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ABSTRACT 

Post-acute Sequelae of COVID-19 (PASC), also known as Long COVID, is a broad 
grouping of a range of long-term symptoms following acute COVID-19 infection. An 
understanding of characteristics that are predictive of future PASC is valuable, as this 
can inform the identification of high-risk individuals and future preventative efforts. 
However, current knowledge regarding PASC risk factors is limited. Using a sample of 
55,257 participants from the National COVID Cohort Collaborative, as part of the NIH 
Long COVID Computational Challenge, we sought to predict individual risk of PASC 
diagnosis from a curated set of clinically informed covariates. We predicted individual 
PASC status, given covariate information, using Super Learner (an ensemble machine 
learning algorithm also known as stacking) to learn the optimal, AUC-maximizing 
combination of gradient boosting and random forest algorithms. We were able to predict 
individual PASC diagnoses accurately (AUC 0.947). Temporally, we found that baseline 
characteristics were most predictive of future PASC diagnosis, compared with 
characteristics immediately before, during, or after COVID-19 infection. This finding 
supports the hypothesis that clinicians may be able to accurately assess the risk of 
PASC in patients prior to acute COVID diagnosis, which could improve early 
interventions and preventive care. We found that medical utilization, demographics and 
anthropometry, and respiratory factors were most predictive of PASC diagnosis.  This 
highlights the importance of respiratory characteristics in PASC risk assessment. The 
methods outlined here provide an open-source, applied example of using Super Learner 
to predict PASC status using electronic health record data, which can be replicated 
across a variety of settings.   
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BACKGROUND 

As the mortality rate associated with acute COVID-19 incidence wanes, 
investigators have shifted focus to determining its longer-term, chronic impacts.1 Post-
acute Sequelae of COVID-19 (PASC) is a loosely categorized consequence of acute 
infection that is related to dysfunction across multiple biological systems.2 Electronic 
health record (EHR) databases, such as the National COVID Cohorts Collaborative 
(N3C), provide an important tool for predicting, evaluating, and understanding PASC.3,4  

Given the broad range of factors associated with PASC, the high dimensionality 
of the N3C Enclave data, and the unknown determinants of Long COVID, modeling 
methods for predicting PASC must be highly flexible. Super Learner (SL) is a flexible, 
ensemble (stacked) machine learning algorithm that uses cross-validation to learn the 
optimal weighted combination of a specified set of algorithms.5,6 The SL is grounded in 
statistical optimality theory that guarantees for large sample sizes it will perform at least 
as well as the best-performing algorithm included in the library. Thus, a rich library of 
learners, with a sufficient sample size, will ensure optimal performance. This robustness 
is supported by numerous applications, and the SL can be specified to maximize any 
performance metric, such as mean squared error.6  

Here, we used the SL to estimate the function for predicting PASC diagnosis in 
COVID-infected patients, given a diverse set of features curated from the EHR. The SL 
was specified such that it learned the combination of algorithms, including variations of 
gradient boosting and random forest, that maximized the area under the receiver 
operator characteristic curve (AUC).7 Our set of features for predicting PASC included 
those previously described in the literature,3 and additional features related to subject-
matter knowledge and patterns of missingness. We also investigated the importance of 
features for predicting PASC across multiple levels, including assessing the importance 
of each individual feature, and groups of features based on temporality (baseline, pre-
COVID, acute COVID, and post-COVID features) and hypothesized biological pathways 
of PASC. 

METHODS 

Sample 

 The Long COVID Computational Challenge (L3C, DUR RP-5A73BA) sample 
population was selected from the N3C dataset, a national, open dataset that has been 
described previously.3,4 The L3C sample included participants diagnosed with PASC 
(ICD code U09.9) and controls with a documented COVID-19 diagnosis who had at 
least one medical visit more than 4 weeks after their initial COVID diagnosis date. 
Controls were selected at a 1:4 (case:control) ratio and were matched based on the 
distribution of medical visits prior to COVID-19 diagnosis. The primary outcome of 
interest was PASC diagnosis via ICD code U09.9. 

The dataset included 57,672 patients with 9,031 cases, 46,226 controls, and 
2,415 patients excluded due to having a PASC diagnosis before 4 weeks following 
acute COVID diagnosis. This yielded a final analytic sample of 55,257 participants.  

 

Feature selection 
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We extracted 304 features from N3C data. After indexing across four time 
periods and transforming features into formats amenable to machine learning analysis, 
our sample included 1,339 features (see Supplemental Table 1. Metadata). Details 
regarding feature selection and processing can be accessed via GitHub 
(https://github.com/BerkeleyBiostats/l3c_ctml/tree/v1). For continuous features, we 
included the minimum, maximum, and mean values for each measurement in each 
temporal window. For binary features, we either included an indicator (when repetition 
was not relevant) or a count (when repetition was relevant) over each time period and 
we re-coded categorical variables as indicators.  

