1	Pulmonary Embolism Obstruction Model to Evaluate Clinical Deterioration
2	
3	Jian-Kuan Yeh, MD ¹ , Po-Wei Chen, MD, MS ^{1,2} , Wei-Ting Chang, MD, PhD ^{3,4} , Pin-Hsuan Chiu,
4	MS ⁵ , Pei-Fang Su, PhD ⁶ , Chih-Hsin Hsu, MD, PhD ¹ , Chih-Chan Lin, MD ^{7*} , Hsien-Yuan Chang,
5	MD, MS ^{1,2*}
6	¹ Division of Cardiology, department of Internal Medicine, National Cheng Kung University
7	Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
8	² Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan,
9	Taiwan
10	³ School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of
11	Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National
12	Sun Yat-sen University, Kaohsiung, Taiwan
13	⁴ Division of Cardiology, Department of Internal Medicine, Chi Mei Medical Center, Tainan
14	⁵ The Center for Quantitative Sciences, Clinical Medicine Research Center, National Cheng
15	Kung University Hospital, Tainan, Taiwan.
16	⁶ Department of Statistics, College of Management, National Cheng Kung University, Tainan,
17	Taiwan
18	⁷ Division of Cardiology, Department of Internal Medicine, An Nan Hospital, China Medical
19	University, Tainan, Taiwan

20 Corresponding Author:

- 21 *Hsien-Yuan Chang, MD, MS
- 22 Division of Cardiology, Department of Internal Medicine, National Cheng Kung University
- 23 Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- 24 No. 138, Shengli Rd., North Dist., Tainan City, Taiwan (R.O.C.)
- 25 TEL: +886-6-2353535 ext: 2389
- 26 FAX: +886-6-2753834
- 27 Email: doyeric0926@yahoo.com
- 28
- 29 *Chih-Chan Lin, MD
- 30 Division of Cardiology, Department of Internal Medicine, An Nan Hospital, China Medical
- 31 University, Tainan, Taiwan
- 32 No.66, Sec. 2, Changhe Rd., Annan Dist., Tainan City 709, Taiwan (R.O.C.)
- 33 TEL: +886-6-3553111 ext: 4644
- 34 FAX: +886-6-2753834
- 35 E-mail: cecillin0716@gmail.com
- 36
- 37 Word count: 3,788
- 38

39 Clinical perspective

40	A simple model based on computed tomography pulmonary angiography (CTPA) to
41	predict clinical deterioration in patients with acute pulmonary embolism (PE) is currently
42	lacking.
43	This retrospective study included 210 patients and used the model for calculating the
44	nearly totally obstructed segmental pulmonary arteries as an efficient and simple method
45	to predict clinical deterioration. This model added to the simplified PE severity index
46	(sPESI) has an increased predictive ability compared to the sPESI alone. CTPA images can
47	predict the clinical deterioration of patients with acute PE and may assist in clinical
48	decision-making.

50 Abstract

51	Hemodynamic instability may develop in patients with acute pulmonary embolism (PE)
52	days after the emboli event. Simplified methods to predict clinical deterioration are
53	currently lacking. This retrospective cohort study included patients diagnosed with acute.
54	The aim is to develop a simplified imaging model with good clinical accessibility to predict
55	the clinical deterioration of patients with acute PE. This study included patients with acute
56	PE under the International Classification of Disease, ninth or tenth revision. Seven models
57	based on computed tomography pulmonary angiography (CTPA) were developed based on
58	the location (central versus peripheral) and the degree (nearly total versus partial) of
59	obstruction. The outcome includes clinical deterioration, which is defined as death from PE,
60	cardiopulmonary resuscitation, mechanical ventilation, vasopressor therapy, thrombolysis,
61	catheter-directed therapy, and surgical embolectomy. Logistic regression analysis was used
62	to test the association between different models and clinical deterioration. The area under
63	the receiver operating characteristic curve (AUC) was used to test the predictive ability. The
64	category-free net reclassification improvement (NRI) and integrated discrimination
65	improvement (IDI) were used to quantify the improvement of the proposed models plus the
66	simplified Pulmonary Severity Index (sPESI) compared with the sPESI alone. Calculating the
67	nearly totally obstructed 20 peripheral arteries provides good predictive ability in the seven
68	models (AUC: 0.77). Calculating nearly totally obstructed 20 peripheral segments can predict

- 69 clinical deterioration. Obstruction on CTPA combined with the sPESI increased the ability to
- 70 predict clinical deterioration compared to the sPESI alone and may be used as guidance in
- 71 clinical decision-making.
- 72 Keywords: pulmonary embolism, computed tomography pulmonary angiography

