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Abstract1

The UK Biobank is a large cohort study that recruited over 500,000 British participants aged 40-69 in 2006-2010 at 22 assessment centres
from across the UK. Self-reported health outcomes and hospital admission data are two types of records that include participants’ disease
status. Coronary artery disease (CAD) is the most common cause of death in the UK Biobank cohort. After distinguishing between prevalence
and incidence CAD events for all UK Biobank participants, we identified geographical variations in age-standardised rates of CAD between
assessment centres. Significant distributional differences were found between the pooled cohort equation scores of UK Biobank participants
from England and Scotland using the Mann-Whitney test. Polygenic risk scores of UK Biobank participants from England and Scotland and
from different assessment centres differed significantly using permutation tests. Our aim was to discriminate between assessment centres with
different disease rates by collecting data on disease-related risk factors. However, relying solely on individual-level predictions and averaging
them to obtain group-level predictions proved ineffective, particularly due to the presence of correlated covariates resulting from participation
bias. By using the Mundlak model, which estimates a random effects regression by including the group means of the independent variables in
the model, we effectively addressed these issues. In addition, we designed a simulation experiment to demonstrate the functionality of the
Mundlak model. Our findings have applications in public health funding and strategy, as our approach can be used to predict case rates in the
future, as both population structure and lifestyle changes are uncertain.
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Introduction1

Coronary artery disease2

Coronary artery disease (CAD), sometimes referred to as coro-3

nary heart disease (CHD) or ischemic heart disease, is a common4

heart condition that occurs when the blood and oxygen supply5

to the heart muscle is inadequate, and is one of the leading6

causes of morbidity and mortality in the United Kingdom, the7

United States and worldwide (e.g., Cheema et al. (2022), Shahje-8

han and Bhutta (2022)). Many environmental factors including9

smoking, unhealthy diet, alcohol intake, obesity, hypertension,10

diabetes mellitus, and lack of physical activity, have impact on11

the development of CAD (Mack and Gopal 2016). Family history12

of cardiovascular disease has been extensively researched as a13

standalone risk factor for CAD both in the short and long term14

(e.g., Lloyd-Jones et al. (2004), Bachmann et al. (2012)).15

Several risk scores have been proposed to estimate the fu-16

ture cardiovascular risk (e.g., over the next 10 years) for cur-17

rently healthy people, such as the Framingham risk score (FRS)18

(D’Agostino Sr et al. 2008), QRISK3 (risk score using the QRE-19

SEARCH database) (Hippisley-Cox et al. 2017) and pooled cohort20

equation (PCE) scores (Goff et al. 2014). These scores combine21

the effects of multiple carefully selected non-genetic risk factors22

into a single score, and the effect of each risk factor or interac-23

tion term is estimated through sophisticated statistical analysis. 24

Family history is included in QRISK3, but not in the other two 25

scores. Those overall risk scores are clinically meaningful. For 26

example, if a currently healthy person is diagnosed with a PCE- 27

estimated 10-year cardiovascular disease risk exceeding 7·5%, 28

they will be advised to take statin therapy to reduce their future 29

cardiovascular risk after consultation with their doctor in the US 30

(Vasan and Van den Heuvel 2022). 31

Our understanding of the genetic structure of CAD is also 32

increasing with the development of gene sequencing and analy- 33

sis technologies. Genotyping microarrays designed to capture 34

most common inter-individual genetic variation provide the 35

basis for genome-wide association studies (GWAS) (Khera and 36

Kathiresan 2017). Since the first GWAS on CAD reported three 37

common variants associated with increased risk of CAD, more 38

than 200 causal variants have been identified in association with 39

the development of CAD (Aragam et al. 2022). Apart from the as- 40

sociation signal between the causal variants and the phenotypes, 41

causal variants also have biological effects on the phenotypes 42

(Hormozdiari et al. 2015). GWASs also detect many genetic vari- 43

ants that have no biological effect but are statistically significant 44

for phenotypes (Visscher et al. 2017). 45

For many years, the field of genetics has focused extensively 46
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2 Group structure impacts number at risk

on efforts to predict human diseases and traits, and polygenic1

risk scores (PRS) have the potential to be useful in clinical set-2

tings, particularly in the context of specific purposes and condi-3

tions (Ogbunugafor and Edge 2022). PRS is a tool that translates4

personal genetic information into real numbers that can be in-5

terpreted as an individual’s genetic risk for a particular disease.6

There is already compelling evidence indicating its effectiveness7

in predicting the risk of CAD. For example, the utility of CAD-8

PRS as an independent risk factor for predicting the risk of CAD9

has been widely recognised and discussed (e.g., Dikilitas et al.10

(2022)).11

The genetic risk score for CAD can be represented by poly-12

genic risk scores (PRS), which combines the effects from both13

causal and significant variants. PRS is a tool that translates14

personal genetic information into real numbers that can be inter-15

preted as the individual-level genetic risk of a specific disease.16

The utility of CAD-PRS as an independent risk factor to predict17

the risk of CAD has been widely identified and discussed (e.g.,18

Dikilitas et al. (2022)).19

The combination of genetic and non-genetic risk factors in-20

creases the predictive power at the individual level. Elliott et al.21

(2020) calculated CAD-PRS and PCE scores for their study partic-22

ipants and compared the predictive power of risk factors alone23

and combined. They found that the overestimation of risk by24

PCE scores could be corrected by adding CAD-PRS to the model.25

Comparing the model with only PCE to the model with PCE and26

PRS, when using a risk threshold of 7.5%, the latter improved27

net reclassification 4.4% for cases and -0.4% for controls. Incor-28

porating family history and PRS can improve the accuracy of29

predicting CAD risk in both real-world and simulation study30

settings (e.g., Hujoel et al. (2022) Zhao et al. (2023)).31

Geographical variations in cardiovascular disease preva-32

lence across the UK33

Cardiovascular disease (CVD) is the term for all types of dis-34

eases that affect the heart or blood vessels and CAD is the most35

common type of CVD. Within the UK, the higher prevalence36

of cardiovascular disease (CVD) in Scotland than in England37

has been repeatably observed (e.g., Lawlor et al. (2003), Bhatna-38

gar et al. (2016)). The recent epidemiology study conducted by39

Cheema et al. (2022) shows the age standardised CVD mortality40

rate differences in 2019 across 13 UK regions/nations, including41

the East Midlands, East England, London, Yorkshire and the42

Humber, Wales and Scotland. Among those regions, Scotland43

has the highest mortality rate per 100,000 for CVD for all ages.44

Environmental and genetic risk factors can both contribute to45

geographical variations in CVD (e.g., Lawlor et al. (2003), Peasey46

et al. (2006), Ding and Kullo (2009)). For example, Lawlor et al.47

(2003) concluded that age distribution, socioeconomic status,48

and health service utilization were the main causes of geograph-49

ical variation, as well as differences in risk factors associated50

with CVD, including smoking, hypertension status, blood pres-51

sure and cholesterol levels. Ethnic-specific differences in the52

genetic architecture of CAD have been widely proposed and ex-53

plored, and different novel disease-susceptibility loci have been54

identified in different populations (Miyazawa and Ito 2021).55

Geographical variations in CAD prevalence were reflected56

in the UK Biobank (UKB) participants, with CAD prevalence of57

7.73% in England UKB participants and 9.06% in Scotland UKB58

participants (Yang et al. 2021). Yang et al. (2021) conducted a59

study on UKB participants to explore whether environmental or60

genetic factors could explain the regional CAD prevalence differ-61

ences. They calculated the FRS, QRISK3 and PRS for CAD risk 62

and concluded that neither FRS, QRISK3 or PRS could explain 63

the higher CAD prevalence in Scotland. They used Pearson’s 64

Chi-squared test and the two-tailed Mann-Whitney test for sta- 65

tistical analysis. However, because they observed significant 66

differences in the distribution of individual risk alleles, they con- 67

cluded that the genetic architecture of a common disease could 68

be different for geographically and ethnically closely related 69

populations. 70

Study aim 71

Genetic and non-genetic risk factors working together can im- 72

prove the prediction of CAD risk at the individual level (e.g., 73

Elliott et al. (2020), Hujoel et al. (2022)), but few studies have 74

used them jointly to estimate the number of risks at the re- 75

gional/country level. In this study, we are interested in com- 76

paring, analyzing and predicting the risk of CAD at the re- 77

gional/country level employing the UKB participants. Study 78

participants and regional selection are explained in Section Study 79

participants and CAD events, followed by the test methods used 80

to compare the distribution of PCE and a different set of CAD- 81

PRS at the group level. Section Results for UKB assessment 82

centres contains predictions of the number of people at risk 83

for CAD at the regional level using a generalized linear model 84

regressed on PCE and PRS, with a poor ability to distinguish 85

between high and low case rate groups (Section Results for 86

UKB assessment centres). The results in Ascertainment bias 87

confounds group rate estimation show that it is ascertainment 88

bias that confounds group rate estimation. Participation bias is 89

common in population-based cohort studies, including the UKB 90

study, and can bias the results of genetic epidemiology stud- 91

ies (Schoeler et al. 2023). The Mundlak model (Dieleman and 92

Templin 2014) is used to eliminate bias and improve efficiency. 93

The updated results show that the Mundlak model is valid. A 94

simulation experiment (Section How the Mundlak model works 95

and Section Simulation results) is designed to explain how the 96

Mundlak model works. 97

Methods 98

Study participants and CAD events 99

UKB resources and health outcomes records The data set for 100

our work was created using data fields provided by the UKB 101

resources under Application Number 59528. The UKB study 102

(Sudlow et al. 2015) recruited half million UK participants aged 103

40-69 from across the UK during 2006-2010 for the baseline as- 104

sessments. Over 70% of all UKB participants are from England, 105

less than 10% are from Scotland, and the rest are from Wales, 106

Northern Ireland and other regions. The baseline assessments 107

were conducted at 22 assessment centres in Scotland, England 108

and Wales and consisted of a five-part assessment process last- 109

ing 2-3 hours. The process included written consent, answering 110

touch screen questionnaires, face-to-face interviews with a study 111

nurse, measurements like hand grip and bone density, and the 112

sample collection of blood, urine and saliva. The collected sam- 113

ples were used for gene sequencing and biochemical markers 114

measurement, with various types of genetic data released since 115

May 2015 (Bycroft et al. 2018). 116

UKB resources provide two types of record containing partici- 117

pants’ disease status, self-reported health outcomes, and hospital 118

inpatient data. Participants were asked to report their health 119

outcomes during the baseline assessment, including the type of 120
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disease(s) and the date(s) of onset. Additionally, UKB also keeps1