Temporal windows: We divided each participant’s records into four temporal 
windows: baseline, which consisted of all records occurring a minimum of 37 days 
before the COVID index date (t - 37, where t represents the COVID index date), and all 
time-invariant factors (such as sex, ethnicity, etc.); pre-COVID, observations falling 37 
days prior to 7 days prior to the index date (t - 37 to t - 7); acute COVID, observations 
falling 7 days prior to 14 days after to the index date (t - 7 to t + 14); and post-COVID, 
records from 14 to 28 days after the index date (t + 14 to t + 28).  

Features described in the literature: Pfaff et al. used gradient-boosting machine 
learning models (XGBoost) to identify patients at risk for PASC using N3C data.3 We 
extracted and transformed key features that were identified by Pfaff et al. These 
features included 199 previously described factors related to medical history, 
diagnoses, demographics, and comorbidities.3 

Temporality: To account for differences in follow-up, we included as an additional 
factor a continuous variable for follow-up time, defined as the number of days between 
the COVID index date and the most recent observation. To account for temporal trends 
of COVID (such as seasonality and dominant variant), we included categorical (ordinal) 
covariates for the season and months since the first observed COVID index date. 

Missing data: We applied an approach that can be used to predict future 
observations with missing data, and we did so by creating indicator basis functions that 
indicate whether, for each variable, the observation was missing (yes/no).8  By including 
these (along with filling each missing variable with a 0), we allow the machine to 
determine what predictive information can be utilized by the missingness process, 
without relying on a current imputation model. Thus, this indicator allows the pattern of 
missingness to be a predictor of PASC. 

COVID-19 positivity: We added several measures of COVID severity and 
persistent SARS-CoV-2 viral load, which are associated with PASC incidence.9  We 
imported measures of COVID severity as well as 15 measures of COVID infection from 
laboratory measurements, which provided insights on persistent SARS-CoV-2 viral load. 
We assessed the duration of COVID viral positivity separately for each laboratory 
measure of COVID and each temporal window. For participants who had both a positive 
and negative value of a given test during a temporal window, we took the midpoint 
between the last positive test and the first negative test as being the endpoint of their 
positivity. For individuals who had a positive test but no subsequent negative test within 
that temporal window, we determined their endpoint to be their final positive test plus 
three days. We included separate missingness indicators in each temporal window for 
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each test, for a positive value for each test, and for a negative value following a positive 
value to indicate an imputed positivity endpoint.  

Additional features: We incorporated the laboratory measurements related to 
anthropometry, nutrition, COVID positivity, inflammation, tissue damage due to viral 
infection, auto-antibodies and immunity, cardiovascular health, and microvascular 
disease, which are potential predictors of PASC.9 We also extracted information about 
smoking status, alcohol use, marital status, and use of insulin or anticoagulant from the 
observation table as baseline characteristics of individuals, and we included the number 
of times a person has been exposed to respiratory devices in each of the four windows 
from the device table. We extracted covariates related to COVID severity, vaccination 
history, demographics, medical history, and previous diagnoses from before and during 
acute COVID infection.  

Prediction using ensemble machine learning  

We used the SL, an ensemble machine learning method, also known as 
stacking, to learn the optimally weighted combination of candidate algorithms for 
maximizing the AUC. We reprogrammed the SL in Python in order to capitalize on the 
resources available in the N3C Data Enclave (e.g., PySpark parallelization), and this 
software is available to external researchers 
(https://github.com/BerkeleyBiostats/l3c_ctml/tree/v1). We used a relatively small 
ensemble of four learners (a mix of robust parametric models and machine learning 
models): 1. Logistic regression; 2. L1 penalized logistic regression (with penalty 
parameter lambda = 0.01); 3. Gradient boosting (with n_estimators = 200, max_depth = 
5, learning_rate = 0.1); 4. Random forest (max_depth = 5, num_trees = 20). The original 
candidate learner library consisted of a large set of candidate learners with different 
combinations of hyperparameters (e.g. gradient boosting (with n_estimators = [200, 
150, 100, 50], max_depth = [3, 5, 7], learning_rate = [0.05, 0.1, 0.2]).  

One important decision for optimizing an algorithm is to decide which metric will 
be used to evaluate the fit and optimize the weighting of the algorithms in the ensemble. 
We used an approach developed specifically for maximizing the area under the curve 
(AUC).7 Specifically, we used an AUC maximizing meta-learner with Powell optimization 
to learn the convex combination of these four candidate algorithms.7 The SL was 
implemented with a V-fold/k-fold cross-validation scheme with 10 folds. 