74 Manuscript text

75 Introduction

76	Acute pulmonary embolism (PE), following myocardial infarction and stroke, is the third
77	most common cardiovascular disease. ¹ The annual incidence of PE is approximately 1 per
78	1,000 people. ² PE occurs when emboli occlude the pulmonary arteries and may cause
79	complications, such as arrhythmias, right ventricular (RV) failure, cardiogenic shock, and
80	even death. ³ Effective risk stratification is crucial for treating PE, as it helps identify patients
81	that may benefit from thrombolytic therapies on top of systemic anticoagulation. The 2019
82	European Society of Cardiology (ESC) guideline on PE classifies patients into different risk
83	groups based on the presence of hemodynamic instability, RV dysfunction, elevated cardiac
84	enzymes, and the PE risk index (PESI). ⁴ Thrombolytic therapy is recommended for high-risk
85	patients with PE, who are defined as having hemodynamic instability. The benefit of early
86	reperfusion in patients without hemodynamic instability but with other clinical indicators of
87	poor outcomes remains unknown. However, patients with acute PE may develop acute RV
88	failure days after the emboli event, followed by hemodynamic instability and clinical
89	deterioration. Prompt recognition of patients who are prone to clinical deterioration is
90	important, but clinical predictors are currently lacking.
91	Miller et al. first developed an index based on invasive pulmonary angiography to describe
92	the thrombus burden and the severity of PE to evaluate the treatment response of systemic

93	thrombolysis. However, the clinical utility of the Miller index is limited by its invasive nature.
94	⁵ Qanadli et al. later developed an index (PAOI) based on computed tomography pulmonary
95	angiography (CTPA) which correlated well with the Miller index and could predict RV
96	dilatation. The Qanadli index is of limited clinical utility due to its complexity in score
97	calculation. ⁶ Studies revealed that the Qanadli index is strongly predictive of high-risk
98	patients. ^{7,8} However, other studies revealed no significant correlation between the
99	thrombus burden and clinical risks. ^{9,10}
100	This study primarily aimed to develop a simplified imaging model with good clinical
101	accessibility to predict the clinical deterioration of patients with acute PE.
102	Materials and methods
103	Materials
104	This retrospective study used the cardiovascular databank of the National Cheng Kung
105	University Hospital. The enrollment period spanned from January 1, 2008, to December 31,
106	2019, and included patients diagnosed with PE under the International Classification of
107	Disease, ninth or tenth revision. This study adhered to the Declaration of Helsinki and
108	obtained approval from the Human Research and Ethics Committee of the National Cheng
109	Kung University Hospital (IRB number: B-ER-109-102). An additional group of patients from
110	Chi Mei Medical Center, which is another tertiary medical center, from January 1, 2008, to

112 received approval from the Human Research and Ethics Committee of the Chi Mei Medical

- 113 Center (IRB number: CMMC11011-002).
- 114 This study applied certain exclusion criteria. Patients with septic, tumor, or fat emboli,
- 115 tumor invasion or pulmonary artery encasement, and stump thrombosis were excluded
- 116 from the study, as well as patients with only segmental or subsegmental PE, where the
- 117 thrombi were too small to cause clinical symptoms. Further, cases with poor image quality or
- 118 no diagnostic CTPA were excluded. Furthermore, patients with CT-defined chronic thrombus
- 119 were excluded due to differing prognoses. The simplified PESI (sPESI) was calculated.¹¹ The
- administration of systemic or catheter-directed thrombolysis was recorded for each patient.
- 121 **Obstruction index determination**

122 Two specialists, who were unaware of the patient's clinical data, evaluated the images.

- 123 Two indices, namely the Miller obstruction index and the Qanadli index, were calculated
- based on CTPA. The Miller obstruction index is calculated as Σ (*n.d*), where n represents the
- number of segmental arteries with thrombus (range: 1–16) and d is the presence (1) or
- absence (0) of obstruction. According to Miller et al., the right pulmonary artery has nine
- 127 major segmental arteries (three to the upper lobe, two to the middle lobe, and four to the
- 128 lower lobe), and the left pulmonary artery has seven major segmental arteries (two to the
- 129 upper lobe, two to the lingula, and four to the lower lobe).⁵ The Qanadli index is calculated
- 130 as Σ (*n.d*)/40 × 100, where n is the number of segmental arteries with thrombus (ranging

131	from 1 to 20), and d is the degree of obstruction (range: 0–2). Both pulmonary arteries have
132	ten segmental arteries (three to the upper lobes, three to the middle lobe and lingula, and
133	four to the lower lobes). The degree of obstruction ranges from 0 (no obstruction) to 1
134	(partial obstruction) to 2 (nearly total obstruction). ⁶
135	The degree of obstruction of the central segments was also scored, using the same scale
136	of 0 (no obstruction) to 1 (partial obstruction) to 2 (nearly total obstruction), to
137	comprehensively assess the pulmonary circulation and evaluate the entire pulmonary
138	vasculature. The central pulmonary artery was divided into seven segments based on the
139	lung lobes they supply: the main pulmonary artery, the proximal, middle, and distal parts of
140	bilateral pulmonary arteries. The proximal segment of the right and left pulmonary arteries
141	represents the area between the branching from the main pulmonary artery to the
142	branching of the segmental arteries to the upper lobe. The middle segment lies between the
143	upper lobe segmental arteries and the middle lobe segmental arteries, while the distal
144	segment is distal to the segmental arteries to the middle lobe. The transverse section of the
145	pulmonary artery primarily determines the obstruction percentage (Figure 1).
146	Proposed models
147	Six models were developed based on the location (central versus peripheral) and the
148	degree (nearly total versus partial) of obstruction. The peripheral arteries are the segmental
149	pulmonary arteries. Model 1 represents the sum of nearly totally obstructed peripheral

