-7, IL-8 and IL-10), Phospholipase 

A2 Group IIA (PLA2G2A), Tumor Necrosis Factor alpha (TNF-a), Nuclear Factor 

Kappa B (NF-κB) and Zonulin. However, the results differ between studies, which may 

be due to the different comparator groups that were used. 
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In this study, we aimed to identify a set of proteins that could distinguish MIS-C from 

other disease groups, including KD, definite bacterial infections (DB), and definite viral 

infections (DV) by quantifying plasma protein levels of candidate MIS-C biomarkers. 

Such a protein signature could be used as the basis for a diagnostic test. We also 

aimed to associate significant changes in individual protein levels with clinical 

presentation, such association could be further investigated to predict disease severity 

or inform clinical management.   

 

MATERIALS AND METHODS 

 

Ethics Statement 

Informed consent was taken from all patients recruited to the study. Recruitment at all 

locations took place after ethical permissions were in place for that area. In the 

DIAMONDS study (Diagnosis and Management of Febrile Illness using RNA 

Personalized Molecular Signature Diagnosis https://www.diamonds2020.eu) and the 

PERFORM study (Personalized Risk assessment in Febrile illness to Optimize Real-

life Management, perform2020.org/), the consortium agreed on a finalized protocol 

and supporting documents that were translated into local languages. Each 

participating country took responsibility for gaining ethical approval in their region.  

 

For DIAMONDS, the lead site received ethical approval for United Kingdom centers 

from the London-Dulwich research ethics committee (20/HRA/1714). For the 

PERFORM study, the lead site received approval ethical approval for United Kingdom 

centers from the London-Central research ethics committee (16/LO/1684). The 

Genetic Determinants of Kawasaki Disease for Susceptibility and Outcome study 
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recruited in the United Kingdom only, and ethical approval was granted by the London-

Fulham research ethics committee (13/LO/0026). During the conduct of the study, 

clinical data and samples were identified only by anonymized study numbers. 

 

Study Population 

This study included 108 pediatric patients (≤16 years old) with clinical and laboratory-

confirmed MIS-C (n = 22), Kawasaki disease (KD, n = 23), definite bacterial infections 

(DB, n = 28), definite viral infections (DV, n = 27), and healthy controls (HC, n = 8). A 

breakdown of the definite bacterial and viral infections can be found in Figure S1.   

 

The WHO defines MIS-C as children 0-19 years of age with fever ≥ 3 days and 

elevated inflammatory markers (including C-reactive protein, procalcitonin, and 

erythrocyte sedimentation rate) who have no other obvious microbial cause of 

inflammation, including bacterial sepsis, staphylococcal or streptococcal shock 

syndromes and evidence of SARS-CoV-2 infection or probable exposure (21). They 

must also exhibit two of the most common features of MIS-C including gastrointestinal 

(GI) symptoms, rash or bilateral conjunctivitis, hypotension, shock, or cardiac 

complications. All of the MIS-C patients met the WHO criteria, which was the 

recommended criteria at the time.  

 

Plasma samples from all of the other disease groups (KD, DB, DV) were collected 

prior to the COVID-19 pandemic (October 2013- January 2019). Plasma samples from 

KD patients were collected prior to receiving IVIG treatment in 21 out of 23 cases used 

in this study. All DB and DV patients were phenotyped according to our published 

algorithm and as previously described (22,23,24). In brief, the DB group included 
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patients in whom an appropriate bacterial pathogen was isolated from a normally 

sterile site and a diagnosis of DV was conditional upon identification of a virus 

compatible with the clinical syndrome with no evidence of bacterial infection and CRP 

≤ 60mg/L. No deaths occurred in this study population.  

 

Protein Selection 

Proteins were selected either through candidate gene biomarkers identified by RNA 

Sequencing (RNA-Seq) or through existing literature at the time of this study design. 

 

Whole blood transcriptome profiling was performed using RNA-Seq on samples 

obtained from patients with MIS-C, KD, DB infections, DV infections, and HC children. 

Following pre-processing and normalization which is described in detail in Jackson et 

al., (25), differential expression analysis was performed to identify the genes that were 

significantly differentially expressed (SDE) between MIS-C and KD, DB infections, and 

DV infections. Differential expression analysis was performed using DESeq2 with 

models including age, sex at birth, and RNA-Seq batch, as two experimental runs were 

used for sequencing (26). The following comparisons were made: MIS-C vs. 