track of each participant’s hospital inpatient data, including hos-2

pital admissions information and date of admission, diagnosis3

during admission, procedures and discharge information. For4

example, hospital inpatient data for UKB participants from Eng-5

land are provided by the Data Access Request Service (DARS),6

managed by National Health Service (NHS) digital, and pro-7

vides hospital inpatient admissions data for English participants.8

Inpatient data for participants from Wales and Scotland are pro-9

vided via different partnerships. The UKB resources have over10

ten thousand data fields, with more arriving all the time. Those11

data fields can be assigned to several categories, such as physical12

measurements, lifestyle, cognition and hearing, physical activity,13

imaging, biomarkers and genetics. Hospital diagnoses informa-14

tion accounts for almost half of all UKB data fields (Madakkatel15

et al. 2021). UKB participants’ health outcomes are accessed16

by different coding systems for self-reported records and for17

the hospital inpatient records. Detailed, self-reported health18

outcomes are recorded separately for cancer and non-cancer con-19

ditions using UKB designed data-coding. All clinical data in the20

hospital inpatient data are coded according to the World Health21

Organization’s International Classification of Diseases (ICD) and22

all operations and procedures in the hospital inpatient data are23

coded according to the Office of Population, Censuses and Sur-24

veys: Classification of Interventions and Procedures (OPSC) (UK25

Biobank: hospital inpatient data).26

CAD definition To identify UKB participants diagnosed with27

CAD, CAD codes within self-reported and hospital inpatient28

records need to be determined first. There is no precise defini-29

tion of which diseases should be included in determining the30

onset of CAD for UKB participants. Our study followed the31

CAD definition from Elliott et al. (2020). In detail, six different32

categories were searched to determine CAD events, including33

ICD-10, ICD-9, OPCS-4, non-cancer illness code, operation code34

and the vascular/heart problems data field. The CAD definition35

is in Supplementary Table 1 and the related UKB data fields are36

in Supplementary Table 2 in the Supplementary Material.37

We defined any CAD events that happened before the date38

of joining the UKB for the initial assessment as prevalence CAD,39

and any events that happened after joining the UKB as incidence40

CAD. Some participants had more than one CAD events in their41

records, either one category with at least two different types of42

CAD events, or more than 2 categories of CAD events. For those43

cases, we compared the dates for multiple events and kept the44

earliest CAD event in this study. ICD-10, ICD-9 and OPCS-445

have the CAD date, while the other three have the CAD onset46

age in integer values. There may be some bias in converting the47

date of CAD onset to age at CAD onset to determine the first48

CAD event, as the date of birth of the UKB participants was not49

available in this study, only the year of birth.50

UKB assessment centres to represent geographical regions51

After we identified the prevalence and incidence of CAD events,52

we calculated the age-standardized prevalence in 2010 and 202153

across the assessment centres. Of all 22 centres, only 2 were lo-54

cated in Scotland, the rest were in England and Wales, and one of55

the centres in England was a pilot centre for only the first month56

of the overall baseline assessment period and had a relatively57

small number of participants. The UKB team sent invitation58

letters to people who were predominantly located in urban areas59

and lived near any of the UKB assessment centres (Alten et al.60

2022). Therefore, it is reasonable to use the assessment centre61

as a geographic location to compare CAD morbidity. To obtain 62

the age-standardized prevalence rates, we also used the 2013 63

European Standard Population as in Cheema et al. (2022). 64

Genetic and non-genetic risk scores 65

CAD-PRS set selection The basis of PRS is that for most com- 66

mon diseases, their inheritance involves many common genetic 67

variants with small effects, and combining those effects together 68

has the ability to distinguish risk groups. The calculation pro- 69

cess for PRS is complex and beyond the scope of this paper. 70

Interested readers can learn more from Choi et al. (2020). The 71

baseline function for PRS using additive genetic models summa- 72

rizes the effects of a set of significant genetic variants, with the 73

number of genetic variants varying from hundreds to several 74

millions. Various PRS methods have been developed aimed at 75

determining the set of variants included in the baseline calcula- 76

tion (e.g. Chang et al. (2015), Ge et al. (2019)) and/or to estimate 77

the magnitude of the effect (e.g., Vilhjálmsson et al. (2015), Mak 78

et al. (2017)). 79

Among various PRS methods available for inspection, we 80

chose to compare the CAD-PRS set calculated via the method 81

LDpred2 (Privé et al. 2020a) with the CAD-PRS set provided by 82

the UKB (Thompson et al. 2022). LDpred2 infers the posterior 83

mean effect size for each genetic variant by using a prior on 84

effect sizes and linkage disequilibrium (LD) information from an 85

external reference panel. LDpred2 can also estimate the propor- 86

tion of significant genetic variants and heritability explained by 87

selected variants. LDpred2 claimed that its method beat other 88

common methods after testing on UKB participants and our 89

reproduced results, as well as results from Aragam et al. (2022) 90

both support their conclusion. Steps to calculate CAD-PRS us- 91

ing the LDpred2 method are in Appendix LDpreds CAD-PRS 92

calculation. The UKB resources category 300 provides access 93

to standard PRS and enhanced PRS for 28 diseases (including 94

CAD) and 25 quantitative traits, with the standard set (centred 95

and variance-standardised) calculated for all participants in the 96

UKB using algorithms trained on external data only and the 97

enhanced set calculated for a subgroup of 104,231 individuals in 98

UKB trained on external data and a separate subgroup of UKB 99

(Thompson et al. 2022). LDpred2 restricts its usage on samples 100

with the same ancestry (White British), while Thompson et al. 101

(2022) built their PRS algorithms using a Bayesian approach, 102

combing data across multiple ancestries. 103

We compared the predictive performance of these two sets 104

of CAD-PRS using AUC, the area under the receiver operator 105

characteristics curve, which measures the discrimination con- 106

cordance between risk scores and binary outcomes (Huang and 107

Ling 2005). The AUC between each one of 2 sets of PRS and the 108

2 definitions of CAD phenotypes were calculated using R func- 109

tion AUCBoot from the bigstatsr package (Privé et al. 2018) and 110

results are shown on Table 1. The UKB CAD-PRS has slighter 111

higher AUC values and covers more UKB participants, so this 112

study chose the UKB CAD-PRS for use in our analysis. 113

Calculation of pooled cohort equation scores The American 114

College of Cardiology (ACC) and the American Heart Associ- 115

ation (AHA) developed pooled cohort equations (PCE) to esti- 116

mate the composite endpoint of 10-year atherosclerotic cardio- 117

vascular (ASCVD) risk, with initial sex-specific and ethnicity- 118

specific equations published in 2013 (Goff et al. 2014). Atheroscle- 119

rosis is a common disease that occurs when a sticky substance 120

called plaque builds up inside your arteries. ASCVD events 121
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4 Group structure impacts number at risk

Table 1 AUC comparison for two sets of CAD-PRS

AUC

CAD definition
Privé et al. (2020b) Elliott et al. (2020)

UKB CAD-PRS 0.646 (0.642, 0.650) 0.642 (0.637, 0.645)

LDpred2 CAD-PRS 0.628 (0.624, 0.632) 0.625 (0.622, 0.629)

include CAD, stroke, and peripheral artery disease (PAD) (De-1

Fronzo and Ferrannini 1991). The PCE tool is a risk assessment2

method that has been developed based on data that can be easily3

collected by primary care providers and can be implemented in4

routine clinical practice. Carefully selected risk factors associ-5

ated with CAD risk are included in PCE equations, including6

age, total and high-density lipoproteins (HDL) cholesterol levels,7

blood pressure, smoking status, diabetes mellitus and hyper-8

tension medication status. Log transformation and interaction9

terms are included in the equations. The PCE score is a single10

score that summarizes the effect using the parameters estimated11

by the proportional hazards model. The PCE scores for UKB12

participants have been studied widely, such as in Riveros-Mckay13

et al. (2021), Carter et al. (2022).14

There are criteria for applying the PCE equation. Stone et al.15

(2014) points that it is not appropriate to estimate 10-year AS-16

CVD using PCE scores for individuals with clinical ASCVD, or17

with LDL-C ≥ 190 mg/dL, or people who are already in a statin18

benefit group.19

We firstly identified UKB participants who already had an20

ASCVD event prior to joining the UKB, as the risk factors used21

to calculate PCE scores were collected at the baseline assessment22

visit. This study used the definitions of CVD from Elliott et al.23

(2020) to determine the prevalence CHD and stroke events, and24

the definition of PAD from Klarin et al. (2019), with relevant data25

fields from UKB, is in Supplementary Table 4. Following the26

CAD prevalence definition in Section Study participants and27

CAD events, the prevalence ASCVD events were determined28

by comparing their event onset dates with the date they joined29

the UKB. The corresponding events codes are in Supplementary30

Table 3. Of the 502,401 UKB participants, 35,308 were identified31

as participants with a first ASCVD epidemic event. An addi-32

tional 155 participants did not have a corresponding date of first33

ASCVD epidemic event, but we still included them in the first34

ASCVD event group. In total, there are 35,887 UKB participants35

with first-ever ASCVD. Only 2 UKB participants had LDL-C36

≥ 190 mg/dL during their initial assessment visit. Finally, we37

selected UKB participants who were already on statin therapy38

prior to joining UKB. We used the types of statin (atorvastatin,39

simvastatin, fluvastatin, pravastatin and rosuvastatin) listed by40

Carter et al. (2022).41

This study employed the PCE coding provided in the sup-42

plementary material of Vasan and Van den Heuvel (2022) to43

calculate PCE risk scores. We also followed their additional44

criteria that PCEs were not applied for people with extreme to-45

tal cholesterol(>320 or <130 mg/dL), high-density lipoprotein46

cholesterol (>100 or <20 mg/dL), or systolic blood pressure47

(>200 or <90 mm Hg). The risk factors associated with the UKB48

data fields are listed in Table S5 of File S1.49

Study flow The complete data set for this study included UKB50

participants who were eligible for PCE risk calculation and had51

CAD-PRS provided by UKB. In addition, body mass index (BMI)52

Figure 1 Study flow chart to generate the complete data set
for further analysis. PCE denotes pooled cohort equation; PRS
denotes polygenic risk score; BMI denotes body mass index;
TDI denotes Townsend deprivation index; ASCVD denotes
atherosclerotic cardiovascular; LDL-C denotes low-density
lipoprotein cholesterol.