150	arteries. Model 2 is the sum of nearly totally obstructed central and peripheral arteries.
151	Model 3 contains the Qanadli index, which is the sum of peripheral pulmonary artery
152	obstruction. Model 4 combines central and peripheral pulmonary artery obstruction. Model
153	5 comprises the sum of nearly totally obstructed central arteries. Model 6 is the sum of
154	central pulmonary artery obstruction. A seventh model, in addition to the six pre-specified
155	models, was developed by performing univariate logistic regression and selecting the
156	statistically significant parts of pulmonary arteries that impact the outcome (Figure 1). The
157	analysis included the combination of models 1 to 7 together with the sPESI. Further
158	discussions were conducted when there is a discrepancy in judgment until a conclusion is
159	reached.
160	Outcomes
161	Two specialists carefully reviewed the electric medical records of enrolled patients. The
162	outcome included clinical deterioration, which is death from PE, cardiopulmonary
163	resuscitation, mechanical ventilation, vasopressor therapy for systemic arterial hypotension,
164	thrombolysis, catheter-directed therapy, and surgical embolectomy ¹² . Each inpatient was
165	followed up until discharged, while outpatients were followed up for 1 month. PE-related
100	
100	death was analyzed as a separate outcome.

168 Continuous data are presented as the mean ± standard deviation while dichotomous data

169 as numbers and percentages. The Wilcoxon Rank Sum test was used for comparisons of

170 continuous variables. Fisher's exact test was used for categorical variables.

171	Variables associated with clinical deterioration were identified using univariate logistic
172	regression analysis along with Bonferroni correction and false discovery rate. Multivariate
173	logistic regression was used to analyze the combination of different models plus sPESI.
174	Model performance was calculated by the area under the curve (AUC) of the receiver
175	operating characteristic curve. The accuracy, sensitivity, and specificity were calculated. The
176	category-free NRI and IDI were used to quantify the improvement of the proposed models
177	plus sPESI in comparison with the reference model, which is the sPESI in our study. The
178	Bland-Altman analysis of agreement and the interanalysis correlation coefficient were used
179	to assess the intra- and inter-rater reliability. Finally, a nomogram combining the imaging
180	model and sPESI was proposed. Statistical software R (Version 4.0.2 for Windows) was used
181	for all statistical tests. All statistical tests were 2-sided, and a P-value of <0.05 was
182	considered statistically significant.
183	Results
184	Study population
185	A total of 509 patients with PE were retrospectively screened. The exclusions comprised

187 etiologies, and suboptimal image quality for evaluation, respectively (Figure S1). Finally, the

111, 37, 40, and 111 patients with only segmental or subsegmental PE, chronic PE, other PE

186

188	analysis included 210 patients (age: 65 ± 16 years; male: 40%), including 170 (81%) with no
189	clinical deterioration and 40 (19%) with clinical deterioration. The baseline clinical
190	characteristics were balanced between patients with and without clinical deterioration apart
191	from the sPESI. The sPESI was statistically significantly higher in the group with clinical
192	deterioration (2.55 \pm 1.47 vs. 1.42 \pm 1.13, <i>P</i> < 0.01). Among the 40 patients with clinical
193	deterioration, 21 (53%) received systemic thrombolysis. The Miller index and the Qanadli
194	index were higher in the group with clinical deterioration (Table 1).
195	This study retrospectively screened 319 patients from another tertiary medical center,
196	with 209 patients being excluded (Figure S2). Finally, the external validation included 109
197	patients (age: 64 ± 17 years; male: 43%), including 84 (77%) with no clinical deterioration
198	and 25 (23%) with clinical deterioration (Table S1).
199	Degree of obstruction and clinical outcomes
200	The sPESI demonstrated predictive ability for mortality in patients with acute PE, with an
201	AUC of 0.740. However, both the Miller and Qanadli indices had limited predictive ability of
202	mortality, with AUC values of 0.635 and 0.578, respectively. Additionally, the sPESI exhibits
203	the best performance in predicting clinical deterioration, with an AUC of 0.724. The Miller
204	and Qanadli indices can predict clinical deterioration, with AUC values of 0.624 and 0.678,
205	respectively (Figure 2). The external validation group demonstrated similar results (Figure
206	S3). The sPESI demonstrated predictive ability for both mortality and clinical deterioration,

207 while the Miller and Qanadli indices have low predictive ability for mortality.