KD+DB+DV; MIS-C vs. KD; MIS-C vs. DB; and MIS-C vs. DV. P-values were adjusted 

for multiple testing using the Benjamini-Hochberg adjustment and genes with adjusted 

p-values <0.05 were considered SDE (27).  

 

Genes of interest were selected based on the criteria that they were significantly up-

regulated in MIS-C cases as compared to one or more of the other disease groups. 

Due to the high number of SDE genes, we selected genes with BH-adjusted p-values 

< 10^-5, and a log-fold change >2, and those that encoded for extracellularly secreted 
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proteins for which antibodies were commercially available were considered. The final 

proteins chosen based on the RNA-Seq data were ADAMTS2, ARG1, CD163, CORIN, 

and PCSK9. Two additional protein targets, CCL20 and CXCL9, were selected based 

on existing MIS-C literature at the time of this study because of their reported roles in 

the gastrointestinal involvement and hyper-inflammatory state observed early in the 

course of MIS-C disease, respectively (6,17,28). 

 

Enzyme-Linked Immunosorbent Assay (ELISA) 

Plasma concentrations of ADAMTS2 were quantified using a commercial ELISA kit, 

Human ADAMTS2 (Abexxa, abx519366) according to the manufacturer’s protocol. 

Samples were randomized, diluted 1:10 in sample diluent buffer, and run in duplicate. 

Absorbance was measured at 450 nm on a SpectraMax microplate reader (Molecular 

Devices) and a standard curve was created using the SoftMax Pro software (version 

5.0). Samples that fell below the lower limit of quantification (LLOQ) were reanalyzed 

and values that were still below the LLOQ were extrapolated as half of the lowest 

standard value.  

 

Multiplex Immunoassay 

Plasma concentrations of ARG1, CCL20, CD163, CORIN, CXCL9, and PCSK9 were 

quantified using customized multiplex immunoassay kits from MSD (Meso Scale 

Discovery, Rockville, MD). CD163 (MSD, F21J4) and PCSK9 (MSD, F21ABA) were 

multiplexed on a 2-assay plate (MSD, K15227N) according to the manufacturer’s 

instructions with samples diluted 1:20 in assay diluent and run in duplicate. ARG1 

(MSD, F21Q1), CCL20 (MSD, B21UZ), CORIN (MSD, F210B), and CXCL9 (MSD, 

F210I) were multiplexed on a 4-assay plate (MSD, K15229N) according to the 
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manufacturer’s instructions with samples diluted 1:2 in assay diluent and run in 

duplicate. Two control plasma samples were included on each plate to account for 

inter-plate variation. All plates were analyzed on the Meso Quick Plex SQ120 

Instrument (MSD). Data was generated on the Methodological Mind software (version 

1.0.36) and analyzed using Discovery Workbench software (version 4.0, MSD). 

 

Statistical Analysis 

All statistical analyses were performed using R (version 4.1.1) (29). Individual protein 

results were analyzed using one-way analysis of variance (ANOVA), followed by 

Tukey’s honestly significant difference (HSD) test to evaluate the differences between 

each cohort. Principal component analysis (PCA) was used to visualize the data. 

ANOVA p-values were corrected using the Bonferroni procedure and Tukey HSD test 

p-values were corrected using the in-build correction as part of the Tukey HSD test.  

 

Associations between each of the protein markers and clinical variables were tested 

using unpaired two-tailed t-tests for categorical variables and linear regression models 

for continuous variables with all p-values corrected for multiple testing using the 

Bonferroni procedure (corrected per clinical/laboratory variable). Clinical and 

laboratory variables included admission to the pediatric intensive care unit (PICU), 

oxygen or ventilation requirement (invasive or non-invasive), inotrope administration, 

duration of symptoms at the time samples were taken, neutrophils, lymphocytes, 

platelets, CRP, white blood cell (WBC) counts, and presentation of symptoms 

including cardiac and gastrointestinal involvement, rash, shock, and conjunctivitis.  
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The distinguishing ability of each of the proteins that were significantly differentially 

abundant between MIS-C and other disease groups was evaluated using the area 

under the receiver operating characteristic (ROC) curve (AUC).  