and Townsend deprivation index (TDI) were also extracted from 53

the UKB resource for those participants, as BMI has been recog- 54

nised as a risk factor that could aid the predictive power of PRS 55

(e.g., Alten et al. (2022)) and TDI, a measure of social deprivation, 56

has impact on the mortality of cardiovascular disease (e.g., Ford 57

and Highfield (2016)). Figure 1 is the flow chart of obtaining this 58

full data set for the following analysis. The complete data set 59

had a total of 263,087 UKB participants, with 8,458 participants 60

developing CAD after enrolling in the UKB and the remaining 61

254,629 participants remaining CAD-free. 62

Statistical tests 63

We examined the difference in PCE scores between England and 64

Scotland, using a two-tailed Mann-Whitney test (Yang et al. 2021). 65

The Mann-Whitney test is a nonparametric test and checks if 66

two samples come from the same distribution by comparing the 67

probability of X being greater than Y with the probability of Y 68

being greater than X after randomly selecting values from sets 69

X and Y. The Mann-Whitney test is considered to be a test of 70

population medians and is accompanied by equally important 71

differences in shape, but the Mann-Whitney test cannot discern 72

differences between two groups with the same median, but can 73

discern different variances or shapes, as this test analyzes only 74
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the ranks (Hart 2001).1

To compare PRS distributions between any two assessment2

centres, we employed a permutation test. In this study we used3

the assessment centre to represent the geographical region, but4

we noted that the number of people going to an assessment5

centre close to their address was much lower than the number6

of people in that area. When we do not have access to the PRS7

of everyone in the region, but still want to compare the distri-8

butions of PRS, permutation tests are useful (Irizarry and Love9

2016). People with PRS in the highest polygenic risk group have10

a higher chance of developing the disease than people with aver-11

age PRS scores. For example, Lewis and Green (2021) examined12

the ability of PRS to predict risk for CAD using genotype and13

phenotype data from UKB participants, as the highest polygenic14

risk group had twice the hazard ratio of the intermediate risk15

group. Therefore, when comparing the PRS distributions of two16

populations, we are more interested in looking at the tails or17

spread of the PRS distribution than just comparing the means18

or variances. This is another reason why we chose to use the19

permutation test.20

The permutation test is a resampling and nonparametric test21

that does not make any assumptions about the distribution; in22

fact, a full permutation test encompasses all possible permuta-23

tions, hence it is a Monte Carlo permutation test. The permuta-24

tion test requires four main steps:25

1. determine and calculate the statistic of interest (e.g., mean,26

median or variance);27

2. combine groups together, retaining all data but randomly28

shuffling the groups’ labels, and then calculate the new29

statistic value;30

3. repeat step 2 many times and keep a record of the new31

statistic values;32

4. the p-value is the proportion of statistics from the real group33

lower than the statistics from the reshuffled groups.34

We also performed permutation tests on the predicted dis-35

ease risk using the liability threshold model (LTM). The LTM36

assumes that there is a hidden continuous disease liability L37

that determines the binary disease outcome, where L follows a38

standard normal distribution, and the binary outcome D = 139

if L exceeds a fixed threshold T and 0 otherwise. The thresh-40

old is determined by the prevalence K of the disease in the41

population using the relationship T = Φ−1(1 − K), where Φ42

is the cumulative distribution function of the normal distri-43

bution (So et al. 2011). The total liability L is assumed to be44

split into two components, the measurable genetic component45

and the combination of environmental and unknown risk fac-46

tors, while PRS can be used to represent the measurable ge-47

netic component (Zhao et al. 2023). If we assume that the48

variance explained by PRS is V, then the LTM suggests that49

Cov(L, PRS) = Var(PRS) = V and E(L|PRS = prsj) = prsj50

and Var(L|PRS = prsj) = 1 − V. Then, using standard regres-51

sion theory, we can calculate the probability of being a case given52

the value of PRS as Pr(L > T|PRS = prsj) = Pr(L − prsj >53

T − prsj) = 1 − Φ(T − prsj, 0, 1 − V) (So et al. 2011).54

In this study, we denoted the CAD incidence rates from the55

complete data as P, and calculated the predicted probability56

of being a case after standardising the CAD-PRS. The reason57

for this approach is that LTM provides a framework for pre-58

dicting the risk of developing the disease solely based on PRS59

values within a specific group. Thus, two cohorts (whether ob- 60

served/test centre or randomly permuted groups) may have 61

identical mean or median PRS values, but the proportion of 62

individuals exceeding the threshold PRS may differ. 63

Generalized linear model to predict the number of risk 64

A Generalized linear model (GLM) regression is used to predict
the probability of developing CAD for every sample in the com-
plete data set, as detailed in Section Study flow. When regressed
on PRS and PCE, the model is:

logit(pj) = β0 + βPRSPRSj + βPCEPCEj, (1)

where j ∈ (1, J) denotes the observation from the complete data 65

set, β0 is the intercept, βPRS and βPCE are regression coefficients 66

for the respective variables, and pj is the predicted probability 67

of developing CAD for the jth individual. 68

The predicted incidence of CAD at the assessment level was 69

calculated as the average of the predicted rates for all partici- 70

pants from the same assessment centre. As well as in models 71

with PRS and PCE only, GLMs with BMI and TDI are also tested. 72

Section Results for UKB assessment centres shows that the sim- 73

ple GLM has a very poor fit at the assessment centre level even 74

though the individual level prediction is acceptable (based on 75

the AUC results). The group level prediction became even worse 76

after a new variable was added into the model. A better model 77

is therefore needed to predict the group incidence rates and 78

we introduce one in Section The Mundlak model to predict the 79

number at risk. 80

Exploration of performance using simulated groups To iden- 81

tify the reasons for the poor group-level predictions, we exam- 82

ined the performance of the same model on randomly labelled 83

groups and specially designed groups. For the random case- 84

control swaps groups, we assume that the complete data set has 85

9 groups of similar size, and then randomly label all samples in 86

this complete data set from 1 to 9. The designed labelling method 87

then randomly swaps cases and controls between groups to in- 88

crease incidence heterogeneity. Table 2 lists the steps for the 89

designed labelling method. 90

The results for both methods of simulated groups are re- 91

ported in Section Results for simulated groups based on random 92

case-control swaps. This result demonstrates the ability of GLM 93

to distinguish between low and high incidence groups for the 94

data set, which was created under the designed labelling method. 95

Accordingly, we speculated that some cryptic group structure 96

might play a role in the poor fitting at the assessment centre level, 97

so we employed Pearson’s correlation tests to reveal the group 98

structure. It turns out that the cryptic group structure in our data 99

set is the reversed direction of the relationship of variables at the 100

group level and the subgroup level. Such a scenario is common 101

in statistical analysis and is referred to as Simpson’s paradox. 102

Section Ascertainment bias confounds group rate estimation 103

shows the detailed scenario in our data set. 104

The Mundlak model to predict the number at risk 105

We are interested in developing a model to predict CAD risk at 106

the assessment centre level without using the assessment centre 107

label, so that this model can be used to estimate the number of 108

CAD risks for a new group where we only observe covariates 109

but not the group rate. Simple GLMs fit poorly at the assessment 110

centre level, and this poor fit is due to the opposite directional 111

effect of the variables at the group level and the subgroup levels 112
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6 Group structure impacts number at risk

Table 2 Random case-control swaps groups

Start from the randomly labelled groups:

1. Calculate incidence rate for each of the 9 randomly labelled groups

2. Rank incidence rates

3. Randomly move N1 cases from the group with the lowest incidence rate (group A) to the group with the highest incidence rate
(group B); then move the same number of controls from group B to group A.

4. Randomly move N2 cases from the group with the second lowest incidence rate (group C) to the group with the second highest
incidence rate (group D); then move the same number of controls from group B to group A. Here N1 > N2.