208 Comparison of the predictive ability of different models

- 209 We compared models 1 to 6 to assess the impact of different locations (central versus
- 210 peripheral) and levels of obstruction (partial versus nearly total) on clinical deterioration.
- 211 Models 1 and 2 were compared to examine whether adding nearly total occluded central
- 212 pulmonary arteries will improve the predictive ability. Models 1 and 2 exhibit nearly
- identical predictive abilities with an AUC of 0.70, along with the same accuracy of 0.82.
- Furthermore, models 3 and 4 were compared to explore the additive effect of central

215 pulmonary arteries. Model 4 demonstrated similar predictive ability (AUC: 0.69) and

accuracy (0.81) compared to model 3 (AUC: 0.68 and accuracy: 0.81). Models 5 and 6 were

- 217 designed to analyze the predictive ability of obstruction of central pulmonary arteries alone.
- 218 Model 6 has a better predictive ability (AUC: 0.68) compared to model 5 (AUC: 0.63), while
- both models have similar accuracy (0.81). Finally, model 7 is the summation of statistically
- significant variables calculated on univariate analysis. It is composed of the first, third, sixth,
- 221 and eighth segmental arteries of the right pulmonary artery, the third to ninth segmental
- arteries of the left pulmonary artery, the middle right pulmonary artery, the main pulmonary
- artery, and the left proximal to distal pulmonary arteries (Table S2). Model 7 demonstrated

the best predictive ability among all the models (AUC: 0.72) (Table 2).

225 The external validation group analysis revealed similar results. Model 6, which is the

summation of partially and totally occluded central pulmonary arteries, exhibited the best

227 predictive ability in the external validation group (Table S3).

228 Integrated discrimination index (IDI) and net reclassification index (NRI)

- 229 The addition of sPESI to models 1 to 7 resulted in an improved predicting value, with an
- increased mean AUC from 0.68 to 0.77 and increased mean accuracy from 0.82 to 0.86.
- 231 Model 7 plus sPESI demonstrated the best predictive ability with an AUC of 0.80 (95%
- 232 confidence interval [CI]: 0.72–0.88), while model 4 plus sPESI achieved the highest accuracy
- of 0.87 (Table 2, Table S4). The external validation group analysis revealed similar results,

with an increased mean AUC from 0.73 to 0.84 and increased mean accuracy from 0.79 to

- 235 0.83 after adding sPESI to the models (Table S3). Statistically significant improvements in
- predicting clinical deterioration were observed based on IDI, with the IDI ranging from 0.02
- to 0.09, when comparing models 1 to 7 added to the sPESI with sPESI alone. The NRI

238 demonstrated an increased predictive ability of models 1–7 with the addition of sPESI (Table

- 3). The IDI and NRI of the external validation group revealed an improvement in the
- 240 predicting ability of the models in combination with sPESI compared to sPESI alone (Table
- 241 S5). Overall, the combination of clinical risk factors and the obstruction severity on CTPA

242 provides a better prediction of clinical deterioration.

243 Nomograms based on the models plus sPESI can be used as a tool in the clinical setting to244 predict prognosis (Figure S4).

245 Inter- and intra-rater variability

246	Model 3, which is the Qanadli index, is used to test the intra- and inter-rater variability.
247	The intra- and inter-rater correlation coefficients of model 3 were 0.995 (95% CI: 0.993-
248	0.996) and 0.989 (95% CI: 0.986–0.992), respectively (Table S6). The Bland-Altman analysis
249	revealed no intra-rater and inter-rater bias in the calculation of model 3 scores (Figure S5).
250	Discussion
251	Our study revealed that the sPESI can predict clinical deterioration in patients with PE,
252	and the obstruction level on CTPA can predict mortality and clinical deterioration. After the
253	addition of central segments and partially occluded segments, the predictivity ability is
254	nearly identical. Calculating the nearly totally obstructed 20 peripheral segments is an
255	efficient method that balances predictive ability and clinical usability. Combining the severity
256	of obstruction on the image with sPESI improves the predictive ability for clinical
257	deterioration compared to sPESI alone.
258	Animal studies have revealed that acute pulmonary artery obstruction increases
259	pulmonary artery pressure and pulmonary vascular resistance. ^{13,14} Severe pulmonary
260	hypertension may cause RV failure, clinical deterioration, and hemodynamic instability.
261	Currently, discrepancies exist in the literature regarding whether PA clot burden could reflect
262	severity. Some studies revealed thrombus burden as a significant predictor of death in
263	patients with acute PE ¹⁵⁻¹⁷ , but others have not. ^{9,10} The ESC recommended against using the