 

The performance of the proteins when combined into a multivariate model was also 

evaluated, with the proteins combined using the simple disease risk score (DRS) first 

described in Herberg et al., (22) and calculated as follows:  

 

𝑠𝑖𝑚𝑝𝑙𝑒 𝐷𝑅𝑆௜ = ෍ 𝑣𝑎𝑙𝑢𝑒௞
௜ − ෍ 𝑣𝑎𝑙𝑢𝑒௟

௜

௠

௟ୀଵ

௡

௞ୀଵ

 

 

where n and m are the proteins that increase and decrease, respectively, in MIS-C vs. 

other disease groups. CRP was added to the protein model to determine whether its 

inclusion would improve model performance.  

 

RESULTS 

 

Clinical Features 

108 samples were included in this study, with the patient demographic and clinical 

characteristics summarized in Table 1. All 22 MIS-C patients met the WHO case 

definitions for inclusion (21). A higher proportion of cases were male (68.2%, n=15) 

and the median age of the patients was higher in MIS-C than in the other disease 

comparator groups. Over half of MIS-C cases (n=12, 54.5%) required PICU admission 

and the majority of cases (n=18, 81.8%) presented with gastrointestinal symptoms. 
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Table 1. Demographic and clinical characteristics of the patients with MIS-C, DB, DV, and KD used for 

the ELISA and Meso Scale Discovery validation assays. Values are median (IQR) unless stated. 

 

MIS-C (n=22) DB (n=27) DV (n=28) KD (n=23) HC (n=8)

Demographics

Age 8.0 (6.0 - 12.2) 3.8 (2.4 - 8.3) 1.1 (0.4 - 3.4) 3.0 (1.4 - 4.0) 12.8 (7.3 - 14.8)

Sex (male, %) 15 (68%) 15 (56%) 14 (50%) 14 (61%) 6 (75%)

Race (n, %)

White/European 10 (45%) 22 (82%) 14 (50%) 7 (30%) 8 (100%)

East/West/  South Asian 6 (27%) 2 (7%) 8 (29%) 6 (26%) 0 (0%)

Black/African/ Caribean 3 (14%) 1 (4%) 4 (14%) 7 (30%) 0 (0%)

Other 3 (14%) 2 (7%) 2 (7%) 3 (13 %) 0 (0%)

Sample period Aug 2020 - Sep 2021 Dec 2016 - Jan 2019 Feb 2017 - Jan 2019 Oct 2013 - Jun 2018 Aug 2018 - Mar 2020

Treatment

Antibiotics (n, %) 22 (100%) 18 (67%) 14 (50%) 23 (100%) 0 (0%)

Inotropes (n, %)  6 (27%) 4 (15%) 3 (11%) 0 (0%) 0 (0%)

Oxygen (n, %) 3 (14%) 9 (33%) 14 (50%) 0 (0%) 0 (0%)

Non-invasive ventilation (n, %) 2 (9%) 1 (4%) 10 (36%) 0 (0%) 0 (0%)

Invasive ventilation (n, %) 1 (5%) 7 (26%) 14 (50%) 0 (0%) 0 (0%)

Clinical features

Days from onset of symptoms 6.5 (5.0 - 7.0) 3.0 (2.0 - 5.5) 3.0 (2.0 - 5.0) 6.0 (5.0 - 8.0) N/A

Admitted to PICU (n, %) 12 (55%) 10 (37%) 16 (57%) 1 (4%) 0 (0%)

GI involvement (n, %) 18 (82%) 3 (11%) 2 (7%) 4 (17%) 1 (13%)

Cardiac (n, %) 3 (14%) 0 1 (4%) 9 (39%) 0 (0%)

Pulmonary (n, %) 1 (5%) 2 (7%) 5 (18%) N/A 0 (0%)

Neurological (n, %) 3 (14%) 2 (7%) 4 (14%) N/A 0 (0%)

Shock (n, %) 5 (23%) 5 (19%) 2 (7%) N/A 0 (0%)

Sepsis (n, %) 0 13 (48%) 5 (18%) N/A 0 (0%)

