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Abstract:  32 

Introduction: Predictive models have been used to aid early diagnosis of PCOS, though existing models 33 

are based on small sample sizes and limited to fertility clinic populations. We built a predictive model 34 

using machine learning algorithms based on an outpatient population at risk for PCOS to predict risk and 35 

facilitate earlier diagnosis, particularly among those who meet diagnostic criteria but have not received a 36 

diagnosis. 37 

 38 

Methods: This is a retrospective cohort study from a SafetyNet hospital’s electronic health records 39 

(EHR) from 2003-2016. The study population included 30,601 women aged 18-45 years without 40 

concurrent endocrinopathy who had any visit to Boston Medical Center for primary care, obstetrics and 41 

gynecology, endocrinology, family medicine, or general internal medicine. Four prediction outcomes 42 

were assessed for PCOS. The first outcome was PCOS ICD-9 diagnosis with additional model outcomes 43 

of algorithm-defined PCOS. The latter was based on Rotterdam criteria and merging laboratory values, 44 

radiographic imaging, and ICD data from the EHR to define irregular menstruation, hyperandrogenism, 45 

and polycystic ovarian morphology on ultrasound.  46 

 47 

Results: We developed predictive models using four machine learning methods: logistic regression, 48 

supported vector machine, gradient boosted trees, and random forests. Hormone values (follicle-49 

stimulating hormone, luteinizing hormone, estradiol, and sex hormone binding globulin) were combined 50 

to create a multilayer perceptron score using a neural network classifier. Prediction of PCOS prior to 51 

clinical diagnosis in an out-of-sample test set of patients achieved AUC of 85%, 81%, 80%, and 82%, 52 

respectively in Models I, II, III and IV. Significant positive predictors of PCOS diagnosis across models 53 

included hormone levels and obesity; negative predictors included gravidity and positive bHCG.    54 

 55 

Conclusions: Machine learning algorithms were used to predict PCOS based on a large at-risk 56 

population. This approach may guide early detection of PCOS within EHR-interfaced populations to 57 

facilitate counseling and interventions that may reduce long-term health consequences. Our model 58 

illustrates the potential benefits of an artificial intelligence-enabled provider assistance tool that can be 59 

integrated into the EHR to reduce delays in diagnosis. However, model validation in other hospital-based 60 

populations is necessary.  61 

 62 
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Introduction 69 

Polycystic ovary syndrome (PCOS) is the most common type of ovulation disorder and 70 

endocrinopathy among reproductive age women. PCOS is a diagnosis of exclusion after other 71 

endocrinopathies known to affect ovulation have been evaluated including thyroid, adrenal, and pituitary 72 

related disease. Based on the Rotterdam criteria, PCOS is diagnosed when two of the three following 73 

criteria are exhibited: clinical or biochemical hyperandrogenism, oligo-anovulation, and polycystic ovary 74 

morphology (PCOM) on transvaginal or transabdominal ultrasound. PCOS has a population prevalence of 75 

5-15%, depending on the diagnostic criteria used (1).  76 

PCOS is associated with multiple health issues and increased morbidity and mortality, including a 77 

high chronic disease burden that is also very costly for individuals with PCOS and insurers (2). PCOS is 78 

the leading cause of anovulatory infertility in reproductive-aged women. In fact, over 90% of anovulatory 79 

women who present to infertility clinics have PCOS (3). PCOS patients have an increased risk of 80 

endometrial hyperplasia and endometrial cancer (4) due to anovulatory cycles leading to long periods of 81 

exposure to the effects of unopposed estrogen. PCOS has been associated with the development of 82 

metabolic syndrome (5), diabetes (6), cerebrovascular disease and hypertension (7), compared to women 83 

without PCOS. Despite these serious health consequences, PCOS frequently goes undiagnosed due to the 84 

wide range of symptom severity on presentation, leading to delayed treatment and potentially more severe 85 

clinical sequelae due to lack of preventive care, health management, and counseling (4). Even when 86 

PCOS is diagnosed, it is often very delayed. One study found that over one-third of women with PCOS 87 

waited over two years and were seen by three or more providers before finally receiving the diagnosis (8).  88 