5. Keep swapping cases and controls between remaining groups until the 9 groups have increasing CAD incidence rates.

(see results in Ascertainment bias confounds group rate esti-1

mation). A latent variable model cannot be used to predict the2

group rate because it requires an estimate of the group rate, such3

as the observed rate in a sample, from which the group-specific4

intercept term can be estimated.5

The Mundlak model fits our needs well. This model was6

originally conceived by Mundlak in 1978 (Mundlak 1978) to7

analyse data consisting of repeated observations on economic8

units. In his model, group means of independent variables9

are included in addition to the original observed variables, so10

the assumption that observed variables should not be uncorre-11

lated with unobserved variables is relaxed. Dieleman and Tem-12

plin (2014) compared the random- and fixed-effects estimators13

(RE and FE, respectively) with the Mundlak model (called the14

within-between approach in this paper) for clustered data when15

unaccounted-for group-level characteristics affect the outcome16

variable. Even though RE and FE are commonly used compet-17

ing methods in health studies, the Mundlak model outperforms18

those two estimators in their simulation study.19

In this study, according to the GLM illustrated in Generalized
linear model to predict the number of risk for regression on PRS
and PCE, the Mundlak model simply adds group-mean variables
into that model. We used the same approach as (Dieleman and
Templin 2014):

logit(ppn) =β0 + βPRS(PRSpn − PRSp)+

βPCE(PCEpn − PCEp)+

γPRSPRSp + γPCEPCEp + ϵ,

where p ∈ (1...P) and n ∈ (1...N) denote the group and observa-20

tion identification within each group respectively and P ∗ N = J21

from Equation 1. For the nth individual belonging to the pth22

assessment centre, PRSp and PCEp are the means of PRS and23

PCE for the pth assessment centre. β0 is the intercept, βPRS and24

βPCE are regression coefficients for the group demeaned PRS25

and PCE, respectively, γPRS and γPCE are estimators for the26

corresponding group mean PRS and PCE, and ϵ is the residual.27

Here, Dieleman and Templin (2014) used the original variable28

minus the group-mean as the input variables, rather than the29

original variables, for reasons explained in Bell and Jones (2015).30

According to Dieleman and Templin (2014), every β represents31

the within-group effect and assesses changes within a group32

and every γ measures the effect of the corresponding variable33

between groups.34

To quantify the uncertainty in the estimated incidence of CAD35

at the assessment centre level, we used the bootstrap method to36

establish a prediction interval. The bootstrap uses resampling37

techniques to create a list of test statistics of interest. The steps 38

used are: 39

1. save the regression coefficients of the Mundlak GLM trained 40

with the complete data set; 41

2. sample the same size of individuals with replacement from 42

the complete data set; 43

3. calculate the new group mean of variables for this re- 44

sampled data set from step 2; 45

4. apply the regression coefficients from step 1 to the step 2 46

data set and use the results to calculate the incidence of 47

CAD for each assessment centre and save the results; 48

5. repeat steps 2-4 1000 times to get a list of estimated inci- 49

dences of CAD at the assessment level. 50

The prediction 95% confidence intervals for each assessment 51

centre then can be calculated. 52

How the Mundlak model works 53

Results in Section The Mundlak model results show that the 54

Mundlak model works well on prediction of CAD risk at the 55

assessment centre level. The reason for this significantly im- 56

proved performance is that group mean variables in the Mund- 57

lak model act as a proxy for unseen group specific behaviour, so 58

the group structure can be captured in the Mundlak model. We 59

next demonstrate a simulation experiment to better understand 60

why the Mundlak model works. 61

The theory to support the simulation is that the risk of CAD
increases with the increasing of PRS and PCE scores. We start
the simulation with a reproduction of the Simpson’s paradox
scenario, using the same complete data set as detailed in Section
Study flow. Then we manually create groups based on which
quantile one hidden variable falls in. We assume that this hidden
variable yj ∼ N(µj, 1) is a random variable with mean value
calculated as a linear combination of PRSj and PCEj, so that:

µj = E[yj] = α1 ∗ PRSj + α2 ∗ PCEj, (2)

where α1 and α2 are correlation coefficients for variables PRS 62

and PCE. 63

The correlation coefficients, α1 and α2, are used to determine 64

the existence and extent of Simpson’s paradox. The severity 65

of the reversed direction of the relationship of variables at the 66

individual level and the group level can be controlled by the 67

size of α1 and α2. For example, when α1 and α2 have the same 68

signs, Y increases with increasing PRS and/or PCE. If we create 69
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Zhao et al. 7

several groups of equal size based on the ranked values of yi1

from lowest to highest, so that the first group contains samples2

with the lowest values of Y and the last group contains samples3

with the highest values, then the first group should have the4

lowest average PRS and lowest average PCE and the last group5

the highest average PRS and highest average PCE. When GLM6

is regressed on PRS and/or PCE, individuals with higher values7

of PRS and PCE should have higher probability of developing8

CAD. Similarly, comparing groups with increasing values of PRS9

and PCE, the group with high PCE and PRS values has more10

risky individuals than the group with low values. In this case,11

the individual level and the group level have the same CAD rate12

trend, so Simpson’s paradox does not exist. However, predicted13

group rates will be biased towards the mean.14

When the correlation coefficients have opposite signs, the re-15

lationship among groups is not as straightforward. For example,16

if we set α1 = −0.5 and α2 = 1, Y decreases with increasing17

PRS, but increases with increasing PCE scores. We also create18

equal-sized groups based on the ranked values of yi from lowest19

to highest. Under this scenario, the first group has the highest20

mean of PRS and the lowest mean of PCE, but the last group has21

the lowest mean of PRS and the highest mean of PCE. Because22

PRS and PCE contribute in opposite directions to group assign-23

ment, the CAD rates between groups will be less different than24

in the above scenario.25

For the second scenario, because the risk of developing CAD26

depends on both PRS and PCE score in the same direction, GLM27

regressed on PRS and PCE will experience Simpson’s paradox,28

which will lead to poor predictive performance at the group level.29

But the Mundlak model accounts for the opposite direction by30

finding individual level and group level coefficients of opposite31

signs. Therefore, we expect a good fit of the GLM with the32

inclusion of group mean variables. Section Simulation results33

confirms this expectation.34

Results35

CAD events and rates36

We extracted and compared the age of onset of the first CAD37

events between self-reported health outcomes with hospital in-38

patient data to determine the prevalence and incidence of CAD39

events. Supplementary Table 3 gives the number of first-ever40

CAD prevalence and incidence events from inpatient and self-41

reported records separately. Many participants reported CAD42

events in their self-reporting, but those events occurred too early43

to be recorded by inpatient data. This was consistent with sug-44

gestions from Eastwood et al. (2016) and Yeung et al. (2022),45

which both noted that using only UKB hospital inpatient data46

to identify prevalent cases would miss out many cases, as most47

prevalent cases were self-reported during the baseline assess-48

ment visit. Additionally, we found that the majority of partic-49

ipants with self-reported CAD events would have new CAD50

events recorded in their hospital inpatient records, with the ma-51

jority occurring after they joined the UKB. Therefore, using only52

inpatient data would mistake actual prevalent cases as incidence53

cases. A total of 12 participants had only CAD events in their54

self-reported data and none in their hospital inpatient records,55

but no date of onset of CAD was given. We considered these56

participants as prevalent CAD cases. Thus, in conclusion, out57

of a total of 502,410 UKB participants, 16,558 participants had58

their first CAD event before they joined the UKB and 19,04759

participants had their first CAD event after they joined the UKB.60

(a)

(b) (c)

Figure 2 Maps and CAD rates of 22 UKB assessment centres
(a) Locations of UK Biobank baseline assessment centres, (b)
Age-standardized CAD prevalence rates, 2010, and (c) CAD
incidence rates, 2010-2021.

For all 22 assessment centres, we calculated age-standardized 61

CAD prevalence rates on 1st October 2010 (the last day of at- 62

tending assessment centre for all UKB participants) and non- 63

standardized CAD incidence rates from 1st October 2010 to 30th 64

September 2021 (the latest hospital inpatient record for CAD 65

from our UKB file). Figure 2 (a) is the map for UKB assessment 66

centres downloaded from UKB website and (b) and (c) are maps 67

with CAD rates created following steps explained in Appendix 68

UKB location co-ordinates. To calculate the age-standardized 69

CAD prevalence in 2010, two additional steps were taken in 70

addition to following the definition of CAD definition to distin- 71

guish between prevalence and incidence of CAD events. Firstly, 72

we removed UKB participants who died after enrolment in the 73

UKB but before 1st October 2010, and secondly, we redefined 74

incidence CAD events that occurred after participants enrolled 75

in the UKB but before 1st October 2010 as prevalence events. 76

Figure 2 (b) shows differences in the prevalence of CAD 77

among centres. Cardiff and Bristol have the lowest CAD preva- 78
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8 Group structure impacts number at risk

lence rates, whilst Wrexham and Glasgow have the highest rates.1

Figure 2 (c) shows CAD incidence (without age standardization)2

for each assessment centre. Stockport has the highest incidence3

rate, followed by Bury and Manchester. Among all 22 centres,4

Wrexham and Swansea were mobile assessment centres and5

Stockport was a pilot centre.6

Complete data set7

After distinguishing prevalence and incidence CAD events, cal-8

culating PCE scores for eligible UKB participants, extracting9

the CAD-PRS, BMI and TDI provided by UKB, and filtering for10

samples with missing data, the complete data set had 263,08711

participants, all of whom were White British. The detailed study12

flow chart is found in Section Study flow. The overall dataset13

had 3.21% incidence CAD event rate, with twice as many male14

patients as female patients. Summary statistics for risk factors15

used for PCE score calculation for men and women in the com-16

plete data set are found in Table 3, which lists the summary17

statistics (mean, minimum and maximum) for numerical risk18

factors and percentages for binary risk factors. In general, female19

participants had higher cholesterol levels, but lower levels of20

systolic blood pressure and BMI, and lower rates of smoking,21

hypertension medication and diabetes.22

Figure 3 shows the density plots for PRS and PCE risk from23

the complete data set by CAD status and sex. Those plots show24

the ability of PRS and PCE risk to distinguish CAD cases and25

controls. The PRS density plots do not appear to differ between26

males and females, but samples with CAD from the complete27

data set have higher mean PRS values than samples without28

CAD.29

Figure 3 Density plots for PRS and PCE risk from the complete
data set. CAD-0 denotes samples without incidence CAD
events; CAD-1 denotes samples with incidence CAD events; F
denotes female; M denotes male.