Comorbidities (n, %) 8 (36%) 7 (26%) 11 (39%) 13 (57%) 0 (0%)

Blood parameters

Max CRP (mg/L) 241.0 (191.0 - 301.8) 225.0 (125.7 - 343.6) 19.2 (4.9 - 35.2) 89.1 (62.8 - 136.0) N/A

Haemoglobin (g/L) 107.0 (95.8 - 118.8) 104.0 (94.3 - 115.8) 104.0 (91.0 - 123.8) N/A N/A

Creatinine (µmol/L) 44.5 (35.3 - 52.8) 44.1 (27.1 - 59.7) 33.0 (28.0 - 47.0) N/A N/A

ALT (IU/L) 25.5 (21.0 - 36.0) 11.0 (10.0 - 23.0) 24.0 (16.5 - 38.5) N/A N/A

Bilirubin (µmol/L) 5.0 (5.0 - 7.0) 8.5 (4.3 - 16.5) 5.0 (3.5 - 12.3) N/A N/A

Albumin (g/L) 24.5 (22.3 - 27.0) 32.5 (29.3 - 37.3) 30.5 (26.0 - 34.8) N/A N/A

White blood cells (10^9/L) 11.5 (6.0 - 16.3) 17.4 (13.6 - 27.1) 7.6 (5.7 - 10.8) 12.3 (10.6 - 14.1) N/A

Neutrophils (10^9/L) 8.4 (5.9 - 12.2) 13.3 (9.7 - 19.4) 3.3 (1.6 - 4.7) 8.3 (6.9 - 11.2) N/A

Lymphocytes (10^9/L) 1.3 (0.6 - 1.8) 2.5 (1.8 - 3.7) 3.1 (2.1 - 4.5) 2.5 (1.7 - 3.0) N/A

Monocytes (10^9/L) 0.4 (0.2 - 0.8) 1.2 (0.9 - 2.3) 0.8 (0.6 - 1.3) 0.7 (0.5 - 0.9) N/A

Platelets (10^9/L) 238.5 (113.3 - 321.8) 269.5 (221.0 - 430.0) 272.0 (230.0 - 321.0) 330.0 (62.8 - 136.0) N/A

IQR: Interquartile range; N/A: Not available/Not applicable; MIS-C: Multisystem inflammatory syndrome in children; KD: Kawasaki disease; 

HC: Healthy controls; PICU: Paediatric intensive care unit; GI: Gastrointestinal; ALT: Alanine aminotransferase; CRP: C-reactive protein. 
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Candidate Protein Biomarkers  

Seven protein biomarkers for distinguishing MIS-C from other pediatric infectious and 

inflammatory diseases were selected through unbiased analyses of host 

transcriptomic profiles obtained from children with MIS-C (25) as well as from the 

literature. These included ADAMTS2, ARG1, CD163, CORIN, and PCSK9 which were 

selected from RNA-Seq, and CCL20 and CXCL9 which were selected from the 

literature (Table S1). Genes were selected based on BH-adjusted p-values < 10^-5, a 

log-fold change >2, and if they encoded for extracellularly secreted proteins.  

 

All proteins were measured in a cohort of children with MIS-C, KD, DB or DV infections, 

and HC. When visualized using principal component analysis (PCA), the disease 

group was clearly captured by principal component (PC) 1, with a correlation of 47% 

(p-value: 3.3x10-7) between PC1 and whether a patient had MIS-C. Sex and age had 

a correlation of -1.8% and 7.9%, respectively, with PC1 (Figure S2). 

 

CD163, CXCL9, and PCSK9 are Significantly Differentially Abundant (SDA) in 

MIS-C vs. other diseases and healthy controls 

Pediatric plasma samples were analyzed from MIS-C (n = 22), KD (n = 23), DB (n = 

28), DV (n = 27), and healthy controls (n = 8). The protein concentrations were 

compared between MIS-C and other diseases (KD, DB, and DV combined) and 

healthy controls to evaluate how well the proteins would be able to discriminate MIS-