Predictive models can play a significant role in aiding earlier diagnosis of PCOS, though several 89 

include only those women presenting for fertility care. One model used serum anti-Müllerian hormone 90 

(AMH) and androstenedione levels, menstrual cycle length, and BMI to predict the development of PCOS 91 

in Chinese women (9). Another model used only AMH and BMI to predict a diagnosis of PCOS or other 92 

ovulatory dysfunction disorders (10). Other studies have created predictive models for certain outcomes 93 

among women with PCOS such as pregnancy outcomes (11,12) and insulin resistance (13). In this study, 94 

we use clinical and socioeconomic variables among 30,601 women aged 18 to 45 years within the 95 

electronic health records (EHR) to develop predictive model utilizing machine learning algorithms with 96 

the goal of earlier detection and treatment of PCOS. 97 

 98 

Materials and Methods 99 

Data acquisition 100 

The dataset was created by querying de-identified patient data from female patients aged 18 to 45 101 

years who had or were considered at risk for PCOS diagnosis by having had any one of the three testing 102 

procedures for PCOS in their EHR. Included within the initial sample were those patients who had any 103 

visit to Boston Medical Center (BMC) for primary care, obstetrics and gynecology, endocrinology, family 104 

medicine, or general internal medicine and received: 1) a pelvic/transvaginal ultrasound for any reason, 2) 105 

androgen lab assessment, or had clinical symptoms of androgen excess, 3) an ICD-9 label for irregular 106 

periods, or 4) a PCOS diagnosis, between October 2003 to December 2016 within the BMC Clinical Data 107 

Warehouse (CDW). The start-date was selected to reflect the first day that ICD-9 codes were used and 108 

recorded at BMC. The end date reflected cessation of use of the ICD-9 codes and transition to ICD-10 109 

codes within BMC. To avoid misidentifying an ovulation disorder caused by another endocrinopathy, 110 

exclusion criteria included diagnosis of concurrent endocrinopathy, such as thyroid disorders, 111 

hyperaldosteronism, Cushing’s syndrome, other adrenal gland disorders, or malignancy based on ICD-9 112 

codes as listed in Supplementary Table 1.   113 

 114 

Ethical approval 115 

The study was approved by the Institutional Review Board of Boston University School of 116 

Medicine and the Harvard T.H. Chan School of Public Health (Protocol # H35708) and is considered 117 

non-human subjects research. 118 

 119 
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Reference label definitions  120 

Individual predictors 121 

Time-varying predictor variables with a date stamp before that of the outcome of interest were 122 

included in our models. We considered the following predictor variables:  123 

Socioeconomic and lifestyle demographic variables: age, race (White/Caucasian, Black/African 124 

American, Hispanic/Latina, Asian, Native Hawaiian/Pacific Islander, Middle Eastern, Other/Unknown), 125 

smoking status (yes/no), marital status (single, married, separated, divorced, widowed, other), 126 

homelessness (yes/no), and highest level of education (8th grade or less, some high school, high school 127 

graduate, some college/technical/vocational training, graduated college/technical school/vocational 128 

training, declined to answer, other).  129 

Anthropometrics: Body mass index (BMI, kg/m2) was either calculated from height and weight or 130 

abstracted as the listed BMI variable associated with each visit. BMI was then categorized into three 131 

categories: normal (BMI < 25 kg/m2); overweight (BMI between 25-30 kg/m2); and obese (BMI > 30 132 

kg/m2). To further capture the obesity population in the absence of height/weight/BMI data, the obese 133 

category also included any patient with an ICD-9 code for unspecified obesity (278.00), morbid obesity 134 

(278.01), localized adiposity (278.1), and/or a history of gastric bypass.  135 

Cardiovascular health: To include blood pressure as a predictor variable, we defined a 136 

categorical hypertension variable by using systolic (SBP) and diastolic (DBP) blood pressure readings 137 

and ICD-9 diagnostic codes for unspecified essential hypertension (401.9), benign essential hypertension 138 

(401.1), and essential primary hypertension (401.0). Blood pressure was categorized into three groups: 139 

normal, defined by no ICD-9 codes for hypertension recorded and SBP < 120 mmHg, and DBP < 80 140 

mmHg; elevated, defined by no ICD-9 codes for hypertension recorded and SBP was 120-129 mmHg or 141 