Statistical tests results30

The permutation test was used to compare the PRS distribu-31

tion between groups because it makes no assumptions about32

the distributions and can capture differences in the tails of the33

PRS distributions. We first applied this test on PRS values be-34

tween samples from England and Scotland, but didn’t find any35

significant differences. We then applied this test across UKB36

assessment centres, and plotted p-value results in a heat map.37

Figure 4 classifies the p-values of permutation tests between any38

two assessment centres into 3 groups. It is not a symmetrical39

heat map due to sampling error, as a permutation test is a Monte40

Carlo resampling test. The smaller the p-value in Figure 4, the41

higher the probability of a significant difference in PRS distri-42

bution between the two centres. For example, the distribution43

of PRS in Barts and Hounslow is different from many other as- 44

sessment centres, but the distribution of PRS in Wrexham is not 45

different from other locations. 46

Figure 4 Permutation tests on PRS across UKB assessment
centres. “< 0.05” denotes p-value less than 0.05; “0.05-0.1”
denotes p-value between 0.05 and 0.1; “≥ 0.1” denotes p-value
greater than or equal to 0.1.

Figure 5 shows the p-values from permutation tests between 47

any two assessment centres on the predicted disease risk ob- 48

tained by the LTM based on PRS alone. The LTM estimates 49

the proportion of individuals with a PRS greater than the LTM 50

threshold PRS values from the entire UKB, which is a good proxy 51

for predicted case rates, as two centres may have different pro- 52

portions even if the mean PRS values between two centres are 53

the same. The results in Figure 5 are similar to those in Figure 54

4, except for Wrexham and Swansea, where there is almost no 55

difference in predicted disease risk between these two centres 56

and the other centres. This is likely due to the small sample 57

sizes. 58

From the complete data set, we also compared the distribu- 59

tion of PCE risk between the England and Scotland samples 60

using the Mann-Whitney test (Yang et al. 2021). We found signif- 61

icant distribution differences of PCE risk (p-value = 3.985e-05), 62

rather than the small statistically significant differences found 63

by (Yang et al. 2021) (p-value = 0.009) on the distribution of FRS 64

and QRISK3 between England and Scotland. We then used the 65

permutation tests on PCE risk across the UKB assessment cen- 66

tres, and the results are shown in Figure 6. Figure 6 shows that, 67

with the exception of Wrexham, the PCE risk distributions of all 68

the other centres are very different from each other. 69
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Table 3 Summary statistics of risk factors for the complete data set. Risk factors in bold are parameters included in the calculation of
PCE risk. HDL denotes high-density lipoprotein cholesterol

Risk factors Overall (N = 263,087) Males (N = 115,150) Females (N = 147,937)

Incidence CAD events 8,458 (3.21%) 5,870 (2.22%) 2,588 (0.99%)

Age joined UKB 55.9 (39, 73) 55.8 (39, 73) 55.9 (40,70)

Total cholesterol, mg/dl 226.7 (130, 320) 222.5 (130,320) 230.0 (130,320)

HDL cholesterol, mg/dl 56.8 (20.3,100) 50.4 (20.3,99.9) 61.8 (20.3,100)

Systolic blood pressure, mm Hg 137.2 (90,200) 140.7 (90,200) 134.5 (90,200)

Smoking status % 43.0% 47.6% 39.4%

Hypertension medication % 13.4% 13.9% 13.1%

Diabetes mellitus % 1.3% 1.8% 1.0%

Body mass index 27.0 (12.1, 66.2) 27.4 (12.8, 61,7) 26.7 (12.12, 74,7)

Townsend deprivation index
Calculated immediately prior to participant joining UKB.

Based on the preceding national census output areas.

Figure 5 Permutation tests on the LTM predicted disease risk
across UKB assessment centres. “< 0.05” denotes p-value less
than 0.05; “0.05-0.1” denotes p-value between 0.05 and 0.1;
“≥ 0.1” denotes p-value greater than or equal to 0.1.

Results from simple GLMs1

Results for UKB assessment centres We used GLMs regressed2

on selected variables to predicted the probability of developing3

CAD for each sample in the complete data set, and then cal-4

culated the assessment-level incidence of CAD as the mean of5

the predicted rates for all participants in the same assessment6

Figure 6 Permutation tests on PCE risk across UKB assessment
centres. “< 0.05” denotes p-value less than 0.05; “0.05-0.1”
denotes p-value between 0.05 and 0.1; “≥ 0.1” denotes p-value
greater than or equal to 0.1.

centre. Figure 7 plots the relationship between the observed case 7

rates and the predicted cases rate from five GLMs and Table 4 8

gives the corresponding AUC from that GLM and the correla- 9

tion between observed and predicted group rates. In general, 10

the AUC is relatively high, especially when the PCE score is 11

used independently. When we started with PRS and gradually 12
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added more variables in the model, the AUC increased slowly1

and all variables exhibited a significant positive relationship2

with the risk of CAD. However, the prediction of the case rate3

at assessment centre level is very poor, as the predicted case4

rates for all assessment centres are very close in all GLMs. The5

relatively high correlation of the PRS GLM is due to the fact that6

the predicted rate increases with the observed case rate, but the7

PRS line in Figure 7 shows that the predicted case rates remain8

very close across centres. We also tested GLMs with interaction9

and quadratic terms, but did not obtain better performance than10

for GLMs with only linear variables.11

Figure 7 Predicted case rates from GLMs regressed on selected
variables trained and predicted on the same complete data
set. Observed case rates are CAD incidence rates for each UKB
assessment centre and predicated case rates are the mean of
the predicted rates for all participants in the same centre. PCE
denotes pooled cohort equation; PRS denotes polygenic risk
score; BMI denotes body mass index; TDI denotes Townsend
deprivation index.

Results for simulated groups based on random case-control12

swaps To identify the reasons for the poor assessment centre-13

level predictions, we manually created several groups with in-14

creasing case/control ratios using the method described in Sec-15

tion Exploration of performance using simulated groups. Figure16

8(a) shows the results of predicted cases rates for 15 manually17

created groups, and 8(b) is modified from Figure 7 to have the18

same y-axis range as 8(a). Figure 8(a) shows a more obvious19

positive correlation between observed and predicted rates than20

8(b), although the group prediction is still less satisfactory as21

the y-axis range is small. Based on this improved group-level22

prediction performance in Figure 8(a), we can infer that there23

exists some cryptic group structure that has played a role in the24

poor fitting at the assessment centre level in Figure 7.25

Ascertainment bias confounds group rate estimation We com-26

pared the correlation between two risk factors of the complete27

data set and at the group level using Pearson’s correlation. First,28

we calculated the correlation between each pair of variables29

for the complete data set following the flow chart detailed in30

Section Study flow and plotted the coefficients in a heat map31

(Figure 9(a)). For example, the coefficient between PRS and PCE32

risk was calculated using values from all 263,087 samples in the33

complete data set as 0.009. We then calculated the correlation34

between each pair of variables using the mean of the assessment35

centre for each variable. There are 21 assessment centres in the36

complete data set - we calculated the mean of each assessment37

(a) (b)

Figure 8 Predicted case rates on different groups from GLMs
regressed on selected variables trained and predicted on the
same complete data set for (a) manually created groups via
random case-control swaps and (b) UKB assessment centres,
modified from Figure 7 to have the same range of the y-axis as
in (a).

centre for each variable. Using the same example, we had 21 38

PRS means and 21 PCE risk means, we then calculated Pearson’s 39

correlation using these two sets of means. In this case, the cor- 40

relation between PRS and PCE risk was 0.39, much higher than 41

the previous value. 42

The inverse relationship between two variables at different 43

levels is a well-known phenomenon, termed Simpson’s paradox 44

(Pearl 2014). Another example in this study is the relationship 45

between the variables PRS and TDI. We can see that their cor- 46

relation is negative at the assessment centre level, but slightly 47

positive for the complete data set. This reversed relationship 48

can also be found for continuous variables included in the PCE 49

risk calculation. For example, Figure 10 shows that such a phe- 50

nomenon exists between PRS and HDL cholesterol levels and 51

between systolic blood pressure and TDI. One possible reason 52

for the inverse relationship at the individual level and group 53

level is participation bias (Schoeler et al. 2023). For example, if 54

a group has a higher rate of death from CAD for some reason 55

(e.g. higher average age), then the group mean of the surviving 56

people from whom a sample can be taken will have a lower 57

PRS based risk, despite the homogeneity of genetics between 58

the groups before people died off. This creates an ascertainment 59

bias that varies between groups. 60

(a) (b)

Figure 9 P-values from Pearson’s correlation tests (a) correla-
tion for the complete data set and (b) Correlation using mean
values from UKB assessment centres.