C from non-MIS-C groups (e.g., MIS-C vs. KD, DB, DV, HC). The protein 

concentrations were then compared between MIS-C against each diagnostic group 

individually. When protein abundance levels were compared between MIS-C and all 

other comparator groups combined (i.e., HC, KD, DB, DV), significant differences were 
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observed for PCSK9 (Bonferroni adjusted p-value: 3.3x10-5; Figure 1A), CD163 

(Bonferroni adjusted p-value: 2.9x10-4; Figure 1B), and CXCL9 (Bonferroni adjusted 

p-value: 2.4x10-2; Figure 1C). For CD163, CXCL9, and PCSK9, levels were elevated 

in MIS-C vs. all other comparator groups, with significant p-values when pairwise 

comparisons were performed using the Tukey test, for all comparisons except for MIS-

C vs. DV for CXCL9 (Table S2). ADAMTS2, ARG1, CCL20, and CORIN showed no 

significant difference (adjusted p-value >0.05) between MIS-C and both healthy 

controls and other diseases, nor between MIS-C and each disease group individually. 

 

 

Figure 1. Boxplots showing concentrations of proteins with significantly different levels between MIS-C 

and the comparator groups (KD, DB, DV, HC). Boxplots are shown for PCSK9 (A), CD163 (B) and 

CXCL9 (C). MIS-C = multisystem inflammatory syndrome in children; KD = Kawasaki disease; DB = 

definite bacterial; DV = definite viral; HC = healthy control. ns= P > 0.05; * = P ≤ 0.05; ** = P ≤ 0.01, *** 

= P ≤ 0.001; **** = P ≤ 0.0001. 

 

A 3-protein signature can distinguish MIS-C from other pediatric infectious and 

inflammatory diseases 

The performance of PCSK9, CD163, and CXCL9 when combined into a 3-protein 

signature was evaluated, returning an overall AUC of 86.09% (95% CI: 76.8%-95.1%) 

for distinguishing between MIS-C and DB, DV, and KD (Figure 2A).  
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When broken down into pairwise comparisons, the 3-protein signature showed the 

best performance for MIS-C vs. DB with an AUC of 87.5% (95% CI: 77.2%-97.9%; 

Figure 2B), followed by MIS-C vs. DV with an AUC of 86.7% (95% CI: 76.3%-97.1%; 

Figure 2C), and then MIS-C vs. KD with an AUC of 83.2% (95% CI: 69.9%-96.5%; 

Figure 2D).  

 

 

 

Figure 2. Receiver operating characteristic (ROC) curves visualising the performance of the 3-protein 

signature (PCSK9, CD163 and CXCL9). Area under the ROC curve (AUC) and 95% confidence 

intervals (CI) are shown on the plots.  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 31, 2023. ; https://doi.org/10.1101/2023.07.28.23293197doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.28.23293197
http://creativecommons.org/licenses/by/4.0/


The performance of smaller combinations of proteins was also evaluated to determine 

whether all three markers (PCSK9, CD163, and CXCL9) were required in the model 

(Table S3). The combination of all 3 proteins was optimal for distinguishing MIS-C from 

all groups combined (DB, DV, KD), and also for MIS-C vs. DB. For MIS-C vs. DV and 

MIS-C vs. KD, CD163+PCSK9 demonstrated the best performance. Despite this 

improved performance for these comparisons, the 3-protein signature was taken 

forward for subsequent analyses given the importance in distinguishing MIS-C from 

severe bacterial infections and the implications for treatment administration.  

 

C-reactive protein (CRP) is a widely measured biomarker, often used for identifying 

bacterial infections (30). Given the widespread availability of CRP measurement, we 

evaluated whether adding CRP to the 3-protein model improved its diagnostic 

performance (Table S3). The 3-protein signature + CRP improved the performance for 

MIS-C vs. KD by 9%, however, a 16% reduction in performance was observed for 

MIS-C vs. DB.  CRP could not be accurately assessed for the classification of MIS-C 

vs DV, as CRP was used in the initial clinical assignment of DV patients (DV patients 

were required to have CRP <60mg/L). 