264	anatomical burden and emboli characteristics to determine PE severity. ¹⁸ Our study
265	revealed a positive relationship between the clot burden and both mortality and clinical
266	deterioration, indicating the total burden as not the only affecting factor of clinical
267	deterioration. The obstruction site together with the clot burden is influential in predicting
268	clinical deterioration.
269	Calculating only the occluded central pulmonary arteries had the lowest predictability of
270	clinical deterioration, possibly because proximal artery occlusion does not necessarily
271	reduce distal blood flow. Including the clot burden of the central pulmonary arteries to the
272	peripheral pulmonary arteries yielded similar predictive ability compared to calculating
273	obstructed peripheral pulmonary arteries alone. Similarly, including partially occluded
274	pulmonary arteries yielded similar predictive ability as to calculating the nearly total
275	occluded arteries alone. This indicates a forward blood flow passing through partially
276	occluded arteries to the distal circulation.
277	The 2019 ESC guidelines on PE management classify patients into high, intermediate, and
278	low-risk groups, and recommended treatment options based on risk strata. However,
279	approximately 5% of patients initially classified as intermediate risk will develop
280	hemodynamic decompensation. ¹⁹ Our study aims to identify methods to predict clinical
281	deterioration in this specific group of patients, where the benefits of early thrombolytic
282	therapy may outweigh the risk of bleeding. Huang et al. used a three-dimensional CT

283	method to estimate the total embolic burden and revealed a positive correlation between
284	the total embolic volume and impending shock. ²⁰ Additionally, our models demonstrated a
285	positive correlation between the severity of obstruction and clinical deterioration, offering a
286	straightforward and easily applicable method to determine severity in the clinical setting.
287	The sPESI, which includes age, cancer, chronic cardiopulmonary diseases, heart rate,
288	systolic blood pressure, and oxyhemoglobin levels, can predict the 30-day mortality of
289	patients with PE. ¹¹ Our study revealed that the sPESI predicted clinical deterioration.
290	However, adding the extent of obstruction of pulmonary improves the ability to predict
291	clinical deterioration since the variables included in the sPESI are not specific to PE alone.
292	Our models, increased the predictive ability when added to sPESI, as evidenced by positive
293	NRI and IDI values. The low inter- and intra-observer variability indicates good agreement
294	between the two investigators. The nomogram combining model 1 (totally obstructed
295	peripheral arteries) and the sPESI (Figure S4) is a simple and reproducible tool to aid
296	physicians in assessing the prognosis of patients with acute PE.
297	Current treatment guidelines for acute PE recommend systemic thrombolysis for patients
298	who present with hemodynamic instability, ^{21,22} but the management of patients without
299	hemodynamic instability but with unstable clinical features or evidence of RV dysfunction on
300	imaging remains uncertain. Previous studies revealed that treating patients with acute PE
301	with systemic thrombolysis on a background of heparin lowers the risk of developing

302	in-hospital death, clinical deterioration, or hemodynamic decompensation. ^{19,23} Additionally,
303	a meta-analysis demonstrated that treating acute PE with thrombolytic therapy lowers
304	mortality, but increases the risk of major bleeding. ²⁴ The benefit of thrombolytic therapy
305	may outweigh the risk of bleeding in certain normotensive patients with acute PE with
306	high-risk features. Therefore, developing a more precise prediction method to identify the
307	patients prone to clinical deterioration is essential. Our study may help identify the patients
308	suitable for further investigation into whether the benefit of thrombolytic therapy may
309	outweigh the risk of bleeding.
310	This study has several limitations, including its small sample size and its retrospective
311	design, which prevents assessment of the effects on clinical decision-making and patient
312	outcomes. Additionally, the inclusion of only Asian patients limits the generalizability of the
313	models.
314	In conclusion, our study established a positive correlation between the level of pulmonary
315	artery obstruction and both mortality and clinical deterioration. The combination of
316	calculating nearly totally obstructed peripheral segments and sPESI provides improved
317	predictive ability for clinical deterioration. These findings may offer physicians a tool for
318	predicting the prognosis of patients diagnosed with acute PE.
319	

320 Funding

- 321 This study was supported by the grants from National Cheng Kung University Hospital,
- 322 Tainan, Taiwan (NCKUH-11003021) and by the grants from An Nan Hospital, China Medical
- 323 University, Tainan, Taiwan (ANHRF112-29).
- 324

325 Disclosures

- 326 All the authors declare no conflict of interest.
- 327
- 328

329 Supplementary material

- 330 Figure S1. Flow Diagram of the Study Cohort
- 331 Figure S2. Flow Diagram of the Validation Cohort
- 332 Table S1. Baseline Characteristics of Patients with Acute Pulmonary Embolism with and
- 333 Without Clinical Deterioration in the External Validation Group
- 334 Figure S3. The Area Under the Receive Operating Characteristic for the sPESI, Miller Index,
- and Qanadli Index
- Table S2. Univariate Regression Analysis of sPESI, Different Segments, and Models in
- 337 Predicting Clinical Deterioration
- 338 Table S3. The ROC Analysis of Different Models with and without sPESI in Predicting Clinical
- 339 Deterioration in the External Validation Group
- 340 Table S4. Multivariate Regression Analysis of Combination of Models Plus sPESI in Predicting
- 341 Clinical Deterioration
- 342 Table S5. The NRI and IDI Comparing the Models Plus sPESI with sPESI in the External
- 343 Validation Group
- 344 Table S6. The Inter- and Intra-rater Variability
- 345 Figure S4. Nomogram Combining Model 1 and sPESI
- 346 Figure S5. The Bland-Altman Plot