The Mundlak model results 61

After identifying the potential cause for the poor fit at the as- 62

sessment centre level, we employed the Mundlak model to deal 63
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Table 4 Area under the curve (AUC) for GLMs regressed on the listed variables, trained and tested on the same complete data set,
and the correlation between observed and predicted group rates. PCE denotes pooled cohort equation; PRS denotes polygenic risk
score; BMI denotes body mass index; TDI denotes Townsend deprivation index

Variables in GLM AUC Correlation

PCE 0.7303 0.2580

PRS 0.6318 0.6898

PRS+PCE 0.7515 0.3986

PRS+PCE+BMI 0.7523 0.3350

PRS+PCE+TDI 0.7523 0.2828

PRS+PCE+BMI+TDI 0.7532 0.2456

(a) (b)

Figure 10 P-values from Pearson’s correlation tests (a) Correla-
tion for the complete data set and (b) Correlation using mean
values from UKB assessment centres.

with this problem. The Mundlak model in this study was built1

based on GLMs regressed on the original variables as well as2

the group means of the same variables. Figure 11 shows a very3

strong positive relationship between the observed case rates4

and the predicted case rates for all 21 assessment centres after5

including the group mean variables in the GLMs. The AUCs6

from the Mundlak model are given in Table 5, where the values7

are very close to the AUCs in Table 4. The correlations between8

observed and predicted group rates from the Mundlak GLMs9

in Table 4 are higher than those in Table 4, except for the GLM10

regressed on PCE alone. This means that compared with simple11

GLMs, the Mundlak GLMs did not change the risk prediction at12

the individual-level, but significantly improved the prediction13

accuracy at the assessment centre level.14

The Swansea assessment centre is a notable outlier. A pos-15

sible reason for this is that this centre has a larger number of16

older participants, as this centre has the highest average age17

of any centre in the complete data set (Supplementary Table 6).18

(Nanna et al. 2020) examined the performance of PCE in older19

adults, and found poor performance of PCE for ASCVD risk20

estimation in older adults. This centre has the highest mean21

value of PCE risk, but the lowest CAD incidence rate (Table 622

in the Supplementary material) and this phenomenon reduces23

the accuracy of the assessment centre level predictions. The24

relatively low mean PRS value in Swansea compared with other25

centres is consistent with its lower incidence of CAD, which also26

explains why the Mundlak model regressing on only PRS gives27

the closest predicted case rate to the observed case rate versus28

Figure 11 Predicted case rates from Mundlak GLMs regressed
on selected variables trained and predicted on the same com-
plete data set. Observed case rates are CAD incidence rates
for each UKB assessment centre and predicted case rates are
the mean of the predicted rates for all participants in the same
centre. PCE denotes pooled cohort equation; PRS denotes
polygenic risk score; BMI denotes body mass index; TDI de-
notes Townsend deprivation index.

other models. Manchester and Glasgow are another two outliers 29

and both centres have relatively higher CAD rates, but relatively 30

low mean ages and PCE risk. One possible reason for the poor 31

fit of Manchester and Glasgow can be explained by the high 32

p-values from the permutation results shown in Figure 4 and 33

Figure 5. The distribution of PRS in Manchester and Glasgow 34

is not significantly different from PRS in other centres, which 35

makes forecasting more difficult. 36

The Mundlak GLM regressed on PRS and PCE risk has the 37

highest correlation between the predicted case rates and ob- 38

served case rates from Table 4. Table 6 lists the estimated coeffi- 39

cients for this model along with standard errors. 40

We used the bootstrap method to produce a 95% prediction 41

interval for the Mundlak model regressed on PRS and PCE risk 42

to quantify the uncertainty in the estimated incidence of CAD 43

at the assessment centre level. Figure 12 shows that Wrexham 44

has the widest confidence interval, followed by Swansea. Cen- 45

tres with predicted case rates close to observed case rates have 46

relatively narrow prediction intervals. 47

Instead of using the PCE risk directly, we also tested the 48

Mundlak GLM models on the PRS and the risk factors used in 49

the PCE risk calculation. There are ten variables in total, includ- 50

ing seven variables from PCE, PRS, BMI and TDI. We started 51
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12 Group structure impacts number at risk

Table 5 Area under the curve (AUC) for Mundlak models regressed on the listed variables, trained and tested on the same complete
data set, and the correlation between observed and predicted group rates. PCE denotes pooled cohort equation; PRS denotes poly-
genic risk score; BMI denotes body mass index; TDI denotes Townsend deprivation index

Variables in GLM AUC Correlation

PCE 0.730 0.146

PRS 0.635 0.692

PRS+PCE 0.753 0.626

PRS+PCE+BMI 0.7537 0.619

PRS+PCE+TDI 0.7536 0.599

PRS+PCE+BMI+TDI 0.7544 0.599

Table 6 Estimated Mundlak GLM coefficients along with standard errors, using de-meaned individual observations and group-
mean variables

(Intercept) −3.69∗∗∗(0.44)

PRS 0.52∗∗∗(0.01)

PCE risk 0.08∗∗∗(0.00)

Group Mean PRS 3.90∗∗∗(0.57)

Group Mean PCE risk 0.09(0.04)

AIC 68321.88

BIC 68374.28

Log Likelihood −34155.94

Deviance 68311.88

Num. obs. 263087

∗∗∗ p < 0.001; ∗∗ p < 0.01; ∗ p < 0.05

Figure 12 Predicted case rates and 95% prediction intervals
from Mundlak GLMs regressed on PRS and PCE risk trained
and predicted on the same complete data set. Observed case
rates are CAD incidence rates for each UKB assessment centre
and predicted case rates are the mean of the predicted rates for
all participants in the same centre. PCE denotes pooled cohort
equation; PRS denotes polygenic risk score.

by running Mundlak GLM on only one of the ten variables1

and selecting the model with the highest AUC, then we ran the2

Mundlak GLM on two variables (with (10
2 ) = 45 non-repeating3

combinations) and selected the two-variables Mundlak GLM4

with the highest AUC. The same steps were repeated, adding 5

only one new variable each time, until all ten variables were 6

included in the Mundlak GLM. Only linear combinations were 7

included in the Mundlak GLM, because we checked that models 8

with interactions or quadratic terms did not improve the pre- 9

dictive performance. We tested a total of 1023 Mundlak GLMs, 10

and presented the results of the selected models in Figure 13 11

and Table 7. Among all ten variables, PRS has the best predic- 12

tion power, followed by age and HDL cholesterol. Numbers 13

in Table 7 are generally higher than in Table 5. To address any 14

concerns around potential over-fitting due to the high number of 15

regressors, we reassessed our models using leave-one-group-out 16

cross-validation in Section Mundlak cross validation results. 17

Mundlak cross validation results To assess out of sample perfor- 18

mance, we applied the Mundlak model to the complete data set 19

excluding one centre at a time, and then applied the model to the 20

data set from this excluded centre. We called this method leave- 21

one-centre-out cross-validation (LOCOCV) Mundlak GLMs. We 22

averaged the predicted values for this one centre and obtained 23

the predicted case rate for this centre. After applying the LO- 24

COCV Mundlak GLMs to all centres, we thus obtained a list of 25

predicted case rates for each centre, based on fitting the model 26

to all other centres and the covariates. 27

Figure 14 and Figure 15 show the relationship between the 28
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Zhao et al. 13

Table 7 Area under the curve (AUC) for Mundlak GLMs regressed on the listed variables, trained and tested on the same complete
data set, and the correlation between observed and predicted group rates. PRS denotes polygenic risk score; HDL denotes high-
density lipoprotein cholesterol; SBP denotes systolic blood pressure; TOT denotes total cholesterol; SMK denotes smoking status;
HYS denotes hypertension status; DIA denotes diabetes status; BMI denotes body mass index; TDI denotes Townsend deprivation
index

Variables in Mundlak GLM AUC Correlation

PRS 0.635 0.692

PRS+Age 0.693 0.718

PRS+Age+HDL 0.732 0.688

PRS+Age+HDL+SBP 0.741 0.760

PRS+Age+HDL+SBP+TOT 0.748 0.767

PRS+Age+HDL+SBP+TOT+SMK 0.752 0.768

PRS+Age+HDL+SBP+TOT+SMK+HPS 0.755 0.852

PRS+Age+HDL+SBP+TOT+SMK+HPS+DIA 0.756 0.881

PRS+Age+HDL+SBP+TOT+SMK+HPS+DIA+BMI 0.757 0.882

PRS+Age+HDL+SBP+TOT+SMK+HPS+DIA+BMI+TDI 0.757 0.914

Figure 13 Predicted case rates from Mundlak GLMs regressed
on PRS and other risk factors trained and predicted on the
same complete data set. Observed case rates are CAD inci-
dence rates for each UKB assessment centre and predicted case
rates are the mean of the predicted rates for all participants
in the same centre. PRS denotes polygenic risk score; HDL
denotes high-density lipoprotein cholesterol; SBP denotes
systolic blood pressure; TOT denotes total cholesterol; SMK de-
notes smoking status; HPS denotes hypertension status; DIA
denotes diabetes status; BMI denotes body mass index; TDI
denotes Townsend deprivation index.

observed rates and the predicted rates using PCE and the com-1

ponents of PCE respectively. Both figures show similar trends to2

Figure 11 and Figure 13, including the fact that Swansea is an3

obvious outlier, but Cardiff appears to be another more obvious4

outlier in Figure 14 and Barts is the largest outlier in Figure 15.5

Table 8 and Table 9 compare the correlation of observed and6

predicted group rates between a LOCOCV simple GLM and7

a LOCOCV Mundlak GLM regressed on PCE and variables8

included in PCE, respectively. In Table 8, the correlation from9

the Mundlak model is always higher than the corresponding10

correlation from the simple GLM, except for the model regressed11

on PCE risk only. In Table 9 such an exception happens when12

TDI is added to the model.13

Figure 14 Predicted case rates from leave-one-centre-out cross-
validation (LOCOCV) Mundlak GLMs regressed on PRS, PCE
and other factors. For each UKB assessment centre, the ob-
served case rate is the CAD incidence rate, and the predicted
case rate is that predicted by the Mundlak GLM trained on
the data set excluding that centre. PCE denotes pooled cohort
equation; PRS denotes polygenic risk score; BMI denotes body
mass index; TDI denotes Townsend deprivation index.