 

Lower ARG1 and CORIN plasma levels are associated with severity in MIS-C  

Associations between plasma protein concentrations and clinical variables were 

tested (Table 2). ARG1 was found to be associated with oxygen requirement (Table 

2; Figure 3A; Bonferroni-adjusted p-value: 0.028) and inotrope requirement (Table 2; 

Figure 3B; Bonferroni-adjusted p-value: 0.020). Lower levels of ARG1 were observed 

in MIS-C patients requiring oxygen or inotrope administration, suggesting that reduced 

ARG1 concentration is indicative of elevated severity of MIS-C. CORIN concentration 
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was associated with shock (Table 2; Figure 3C; Bonferroni-adjusted p-value: 0.029), 

following a similar trend with lower levels observed amongst patients who experienced 

shock. Where data was available, associations were also tested in DB, DV, and KD 

for ARG1 and inotrope requirement, oxygen requirement, and for CORIN and shock. 

No significant associations were observed.  

 
 
Table 2. Bonferroni-adjusted p-values showing the association between clinical variables and each of 

the proteins measured in MIS-C patients. Associations between protein levels and PICU admission, 

oxygen requirement, non-invasive ventilation requirement, inotrope requirement, cardiac involvement, 

GI involvement, rash, and conjunctivitis were tested using two-sided t-tests, whilst the association 

between protein levels and BMI, days of symptoms, CRP, WBC, neutrophil, lymphocytes, monocytes, 

and platelet levels were tested using linear regression models. Bonferroni-adjusted p-values <0.05 are 

in bold, underlined font. P-values are adjusted for each clinical/laboratory variable. 

 

Proteins PCSK9 CD163 CXCR9 ARG1 CORIN MIP3A ADAMTS2 

PICU admission  1.000 1.000 1.000 0.077 0.537 1.000 1.000 

Oxygen requirement  1.000 1.000 1.000 0.028 0.092 1.000 1.000 

Inotrope requirement 0.103 0.593 0.652 0.020 0.372 1.000 1.000 

Non-invasive 
ventilation 

requirement  
1.000 1.000 0.560 0.063 0.820 1.000 1.000 

Cardiac involvement  0.862 1.000 1.000 0.079 0.994 1.000 1.000 

GI involvement  1.000 1.000 1.000 0.344 1.000 1.000 1.000 

Rash  1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Shock 1.000 1.000 1.000 0.058 0.029 1.000 1.000 

Conjunctivitis 0.837 1.000 1.000 1.000 0.716 0.565 1.000 

Days of symptoms 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

CRP levels 0.678 0.437 0.437 0.678 0.437 0.229 0.698 

WBC levels 1.000 1.000 0.942 1.000 1.000 1.000 1.000 

Neutrophil levels 1.000 1.000 0.937 1.000 1.000 1.000 1.000 

Lymphocytes 1.000 1.000 1.000 1.000 0.207 1.000 1.000 

Monocytes 1.000 1.000 1.000 1.000 0.980 1.000 1.000 

Platelets 1.000 1.000 1.000 1.000 0.157 1.000 1.000 
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Figure 3. Levels of ARG1 and CORIN amongst patients stratified according to whether they required 

inotropes, required oxygen, or presented with shock.  

 

DISCUSSION 

 

Weeks after SARS-CoV-2 infection, some children developed a hyperinflammatory 

condition termed Multisystem Inflammatory Syndrome in Children (MIS-C). The 

clinical presentation and laboratory findings in MIS-C are similar to other inflammatory 

and infectious diseases such as severe bacterial or viral infection and Kawasaki 

Disease, which makes the appropriate diagnosis and treatment of MIS-C challenging.  

 

Here, we evaluated seven candidate host protein biomarkers in a cohort of 108 

children with MIS-C, KD, definite bacterial infections (DB), definite viral infections (DV), 

and healthy controls (HC). All MIS-C cases met the WHO case definitions and over 

half were admitted to PICU. These patients were compared to KD, DB, and DV cases 

recruited prior to the COVID-19 pandemic. Five of the candidate biomarkers were 

selected from RNA-Seq and two from the literature because of their reported roles in 

the gastrointestinal involvement and hyper-inflammatory state observed early in the 

course of MIS-C disease, respectively (6,17,28). 
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The results showed that three proteins (PCSK9, CD163, CXCL9) were significantly 

higher in MIS-C cases when compared to the other comparator groups. More 

importantly, the performance of PCSK9, CD163, and CXCL9 when combined into a 3-

protein signature could distinguish MIS-C patients from our other disease controls with 

an AUC of 86.0% (95% CI,76.8%-95.1%). When we included CRP levels into the 3-

protein model, we observed an increase in performance for distinguishing MIS-C from 