348

349 Reference

350	1.	Giuntini C, Di Ricco G, Marini C, Melillo E, Palla A. Pulmonary embolism:
351		epidemiology. Chest. 1995;107:3s-9s. doi: 10.1378/chest.107.1_supplement.3s
352	2.	Heit JA. Epidemiology of venous thromboembolism. Nature Reviews Cardiology.
353		2015;12:464-474. doi: 10.1038/nrcardio.2015.83
354	3.	Huisman MV, Barco S, Cannegieter SC, Le Gal G, Konstantinides SV, Reitsma PH,
355		Rodger M, Noordegraaf AV, Klok FA. Pulmonary embolism. Nature Reviews Disease
356		Primers. 2018;4:18028. doi: 10.1038/nrdp.2018.28
357	4.	Konstantinides SV, Meyer G, Becattini C, Bueno H, Geersing GJ, Harjola VP, Huisman
358		MV, Humbert M, Jennings CS, Jiménez D, et al. 2019 ESC Guidelines for the diagnosis
359		and management of acute pulmonary embolism developed in collaboration with the
360		European Respiratory Society (ERS): The Task Force for the diagnosis and
361		management of acute pulmonary embolism of the European Society of Cardiology
362		(ESC). Eur Respir J. 2019;54. doi: 10.1183/13993003.01647-2019
363	5.	Miller GA, Sutton GC, Kerr IH, Gibson RV, Honey M. Comparison of streptokinase and
364		heparin in treatment of isolated acute massive pulmonary embolism. Br Med J.
365		1971;2:681-684. doi: 10.1136/bmj.2.5763.681
366	6.	Qanadli SD, El Hajjam M, Vieillard-Baron A, Joseph T, Mesurolle B, Oliva VL, Barré O,
367		Bruckert F, Dubourg O, Lacombe P. New CT index to quantify arterial obstruction in

368		pulmonary embolism: comparison with angiographic index and echocardiography.
369		AJR Am J Roentgenol. 2001;176:1415-1420. doi: 10.2214/ajr.176.6.1761415
370	7.	Guo F, Zhu G, Shen J, Ma Y. Health risk stratification based on computed tomography
371		pulmonary artery obstruction index for acute pulmonary embolism. Sci Rep.
372		2018;8:17897. doi: 10.1038/s41598-018-36115-7
373	8.	Yu T, Yuan M, Zhang Q, Shi H, Wang D. Evaluation of computed tomography
374		obstruction index in guiding therapeutic decisions and monitoring percutanous
375		catheter fragmentation in massive pulmonary embolism. J Biomed Res.
376		2011;25:431-437. doi: 10.1016/s1674-8301(11)60057-2
377	9.	Araoz PA, Gotway MB, Trowbridge RL, Bailey RA, Auerbach AD, Reddy GP, Dawn SK,
378		Webb WR, Higgins CB. Helical CT pulmonary angiography predictors of in-hospital
379		morbidity and mortality in patients with acute pulmonary embolism. J Thorac
380		Imaging. 2003;18:207-216. doi: 10.1097/00005382-200310000-00001
381	10.	Ghaye B, Ghuysen A, Willems V, Lambermont B, Gerard P, D'Orio V, Gevenois PA,
382		Dondelinger RF. Severe pulmonary embolism:pulmonary artery clot load scores and
383		cardiovascular parameters as predictors of mortality. <i>Radiology</i> . 2006;239:884-891.
384		doi: 10.1148/radiol.2392050075
385	11.	Jiménez D, Aujesky D, Moores L, Gómez V, Lobo JL, Uresandi F, Otero R, Monreal M,
386		Muriel A, Yusen RD. Simplification of the pulmonary embolism severity index for

387		prognostication in patients with acute symptomatic pulmonary embolism. Arch
388		Intern Med. 2010;170:1383-1389. doi: 10.1001/archinternmed.2010.199
389	12.	Vedovati MC, Germini F, Agnelli G, Becattini C. Prognostic role of embolic burden
390		assessed at computed tomography angiography in patients with acute pulmonary
391		embolism: systematic review and meta-analysis. J Thromb Haemost.
392		2013;11:2092-2102. doi: 10.1111/jth.12429
393	13.	Elliott CG. Pulmonary physiology during pulmonary embolism. Chest.
394		1992;101:163s-171s. doi: 10.1378/chest.101.4_supplement.163s
395	14.	Sharma GV, McIntyre KM, Sharma S, Sasahara AA. Clinical and hemodynamic
396		correlates in pulmonary embolism. Clin Chest Med. 1984;5:421-437.
397	15.	van der Meer RW, Pattynama PM, van Strijen MJ, van den Berg-Huijsmans AA,
398		Hartmann IJ, Putter H, de Roos A, Huisman MV. Right ventricular dysfunction and
399		pulmonary obstruction index at helical CT: prediction of clinical outcome during
400		3-month follow-up in patients with acute pulmonary embolism. Radiology.
401		2005;235:798-803. doi: 10.1148/radiol.2353040593
402	16.	Wu AS, Pezzullo JA, Cronan JJ, Hou DD, Mayo-Smith WW. CT pulmonary angiography:
403		quantification of pulmonary embolus as a predictor of patient outcomeinitial
404		experience. Radiology. 2004;230:831-835. doi: 10.1148/radiol.2303030083
405	17.	Engelke C, Rummeny EJ, Marten K. Acute pulmonary embolism on MDCT of the chest:

406		prediction of cor pulmonale and short-term patient survival from morphologic
407		embolus burden. AJR Am J Roentgenol. 2006;186:1265-1271. doi:
408		10.2214/ajr.05.0650
409	18.	Torbicki A, Perrier A, Konstantinides S, Agnelli G, Galiè N, Pruszczyk P, Bengel F, Brady
410		AJ, Ferreira D, Janssens U, et al. Guidelines on the diagnosis and management of
411		acute pulmonary embolism: the Task Force for the Diagnosis and Management of
412		Acute Pulmonary Embolism of the European Society of Cardiology (ESC). Eur Heart J.
413		2008;29:2276-2315. doi: 10.1093/eurheartj/ehn310
414	19.	Meyer G, Vicaut E, Danays T, Agnelli G, Becattini C, Beyer-Westendorf J, Bluhmki E,
415		Bouvaist H, Brenner B, Couturaud F, et al. Fibrinolysis for patients with
416		intermediate-risk pulmonary embolism. N Engl J Med. 2014;370:1402-1411. doi:
417		10.1056/NEJMoa1302097
418	20.	Huang WM, Wu WJ, Yang SH, Sung KT, Hung TC, Hung CL, Yun CH. Quantitative
419		volumetric computed tomography embolic analysis, the Qanadli score, biomarkers,
420		and clinical prognosis in patients with acute pulmonary embolism. Sci Rep.
421		2022;12:7620. doi: 10.1038/s41598-022-11812-6
422	21.	Konstantinides SV, Meyer G, Becattini C, Bueno H, Geersing GJ, Harjola VP, Huisman
423		MV, Humbert M, Jennings CS, Jiménez D, et al. 2019 ESC Guidelines for the diagnosis
424		and management of acute pulmonary embolism developed in collaboration with the

425		European Respiratory Society (ERS). Eur Heart J. 2020;41:543-603. doi:
426		10.1093/eurheartj/ehz405
427	22.	Stevens SM, Woller SC, Kreuziger LB, Bounameaux H, Doerschug K, Geersing GJ,
428		Huisman MV, Kearon C, King CS, Knighton AJ, et al. Antithrombotic Therapy for VTE
429		Disease: Second Update of the CHEST Guideline and Expert Panel Report. Chest.
430		2021;160:e545-e608. doi: 10.1016/j.chest.2021.07.055
431	23.	Konstantinides S, Geibel A, Heusel G, Heinrich F, Kasper W. Heparin plus alteplase
432		compared with heparin alone in patients with submassive pulmonary embolism. N
433		Engl J Med. 2002;347:1143-1150. doi: 10.1056/NEJMoa021274
434	24.	Chatterjee S, Chakraborty A, Weinberg I, Kadakia M, Wilensky RL, Sardar P, Kumbhani
435		DJ, Mukherjee D, Jaff MR, Giri J. Thrombolysis for pulmonary embolism and risk of
436		all-cause mortality, major bleeding, and intracranial hemorrhage: a meta-analysis.
437		Jama. 2014;311:2414-2421. doi: 10.1001/jama.2014.5990
438		
439		

440 Tables

441 Table 1. Baseline Characteristics of Patients with Acute Pulmonary Embolism with and

442 without Clinical Deterioration

		With clinical Without clinica		
	Overall (N = 210)	deterioration (N = 40)	deterioration (N = 40) deterioration (N = 170)	
Age (years old)	64.98 ± 16.18	65.47 ± 17.44	64.86 ± 15.92	.66
Sex (male)	85 (40%)	18 (45%)	67 (39%)	.59
Body mass index (kg/m ²)	25.99 ± 5.84	25.26 ± 4.93	26.16 ± 6.03	.98
sPESI	1.63 ± 1.28	2.55 ± 1.47	1.42 ± 1.13	<.01
Cancer	65 (31%)	12 (30%)	53 (31%)	.99
Hypertension	115 (55%)	23 (58%)	92 (54%)	.73
Diabetes mellitus	43 (20%)	6 (15%)	37 (22%)	.39
Coronary artery disease	19 (9%)	3 (8%)	16 (9%)	.99
Heart failure	27 (13%)	6 (15%)	21 (13%)	.61
Atrial fibrillation	26 (12%)	7 (18%)	19 (11%)	.29
Old stroke	19 (9%)	3 (8%)	16 (9%)	.99
Risk				
High	15 (7%)	11 (28%)	4 (2%)	
Intermediate	119 (57%)	23 (58%)	96 (56%)	<.01
Low	76 (35%)	6 (15%)	70 (41%)	
Systemic t-PA	21 (10%)	21 (53%)	0 (0%)	<.01
Miller index	11.30 ± 4.33	12.88 ± 3.28	10.93 ± 4.47	.01
Qanadli index	20.37 ± 9.31	25.27 ± 7.90	19.21 ± 9.26	<.01