Variable importance 

In this section, for the sake of computational efficiency, we worked with the 
discrete SL selector (the single candidate learner in the library with the highest cross-
validated AUC) instead of the entire ensemble SL. In this case, the gradient-boosting 
learner was the candidate learner with the highest cross-validated AUC. We used a 
general approach (for any machine learning algorithm) known as Shapley values.10 We 
generated these values within three groupings of predictors for ease of interpretability: 
individual features (e.g. cough diagnosis during acute COVID window), the temporal 
window when measurements were made relative to acute COVID infection, (e.g. pre-
COVID window), and by specific biological pathways (e.g. respiratory pathway). At the 
individual level, we assessed the importance of each variable (indexed across each of 
the four temporal windows) in predicting PASC. At the temporal level, we assessed the 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 4, 2023. ; https://doi.org/10.1101/2023.07.27.23293272doi: medRxiv preprint 

https://www.zotero.org/google-docs/?fne9eC
https://github.com/BerkeleyBiostats/l3c_ctml/tree/v1
https://www.zotero.org/google-docs/?ai4z0g
https://www.zotero.org/google-docs/?vjVcHT
https://www.zotero.org/google-docs/?Vpwcfj
https://doi.org/10.1101/2023.07.27.23293272
http://creativecommons.org/licenses/by/4.0/


6 

relative importance of each of the four temporal windows (baseline, pre-COVID, acute 
COVID, and post-COVID) in predicting PASC status. At the level of the biological 
pathway, we grouped variables based on the following hypothesized mechanistic 
pathways of PASC: 1) Baseline demographics and anthropometry, 2) Medical visitation 
and procedures, 3) Respiratory system, 4)  Antimicrobials and infectious disease, 4) 
Cardiovascular system, 5) Female hormones and pregnancy, 6) Mental health and 
wellbeing, 7) Pain, skin sensitivity, and headaches, 8) Digestive system, 9) 
Inflammation, autoimmune, and autoantibodies, 10) Renal function, liver function, and 
diabetes, 11) Nutrition, 12) COVID Positivity, 13) Uncategorized disease, nervous 
system, injury, mobility, and age-related factors.9 For temporal and biological groupings, 
we assessed the mean Shapley value of the 10 most predictive features in each group. 
A full list of our included covariates along with their grouping by temporality and 
biological pathway is included in our metatable (Supplemental Table 1. Metadata).  

RESULTS 

Predictive performance 

 Our models accurately predicted PASC diagnosis status among participants in 
the training sample, with an AUC of 0.947 on a holdout test set (10% of full data). 

Variable importance 

 Individual predictors: We found that the strongest individual predictors (mean 
absolute Shapley value) of PASC diagnosis were the length of follow-up (0.40), the 
number of medical visits associated with a diagnosis during the acute COVID window 
(0.26), data partner ID (0.25), viral lower respiratory infection during the acute COVID 
window (0.11), and age (0.06) (Figures 1 and 2).  

Temporal windows: Baseline and time-invariant characteristics were the 
strongest predictors of PASC (mean 0.093), followed by characteristics during the acute 
COVID window (mean 0.049) (Figure 3). 

Biologic pathways: We found that medical visitation and procedures included the 
strongest predictors (mean 0.085), followed by demographics and anthropometry (mean 
0.054), respiratory factors (mean 0.023), COVID markers (mean 0.0064), and markers 
of pain (mean 0.0047) (Figure 4). 

DISCUSSION 

Predictive performance 

These results provide strong support for 1) the choice of an ensemble learning 
approach, 2) the specific learners used, 3) how the missing data was handled, and 4) 
the choice of optimization criteria (maximizing the AUC).  

Variable importance 

 Individual predictors: We found that the individual predictors most associated 
with PASC diagnosis were related to medical utilization rate and site of care, such as 
length of follow-up and data provider ID. These factors are unlikely to be causal drivers 
of PASC incidence. On the other hand, we found that lower viral respiratory infection 
during acute COVID was highly predictive of PASC diagnosis. Lower respiratory 
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infection during acute COVID may be a causal pathway by which acute COVID leads to 
PASC, although future studies should apply a causal inference framework to evaluate 
this hypothesis.  