KD of 9%. Given the overlap in clinical features between MIS-C and KD, especially in 

incomplete KD cases, these findings could be clinically useful due to the importance 

of timely administration of IVIG to patients with suspected KD to prevent coronary 

artery aneurysm formation (31). Similarly, we observed an increase in distinguishing 

MIS-C from DV infections when including CRP levels into the 3-protein model, 

however, this finding needs to be further validated in an independent cohort comprised 

of patients with viral infections that have been phenotyped independent of CRP, as 

CRP levels were used in the clinical phenotyping of the DV cases in this study (i.e., 

<60 mg/L).   

 

The proteins included in the 3-protein signature may have biological functions that can 

provide insight into the pathogenesis of MIS-C. CD163 is a transmembrane 

macrophage-specific hemoglobin-haptoglobin scavenger receptor that is elevated in 

MAS and other vasculitic conditions. The biomarker form of this protein is the soluble 

CD163 (sCD163) found in plasma and produced from increased sCD163 shedding 

mediated by TNF-α (32). Increased abundance of sCD163 and marked elevation of 

macrophage activity have been recognized as markers in several inflammatory 

diseases (33). Mostafa and colleagues (34) reported increased levels of sCD163 in 

children with SAR-CoV-2 infection and MIS-C, compared to healthy controls, which 
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likely reflects the exaggerated pro-inflammatory host response and suggests a 

potential therapeutic role for sCD163 antagonists. CD163 levels have also been 

shown to strongly correlate with the marked neutrophilia observed in MIS-C, 

suggesting this is a result of macrophage activation and supporting the observation 

that the highest levels of this protein are found in the most severe cases of MIS-C 

(20,35). CXCL9 is one of three chemokines that selectively bind to the C-X-C Motif 

Chemokine Receptor 3 (CXCR3) and its expression is primarily driven by IFN-γ (36). 

CXCL9 is commonly expressed by peripheral blood mononuclear cells, but more 

specifically by macrophages, and is best known for its role in the inflammatory 

response by mediating immune cell migration and activation (37). CXCL9 and its 

mediator, IFN-γ, have been reported to be more abundant in MIS-C cases than in 

children with mild and severe COVID, confirming the hyperinflammatory state 

observed in MIS-C (17,20,28). Moreover, our results support these findings and 

validate CD163 and CXCL9 as viable biomarkers for the diagnosis of MIS-C when 

compared to KD or other common bacterial and viral childhood infections. 

 

Higher levels of PCSK9 were observed in MIS-C cases when compared to all other 

disease comparator groups. PCSK9 is vital in the metabolism of plasma cholesterol 

by regulating the levels of low-density lipoproteins (LDL) receptors which filter out the 

cholesterol-rich LDL particles from plasma (38,39,40). Increased PCSK9 expression 

has been linked to lower levels of LDL receptors and consequently higher LDL levels. 

Cholesterol is essential for SARS-CoV-2 infection as the virus binds to cell surface 

Angiotensin Converting Enzyme 2 (ACE2) fused to cholesterol, causing a signaling 

cascade allowing the lipid-enveloped RNA to enter host cells (41,42). In systemic 

inflammatory conditions, disruption of the vascular endothelium can lead to 
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dysregulation of lipid transport and metabolism and an increase in circulating LDL and 

PCSK9. This explains why higher cholesterol levels are associated with higher 

susceptibility to SARS-CoV-2 (42). PCSK9 also exhibits a pro-inflammatory effect by 

promoting TNF-α expression while suppressing the anti-inflammatory markers ARG1 

and IL-10 (43). The beneficial effect of using PCSK9 inhibitors in adults with severe 

COVID-19 has been demonstrated (44,45,46), however, elevated levels of this protein 

in MIS-C cases have, to our knowledge, not been previously reported.  