Simulation results 14

To better understand why the Mundlak model gave much better 15

predictive performance at the assessment centre level, we de- 16

signed a simulation experiment as described in Section How the 17

Mundlak model works. Following the simulation design, we 18

assumed that there was a hidden random variable with mean 19

value calculated as a linear combination of PRS and PCE risk 20

and then manually created 9 groups based on which quantile 21

the hidden variable fell into. 22

If α1 and α2 from Equation 2 were assumed to have the same 23

sign, the group with fewer CAD events should have lower val- 24

ues of PRS and PCE risk. We set α1 = α2 = 0.2 and then com- 25

pared the performance of the simple GLMs when regressed on 26

PRS only and and the performance of the Mundlak GLM when 27
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14 Group structure impacts number at risk

Table 8 The correlation between observed and predicted group rates from leave-one-centre-out cross-validation (LOCOCV) simple
GLMs and LOCOCV Mundlak GLMs regressed on PRS, and other risk factors. PCE denotes pooled cohort equation; PRS denotes
polygenic risk score; BMI denotes body mass index; TDI denotes Townsend deprivation index

Variables LOCOCV GLM LOCOCV Mundlak GLM

PCE 0.138 0.014

PRS 0.251 0.619

PRS+PCE 0.304 0.498

PRS+PCE+BMI 0.245 0.274

PRS+PCE+TDI 0.133 0.409

PRS+PCE+BMI+TDI 0.109 0.158

Table 9 The correlation between observed and predicted group rates from leave-one-centre-out cross-validation (LOCOCV) Mund-
lak GLMs regressed on PRS, and other risk factors. PRS denotes polygenic risk score; HDL denotes high-density lipoprotein choles-
terol; SBP denotes systolic blood pressure; TOT denotes total cholesterol; SMK denotes smoking status; HYS denotes hypertension
status; DIA denotes diabetes status; BMI denotes body mass index; TDI denotes Townsend deprivation index

Variables LOCOCV GLM LOCOCV Mundlak GLM

PRS 0.251 0.619

PRS+Age -0.053 0.585

PRS+Age+HDL 0.297 0.497

PRS+Age+HDL+SBP 0.289 0.531

PRS+Age+HDL+SBP+TOT 0.301 0.473

PRS+Age+HDL+SBP+TOT+SMK 0.316 0.310

PRS+Age+HDL+SBP+TOT+SMK+HPS 0.326 0.497

PRS+Age+HDL+SBP+TOT+SMK+HPS+DIA 0.290 0.531

PRS+Age+HDL+SBP+TOT+SMK+HPS+DIA+BMI 0.221 0.413

PRS+Age+HDL+SBP+TOT+SMK+HPS+DIA+BMI+TDI 0.252 0.186

regressed on PRS and group mean PRS. The blue and green lines1

from Figure 16(a) show that the in-sample Mundlak model has2

much better group-level prediction than the in-sample GLM.3

The red line from Figure 16(a) shows that even the leave-one-4

group-out cross validation method has much better performance5

than the naive model. This is because, in the simulation setting,6

the observed case rate was determined by both PRS and PCE7

risk, so regressing on PRS alone could not predict the case rate8

well. When only PRS was included in the Mundlak model, the9

dependence of CAD on PCE could be captured by the group10

mean of PRS, so the Mundlak model should perform much bet-11

ter than a simple GLM. The group mean of the variable acts as12

a proxy for unseen group-specific behaviour in the Mundlak13

model.14

If α1 and α2 from Equation 2 are assumed to have opposite15

signs and the groups were still determined by the hidden vari-16

able in Equation 2, there is no simple relationship between the17

severity of CAD risk and the value of PRS and PCE risk. We18

set α1 = −0.5 and α2 = 1 and let the GLM and Mundlak GLM19

both be regressed on PRS only. In this setting, the groups were20

determined by the opposite direction between PRS and PCE21

risk, but the risk of CAD was dependent on both variables in22

the same direction, so regressing CAD only on PRS experiences23

the Simpson’s paradox. Figure 16(b) shows the results from 24

the in-sample GLM (blue line), the in-sample Mundlak GLM 25

(green line) and the LOGOCV Mundlak GLM (red line). The 26

in-sample GLM actually predicts low case rates for groups with 27

high observed case rates and predicts high case rates for groups 28

with low observed case rates. The Mundlak GLM can reveal the 29

hidden inverse relationship between PRS and PCE risk, because 30

group mean PRS acts as a proxy for the unseen relationship. 31

Discussion 32

We proposed a framework for estimating the CAD case rate or 33

number at risk in a homogeneous group of people, based on 34

combining genetic and non-genetic contributions to risk. We 35

demonstrated that simply fitting a logistic regression to the UK 36

Biobank and then estimating group rates as the average pre- 37

dicted probability of CAD in the target sample has exceptionally 38

poor performance. We showed that this is largely attributable 39

to a reversal of correlation between genetic and non-genetic risk 40

factors at the group or cohort level compared to the correlation 41

at individual level. Such behaviour manifests as an example of 42

Simpson’s Paradox wherein, for example, PRS and TDI are posi- 43

tively correlated across participants at the individual level, but 44
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Figure 15 Predicted case rates from leave-one-centre-out cross-
validation (LOCOCV) Mundlak GLMs regressed on raw vari-
ables. For each UKB assessment centre, the observed case rate
is the CAD incidence rate, and the predicted case rate is that
predicted by the Mundlak GLM trained on the data set ex-
cluding that centre. PRS denotes polygenic risk score; HDL
denotes high-density lipoprotein cholesterol; SBP denotes
systolic blood pressure; TOT denotes total cholesterol; SMK de-
notes smoking status; HYS denotes hypertension status; DIA
denotes diabetes status; BMI denotes body mass index; TDI
denotes Townsend deprivation index.

(a) (b)

Figure 16 Predicted case rates for manually created groups,
(a) when α1 and α2 from Equation 2 have same signs and (b)
when α1 and α2 from Equation 2 have opposite signs. LO-
GOCV denotes leave-one-group-out cross-validation.

the group specific mean values are negatively correlated. This1

can occur due to ascertainment bias, also known as participation2

bias or collider bias.3

Population-based cohort studies, including the UKB study,4

are subject to participation bias. Fry et al. (2017) compared the5

sociodemographic and health-related characteristics of UKB par-6

ticipants with the general population and found that the UKB7

participants were more likely to be older, female and wealth-8

ier. Weng et al. (2019) compared the TDI gathered from 8,8489

households in the 2001 UK Census and the 502,625 participants10

in the UKB cohort and found that UKB participants were gen-11

erally less deprived than the general UK population. Schoeler12

et al. (2023) demonstrated that the selective participation of the13

UKB cohort twisted the genome-wide associations and genetic14

correlation results compared with results in probability samples.15

Our study showed that participation bias altered risk prediction16

at the group level. Using the same UKB data, the effect of popu-17

lation structure in different geographical areas has been studied18

by Lin et al. (2022) on the estimation of SNP heritability. Our19

study discussed the effect of PRS in different regions.20

An example of a cause of such bias is where two groups of21

initially similar polygenic risk score distributions experience22

different CAD rates due to an unobserved or lurking variable23

such as a differing age profiles or lifestyle factors. Since PRS24

also contributes to risk, the higher death rate in one group will 25

lead to the survivors having lower average polygenic risk scores 26

as more of those with higher polygenic risk will have died and 27

been removed as candidates for a sample in that group. Thus 28

the samples from the two groups will have lower polygenic 29

risk in the group with higher case rates. The direction of the 30

relationship between polygenic risk and disease status is then 31

reversed at the group (as opposed to individual) level. 32

We showed that this source of bias exists within the UK 33

Biobank when using the assessment centres as groups, but then 34

showed how to account for this structure using a Mundlak 35

model wherein group specific means of covariates are included 36

in the regression model. We demonstrated that such an approach 37

has the ability to predict individual level disease status, with 38

an accuracy that is improved relative to a model without such 39

terms. But more importantly it has much improved ability to 40

estimate the number at risk or case rate of a prospective group 41

using samples for which disease status is unknown, but the re- 42

gression covariates are available. UKB assessment centres have 43

been used to adjust for bias in statistical analysis. For example, 44

Lu et al. (2022) conducted GWAS and constructed PRS using 45

UKB data, adjusting for terms such as age, sex and recruitment 46

centre in their models. 47

Recent research (Lin et al. 2023) using the same UKB data 48

suggests that factors such as age, sex, genetic batch, and as- 49

sessment centre potentially exert a greater influence on PRS 50

predictions compared to the inclusion of principal components 51

(PCs); whereas including the top 10 (or more) PCs is the cur- 52

rent approach used to adjust PRS predictions at the individual 53

level in the presence of genetic heterogeneity. Our study shows 54

that adding group specific means of covariates can also improve 55

prediction at the individual level. 56

Most compelling of all is our result that the Mundlak regres- 57

sion model performs consistently well on out-of-sample group 58

rate predictions as evidenced by the leave-one-group-out cross- 59

validation. This demonstrates that the ascertainment (or partici- 60

pation or collider) bias that causes the individual level logistic 61

regression model to perform poorly in group-rate predictions 62

is reduced in a systematic, consistent, and appropriate manner 63

across assessment centres. This, in contrast to a latent variable or 64

mixed model with group-specific intercept terms, can be used to 65

predict group-rates based on new samples without an existing 66

and accurate estimate of disease case rates. In our simulation 67

experiment, we have shown that the Mundlak model can reveal 68

the hidden inverse relationship between PRS and PCE risk even 69

when only PRS was included in the model. This suggests that 70

the Mundlak model has the potential to make accurate predic- 71

tions when there is a significant variable that determines the risk 72

but cannot be incorporated into the model directly. 73

Commercial genetic testing services have been sold more than 74

27 million times, but the ability of genetic factors to assess risk 75

did not outperform common methods for CAD (van Dam et al. 76

2023). They also pointed out that risk assessment for CAD based 77

on simple questionnaires or variables from electronic health 78

records is as good or better than risk prediction based on genetics 79

alone. For this reason, they recommended continuing to use 80

questionnaire techniques for initial risk assessment rather than 81

relying on genetic testing alone to determine risk. Our results 82

suggest that for commercial providers of genetic testing services, 83

prediction at the individual level can be significantly improved 84

by adding group mean variables to the risk prediction model, 85

and that age is a relatively easily obtained group indicator. 86
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16 Group structure impacts number at risk