Temporal windows: We found that baseline factors were the strongest predictor 
of PASC diagnosis, compared with factors immediately before, during, or after acute 
COVID-19 infection. This suggests that clinicians may be able to effectively identify who 
is at risk for PASC based on baseline characteristics and COVID infection symptoms. 
Although it should be noted that baseline characteristics included the greatest interval of 
time and included some time-variant factors that were not linked to any specific time 
point. Future analyses should expand on this finding to evaluate the feasibility of 
predicting individual PASC incidence, rather than diagnosis, using baseline 
characteristics alone. Additional information regarding this relationship could identify 
patients at risk for PASC prior to acute COVID-19 and could inform early interventions 
to prevent PASC. 

Biological pathways: These results are consistent with published literature and 
highlight the importance of respiratory features (e.g., asthma) as important factors in 
predicting who may develop PASC, which is consistent with the fact that SARS-CoV-2 
is a respiratory virus.2,3 Respiratory factors can influence individual susceptibility to 
COVID-19, are important features of acute COVID-19 severity, and are key symptoms 
of PASC.2,3,11 Therefore, future studies should seek to parse the contributions of 
respiratory symptoms to PASC through the pathways of baseline susceptibility to 
COVID-19 versus phenotyping of severe COVID-19 in order to improve our 
understanding of respiratory features as a risk factor for PASC. Despite the range of 
PASC phenotypes, these findings are consistent with respiratory symptoms (e.g. 
dyspnea, cough) being the most commonly reported PASC symptoms.9,11  Other 
biological pathways, such as cardiovascular factors, have similar roles as both markers 
of susceptibility and severity of COVID-19 and should also be explored further in future 
studies. 

Limitations 

 Our goal for this analysis was to maximize predictive accuracy, rather than to 
make causal inferences regarding exposure-outcome relationships, therefore we 
included all predictors prior to four weeks post-COVID (censored window). The inclusion 
of pre-COVID, acute COVID, and post-COVID factors complicates inference regarding 
whether predictive features (e.g., respiratory factors) reflect vulnerability to acute 
COVID, COVID symptoms, or early PASC symptoms. This analytic sample was 
matched 1:4 (PASC:non-PASC), with matching based on pre-COVID medical visitation 
rate, and this matched sample was drawn from N3C, which is a matched sample of 
COVID patients and healthy controls. Therefore, this sample may not be representative 
of a broader population.  We note that, for future use of these data, if the prevalence of 
PASC in the target population is known, and the matching identifier is available, there 
are methods to calibrate the results to the actual population. Given that was not the 
case, one might generate results that need to be re-calibrated to the target population of 
interest. 
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 We found measures of medical visitation to be strong predictors of PASC 
diagnosis. It is plausible that medical visitation may be associated with increased 
diagnoses in general, rather than true PASC incidence. However, increased medical 
visitation may be an effect of early PASC symptoms. 

Future steps 

 In order to improve upon the interpretation and clinical applications of these 
findings, future studies should apply a causal inference approach to evaluate the 
potential causal impact of individual predictors on the risk of PASC. Future studies 
should rigorously evaluate highly-predictive features, e.g. via targeted maximum 
likelihood estimation (TMLE), to generate estimates of parameters more interpretable to 
non-statisticians.12–15 TMLE is a general method for deriving estimates and robust 
inference for nonparametric measures of associations, so it is particularly well-suited for 
use in the context of machine learning. It can produce estimates of parameters, such as 
the average treatment effect, causal relative risk, causal attributable risk, direct effects, 
and many others; interpretation of results as estimates of causal parameters requires 
assumptions outside of the data (e.g., no unmeasured confounding), so though they 
provide good insights about the magnitude and direction of the average impact of a 
predictor, causal interpretation of the results should be made with caution 

One key exposure of interest is vaccination, which is a key strategy in preventing 
acute COVID-19 infection. There is evidence that COVID-19 vaccination is protective 
against PASC, but less is known about how vaccination timing (i.e. recency of 
vaccination prior to acute COVID-19 infection) relates to the risk of PASC.16–18 Additional 
information on the relationship between vaccination timing and PASC may inform 
vaccination guidelines. Furthermore, we lack biomarkers that can objectively diagnose 
or quantify the risk of PASC, which prevents our ability to research, prevent, and treat 
this condition.9,19 Evidence regarding these potential mechanistic biomarkers will be a 
key step in the efforts to combat this disease. 

Summary 

These findings highlight the importance of respiratory symptoms, healthcare 
utilization, and age in predicting PASC incidence, which is consistent with Pfaff et al..3 
Although further investigation is needed, this supports the referral of COVID-19 patients 
with severe respiratory symptoms for subsequent PASC monitoring. In future work, we 
plan to investigate predictive performance when only baseline information is used as 
input to classify PASC, as this provides a practical implementation based on readily-
available clinical features that could identify participants at risk of PASC prior to COVID 
diagnosis. 
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