 

ARG1 was not found to be significantly different between our MIS-C cases and other 

comparator groups, however, levels of this protein were significantly lower in the most 

severe MIS-C cases. Moreover, lower levels of ARG1 were associated with severe 

cases of MIS-C requiring oxygen and inotropes. ARG1 is the final enzyme involved in 

the urea cycle, hydrolyzing arginine to urea, and as such, is highly expressed in the 

liver (47,48). It also plays an important role in the immune response where it is 

released extracellularly under inflammatory conditions to inhibit inflammatory damage 

and immunity towards intracellular pathogens by reducing T-cell proliferation and 

cytokine production (49,50,51). ARG1 dysregulation has become synonymous with 

various pathological processes involving cardiovascular, immunological, 

neurodegenerative, and tumorigenic disorders (52). Elevated levels of ARG1 have 

been reported in COVID-19 cases with high viral loads (51,53) so it is possible that the 

high levels of PCSK9 observed in severe MIS-C cases are suppressing ARG1.  

 

Lower levels of CORIN were also associated with severe cases with shock. CORIN 

converts pro-atrial natriuretic peptide (pro-ANP) to biologically active ANP, a cardiac 

hormone that regulates blood volume and pressure by reducing plasma volume by 
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renal excretion of salt and water, vasodilation, and increased vascular permeability 

(54). Higher pro-ANP levels, which could result from lower levels of CORIN, are 

associated with poor survival prognosis in children and adults with severe sepsis and 

septic shock (55,56). The lower levels of CORIN we observed could therefore result 

in higher levels of pro-ANP and lower levels of ANP, which could contribute to the 

hypertension, inflammation, and cardiac manifestations associated with severity and 

shock in MIS-C.  

 

We did not observe significant differences in the levels of ADAMTS2 or CCL20 in the 

MIS-C cases when compared to our other disease group. ADAMTS2, a biomarker we 

selected from RNA data, is a metalloprotease that processes procollagen to provide 

strength and support to many body tissues. Subsequent to our screening of RNA-Seq 

data, two other groups have reported increased gene expression of ADAMTS2 in 

COVID-19 and MIS-C cases, however, these groups were compared to healthy 

controls rather than other disease groups (57,58). Similarly, Gruber et al., (59) 

reported an increased abundance of CCL20 in patients with MIS-C. Our inability to 

replicate their results could be due to the difference in the control groups that were 

used: KD, DB, and DV as compared to non-ICU COVID-19-infected children, young 

adults, adults, and convalescent adults.  

 

Although our study provides useful information on potential protein biomarkers for 

MIS-C, there are several limitations that should be taken into consideration. Firstly, 

our sample size for MIS-C (n=22) was restricted by the number of children that had 

been recruited at the time of this study that met all WHO criteria. Secondly, these 

patients were recruited during the period of April 2020-August 2021 and, due to the 
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variants that were circulating during this period, would not include the Omicron variant 

that was first detected in November 2021. Further investigation of the biomarkers we 

present in this study is required in a larger independent cohort that includes other 

relevant DB and DV groups with overlapping clinical features of MIS-C including TSS, 

Macrophage Activation Syndrome (MAS), and Hemophagocytic Lymphohistiocytosis 

(HLH). Furthermore, our MIS-C cases were older than our other disease comparator 

groups and the performance of our signature should be tested in younger children with 

MIS-C. A limitation of all diagnostic studies comparing MIS-C and KD is the lack of a 

diagnostic test for either disease, however, we included KD patients that were 

recruited pre-pandemic to avoid errors in phenotyping. None of the KD patients in this 

study required inotropes and were, therefore, less severe than the MIS-C, DB, and DV 

groups. The severity associations that we observed for ARG1 and CORIN require 

further validation in more severe KD cases or KD shock to confirm if this finding is 

unique to MIS-C.  

 

Finally, this study reports the first protein-based diagnostic signature to discriminate 

MIS-C from KD and other common bacterial and viral infections.  Our results show 

that the increase in specific proteins involved in macrophage activation, endothelial 

dysfunction, and lipid metabolism can discriminate MIS-C from other inflammatory 

diseases in children. We further explored the associations between plasma levels and 

clinical outcomes to find both ARG1 and CORIN levels are lower in severe MIS-C. 

Once validated, our results could form the foundation for the development of a point-

of-care diagnostic test that could assist pediatricians to diagnose and determine the 

best course of treatment for MIS-C.  
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