This study has limitations. The first limitation is that we use1

the group specific means of the same variables that are used in2

simple GLMs to adjust for the ascertainment bias. The group3

means of the independent variables may not fully capture the4

ascertainment bias between centres, as there may be other char-5

acteristics at the assessment centre level that affect the outcome,6

but that we haven’t included in our analysis. As health facili-7

ties in a single geographical area may share budgets, Dieleman8

and Templin (2014) noted that other sources may introduce as-9

certainment bias to health facilities, including guiding policies,10

attitudes towards treatment, population, disease patterns and11

supply constraints. For the UKB assessment centres, the original12

function of each assessment centre (for example, whether it is a13

clinic or a hospital), is another possible characteristic. If we had14

more centre-specific variables to add to this model, it might help15

explain more of the variation. Fortunately, if any such unseen16

factors are in any way correlated with any variables we do in-17

clude at the group level, then the Mundlak model will account18

for them, up to that level and correlation.19

Additionally, we only test the Mundlak model on the UKB20

participants, not on other external data sets. Single ancestry21

basis is another limitation of this study, as the complete data set22

only includes White British. Many studies have called for an in-23

crease in diversity in large-scale genetic association studies (e.g.24

Duncan et al. (2019), Schoeler et al. (2023)). Also, the accuracy25

of disease risk prediction was shown to improve after adding26

family history to the model (Gim et al. 2017), but this study did27

not explore the effect of family history on the group structure or28

the effect of other risk factors from the UKB resources. This can29

be investigated in future studies.30

Conclusions31

We distinguished prevalence and incidence CAD events for all32

UK Biobank participants and identified geographical variations33

in CAD age-standardized rates across UKB assessment centres.34

The standard CAD-PRS provided by the UKB resources was35

selected to represent the genetic risk, as this set of PRS had the36

best predictive performance. We calculated PCE risk to repre-37

sent the non-genetic risk factors for CAD. There were significant38

distributional differences in PRS and PCE risk between UKB39

participants from England and Scotland, according to the results40

of the Mann-Whitney test. Permutation test results showed that41

PRS from different assessment centres differed significantly. The42

group level predictive performance of simple GLMs was biased43

by a reversal of the correlation between genetic and non-genetic44

risk factors at the group or cohort levels, compared to the in-45

dividual level. This behaviour was effectively modified by the46

Mundlak model, which included the group specific means of co-47

variates along with the original covariates in GLMs. The group48

means of the covariates acted as a proxy for the unobserved49

group-level characteristics that affected the outcome variables.50

The Mundlak model has the advantage of predicting the number51

at risk in a new group, given a sample of individual-level data.52

We showed that our model can effectively predict case rates in53

out-of-sample groups even in the presence of ascertainment bias54

that confounds group rate estimation. Our method corrects for55

systematic biases at the cohort level and has potential applica-56

tions in public health planning, including screening programmes57

and early intervention strategies.58

Appendix 59

Results for age groups 60

Splitting groups by age is common in health-related studies, 61

so we repeated our analysis using age as the group indicator. 62

Figure 17 shows that PCE risk and PRS have a strong negative 63

correlation for age groups. This is because participants with 64

highly elevated PRS had developed CAD or other diseases, so 65

they don’t show up in the complete data set, confirming the 66

existence of collider bias. As there were only few participants in 67

the age group [35,39], we excluded this group from the analysis. 68

(a) (b)

Figure 17 P-values from Pearson’s correlation tests: (a) corre-
lation for the complete data set and (b) correlation using mean
values from age groups.

Figure 18 and Figure 19 show the predicted case rates plotted 69

against the observed case rates from the simple GLMs and the 70

Mundlak GLMs respectively. When the PCE risk is included 71

in the regression model, both the individual and group level 72

perform well as age is included in the calculation of the PCE risk. 73

Table 10 shows that the simple GLMs and the Mundlak GLMs 74

have similar levels of AUC. The advantage of the Mundlak 75

model is evident when regressing only on the PRS (Figure 19), 76

as the predicted case rates are close to the observed case rates, 77

but not in the simple GLM (Figure 18). 78

Figure 18 Predicted case rates from GLMs regressed on se-
lected variables trained and predicted on the same complete
data set. Observed case rates are CAD incidence rates for each
age group and predicated case rates are the mean of the pre-
dicted rates for all participants in the same age group. PCE
denotes pooled cohort equation; PRS denotes polygenic risk
score; BMI denotes body mass index; TDI denotes Townsend
deprivation index.

The prediction intervals in Figure 20 were generated using 79

the method described in Section The Mundlak model to predict 80
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Table 10 The area under the curve (AUC) for each Mundlak model trained and tested on the same complete data set. PCE denotes
pooled cohort equation; PRS denotes polygenic risk score; BMI denotes body mass index; TDI denotes Townsend deprivation index

Variables in GLM AUC - simple GLMs AUC - Mundlak GLMs

PCE 0.7303 0.7318

PRS 0.6318 0.6874

PRS+PCE 0.7515 0.7526

PRS+PCE+BMI 0.7523 0.7534

PRS+PCE+TDI 0.7523 0.7534

PRS+PCE+BMI+TDI 0.7532 0.7541

Figure 19 Predicted case rates from Mundlak GLMs regressed
on selected variables trained and predicted on the same com-
plete data set. Observed case rates are CAD incidence rates
for each age group and predicted case rates are the mean of
the predicted rates for all participants in the same group. PCE
denotes pooled cohort equation; PRS denotes polygenic risk
score; BMI denotes body mass index; TDI denotes Townsend
deprivation index.

Figure 20 Predicted case rates and 95% prediction intervals
from Mundlak GLMs regressed on PRS trained and predicted
on the same complete data set. Observed case rates are CAD
incidence rates for each age group of UKB participants and
predicted case rates are the mean of the predicted rates for all
participants in the same group. PRS denotes polygenic risk
score.

the number at risk with PRS as the only input variable. We1

trained both models on a subset of the complete data set, where2

the subset contained 70% of the randomly selected samples from3

each age group. We used the same age groups as in Table 11, but4

removed age group [35,39] as there were only 3 participants in 5

this group. The test data set then contained 30% of the randomly 6

selected samples from each age group. The trained models were 7

applied to the test data set. This process was repeated 1000 times 8

to obtain the confidence intervals. 9

Comparing the GLM and the Mundlak GLM regressed on 10

PRS, the Mundlak GLM has a better risk classification perfor- 11

mance, with an net reclassification improvement (NRI) of 3.54% 12

(95% CI, 2.12% to 4.92%). This result is similar to the NRI ob- 13

tained by Elliott et al. (2020) by comparing the model with PCE 14

and PRS with the model with PRS only. 15

van Dam et al. (2023) showed that the incidence in the 10% 16

most at risk group of individuals increased from 2.4-fold and 3- 17

fold to 4.7-fold risk for CAD by including common risk factors in 18

the model with PRS only. Our results showed that the incidence 19

in the 10% most at risk group of individuals increased from 2.3 20

(95% CI, 2.1 to 2.5) to 2.9 (95% CI, 2.7 to 3.1) times the risk of 21

CAD by including the group mean PRS in the model with PRS 22

only. 23

LDpreds CAD-PRS calculation 24

To calculate CAD-PRS, Privé et al. (2020a) restricts the UKB par- 25

ticipants to unrelated and white-British in several steps. Privé 26

et al. (2020a) first selects individuals whose genotype data are 27

used to compute the principal components (PCs) in the UKB 28

(Data field 22020). Detailed information on the quality control 29

procedure for performing the PC analysis is described in sec- 30

tion S3 of Bycroft et al. (2018). Secondly, they compute a robust 31

Mahalanobis distance based on the first 16 PCs on the individ- 32

uals selected in the first step, and further restrict individuals 33

to those within a log-distance of 5, the threshold used by Privé 34

et al. (2020b). After this step, a set of genetically homogeneous 35

individuals is obtained. Finally, they restrict the SNPs to the 36

HapMap3 variants used in PRS-CS (Ge et al. 2019). Privé et al. 37

(2020a) obtains a cohort of 362,320 individuals and 1,117,493 38

variants. We repeat their process and obtain a slightly smaller 39

sample size of 362,263 (withdrawal of some UKB participants) 40

and exactly the same SNP size of 1,117,493. 41

LDpred2 obtains joint effects from externally published sum- 42

mary statistics and a correlation matrix, and then uses Gibbs 43

sampling to obtain the posterior mean effect sizes. LDpred2 44

computes 4 sets of PRS using different parameter selection op- 45

tions. We only select the set with the highest prediction accuracy 46

(SNP-based heritability is 11%) on the validation set (352,263 47

individuals) when 10,000 individuals are selected to train the 48

model. 49
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Table 11 Age groups with proportions. ESP denotes European standard populations. Figures in the 2013 ESP % column are pub-
lished proportions for each age group from the 2013 ESP distribution. Figures in the adjusted 2013 ESP % column are adjusted from
the 2013 ESP % column so that the sum of the proportions in the study equals 1

Age group 2013 ESP % Adjusted 2013 ESP %

[35,39] 0.070 0.137

[40,44] 0.070 0.137

[45,49] 0.070 0.137

[50,54] 0.070 0.137

[55,59] 0.065 0.127

[60,64] 0.060 0.118

[65,69] 0.055 0.108

[70,74] 0.050 0.099

UKB location co-ordinates1

UKB provides the grid coordinates for all assessment centres2

(UKB Resource 11002). These grid coordinates are not lati-3

tude and longitude information, but figures obtained from the4

Ordnance Survey National Grid geographical reference system,5

whose measurements are easting and northing with a reference6

point near the Isles of Sicily (UK Biobank: deriving the grid7

coordinates). We first translated the UKB grid coordinates of8

the UKB into latitude and longitude information, and then used9

these to create CAD rate maps.10

Age standardized rates11

UKB participants were enrolled between the ages of 37 and 73.12

To generate age-standardized CAD prevalence rates, we first13

converted the original proportions for 8 age groups from the14

2013 European standard populations distributions into adjusted15

proportions to make the total proportion equal to one. The age-16

standardized prevalence for each assessment centre is calculated17

as the sum of the adjusted prevalence from each age group.18

The adjusted prevalence is the original prevalence for each age19

group multiplied by the corresponding adjusted 2013 ESP pro-20

portions. Table 11 shows the age groups and the corresponding21

proportions.22
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