443 Data are presented as mean ± SD or N (%)

444 Abbreviations: sPESI, simplified Pulmonary Embolism Severity Index.

446 Table 2. The ROC Analysis of Different Models with and without sPESI in Predicting Clinical

447 Deterioration

Models	Peripheral	Central	Partial occlusion	Nearly total occlusion	sPESI	AUC (95% CI)	Accuracy
Model 1	•			•		0.6996 (0.6148-0.7843)	0.8238
Model 2	•	•		•		0.6996 (0.6160-0.7832)	0.8238
Model 3	•		•	•		0.6777 (0.5886-0.7669)	0.8095
Model 4	•	•	•	•		0.6895 (0.6015-0.7774)	0.8143
Model 5		٠		•		0.6254 (0.5342-0.7167)	0.8095
Model 6		•	•	•		0.6802 (0.5915-0.7690)	0.8095
Model 7	Significant	segments	on univaria	te analysis		0.7222 (0.6404-0.8040)	0.819
Model 1 + sPESI	•			•	•	0.7753 (0.6914-0.8592)	0.8619
Model 2 + sPESI	•	•		•	•	0.7765 (0.6914-0.8615)	0.8571
Model 3 + sPESI	•		•	•	•	0.7777 (0.6937-0.8617)	0.8619
Model 4 + sPESI	•	•	•	•	•	0.7824 (0.6990-0.8657)	0.8667
Model 5 + sPESI		٠		•	•	0.7418 (0.6467-0.8370)	0.8333
Model 6 + sPESI		•	•	•	•	0.7659 (0.6752-0.8566)	0.8476
Model 7 + sPESI	Significant	segments	on univaria	te analysis	•	0.8004 (0.7204-0.8805)	0.8619

448 Abbreviations: AUC, area under curve; ROC, receiver operating characteristic; sPESI,

449 simplified Pulmonary Embolism Severity Index

Models	NRI (95% CI)	IDI (95% CI)
Model 1 + sPESI	0.1294 (-0.0100-0.2688)	0.0700 (0.0245-0.1156)
Model 2 + sPESI	0.1235 (-0.0163-0.2634)	0.0691 (0.0238-0.1144)
Model 3 + sPESI	0.1294 (0.0096-0.2492)	0.0643 (0.0252-0.1034)
Model 4 + sPESI	0.1353 (-0.0036-0.2742)	0.0721 (0.0303-0.1138)
Model 5 + sPESI	-0.0397 (-0.1259-0.0465)	0.0283 (0.0017-0.0550)
Model 6 + sPESI	0.0926 (-0.0175-0.2027)	0.0559 (0.0216-0.0903)
Model 7 + sPESI	0.1294 (-0.0100-0.2688)	0.0950 (0.0489-0.1412)

451 Table 3. The NRI and IDI Comparing Models Plus sPESI with sPESI

452 Abbreviations: IDI, integrated discrimination improvement; NRI, net reclassification

453 improvement; sPESI, simplified Pulmonary Embolism Severity Index

457 Figure Legends

458	Figure 1. Illustration of Models based on Central and Peripheral Pulmonary Arteries and
459	Degree of Obstruction. The left upward illustration is a schematic representation of the
460	pulmonary arterial vasculature. The area in red represents the 20 peripheral segmental
461	pulmonary arteries and the area shaded in yellow represents the central pulmonary arteries,
462	which is further divided into the proximal, middle, and distal parts based on the lung lobes
463	which they supply. The right upward illustration is the scores based on levels of obstruction.
464	The illustrations and the reference on computed tomography are listed below. A score of 0
465	indicates no thrombus, a score of 1 indicates partial obstruction, and a score of 2 indicates
466	nearly total obstruction. The below table is an explanation of models 1 to 7. Model 1
467	represents the sum of nearly total obstructed peripheral arteries. Model 2 is the sum of
468	nearly total obstructed central and peripheral arteries. Model 3 includes the sum of
469	peripheral pulmonary artery obstruction, which is the Qanadli index. Model 4 combines
470	central and peripheral pulmonary artery obstruction. Model 5 comprises the sum of nearly
471	total obstructed central arteries. Model 6 is the sum of central pulmonary artery
472	obstruction.
473	Abbreviations: LA1-10, 1 st to 10 th segmental pulmonary arteries of the left pulmonary artery;
474	LPA, left pulmonary artery; RA1-10, 1 st to 10 th segmental pulmonary arteries of the right
475	pulmonary artery; RPA, right pulmonary artery.

476

477 Figure 2

478

- 479 Figure 2. The Area Under the Receiver Operating Characteristic for the sPESI, Miller Index,
- 480 and Qanadli Index to Predict Mortality and Clinical Deterioration. Abbreviations: sPESI,
- 481 simplified Pulmonary Embolism Severity Index