DBP < 80 mmHg; hypertension, defined by any ICD-9 code for hypertension recorded or SBP > 140 142 

mmHg or DBP > 90 mmHg.  143 

Reproductive endocrine predictive variables: beta human chorionic gonadotropin (bHCG) level 144 

(negative bHCG < 5 mIU/mL, positive bHCG > 5 mIU/mL), HIV status (negative/positive), age at 145 

menarche, pelvic inflammatory disease diagnosis (614.9), history of hysterosalpingogram, and gravidity 146 

(history of present or prior pregnancy within obstetric history). Endocrine and metabolic lab values 147 

included: TSH, glycosylated hemoglobin (A1c) as a marker for diabetes, low-density lipoprotein (LDL), 148 

high density lipoprotein (HDL), and diagnosis of hypercholesterolemia (272.0). Of note, our model did 149 

not include androgen precursors such as DHEA or androstenedione as, according to Monash guidelines, 150 

these values provide limited additional information in the diagnosis of PCOS (14,15).  151 

 152 

Combined predictors  153 

Expecting a nonlinear relationship between many reproductive hormones and a PCOS diagnosis, 154 

we used a multilayer perceptron (MLP) neural network to map follicle-stimulating hormone (FSH), 155 

luteinizing hormone (LH), sex hormone binding globulin (SHBG), and estradiol (E2) values to a 156 

composite metric we call MLP score. The MLP score was repetitively trained and the hyperparameters 157 

were tuned to generate a predictive probability associated with PCOS diagnosis for each predictive 158 

model, as described with further detail below.   159 

 160 

Outcomes 161 

Defining PCOS: PCOS diagnosis was assigned for any patient who had an ICD-9 code for PCOS 162 

(256.4) or met the Rotterdam criteria (16), according to which a positive diagnosis is made in the 163 

presence of two out of the following three features: (i) irregular menses (IM) as defined by rare menses, 164 

oligo-ovulation, or anovulation; (ii) hyperandrogenism (HA) as defined by clinical or biochemical 165 

androgen excess; and (iii) polycystic ovarian morphology (PCOM) noted on transabdominal or 166 

transvaginal ultrasound. Based on these three criteria, we defined three auxiliary variables IM, HA, and 167 

PCOM to use in the definition of our labels. PCOM was captured through diagnostic radiology text 168 

reports from ovarian ultrasound imaging for the subset that had ultrasound imaging (17).  169 
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Defining Irregular Menstruation (IM): IM was defined with the following ICD-9 codes: absence 170 

of menstruation (626.0), scanty or infrequent menstruation (626.1), irregular menstrual cycle (626.4), 171 

unspecified disorders of menstruation and abnormal bleeding from female genital tract (626.9), and 172 

infertility, female associated with anovulation (628.0) (3). 173 

Defining Hyperandrogenism (HA): HA was assigned to a patient if any of the androgen lab 174 

testing for bioavailable testosterone, free testosterone, or total testosterone was greater than clinical 175 

thresholds of 11 ng/dL, 5 pg/mL, 45 ng/dL, respectively. In addition, HA was assigned if ICD-9 codes 176 

for hirsutism (704.1) or acne (706.1 or 706.0) were recorded for a patient. 177 

Defining Ultrasound characteristics for polycystic ovarian morphology (PCOM): Among those 178 

with an ultrasound in this dataset, PCOM was identified on ultrasound reports using natural language 179 

processing (NLP) with complete methods detailed by Cheng and Mahalingaiah (17), to report PCOM as 180 

identified (PCOM present), unidentified (PCOM absent), or indeterminate (PCOM unidentifiable based 181 

on source report data).  182 

We considered four models to predict the following: Model I: patients with ICD-9 diagnosis of 183 

PCOS (256.4) within the EHR; Model II: patients diagnosed with PCOS by Rotterdam criteria having IM 184 

and HA without a specific ICD-9 PCOS code; Model III: patients diagnosed with PCOS by Rotterdam 185 

criteria having two out of the three conditions IM/HA/PCOM and without a specific ICD-9 PCOS code; 186 

Model IV: all patients with PCOS using either Model I or Model III criteria. ICD-9 codes were abstracted 187 

from the billing code and diagnosis code associated with each encounter within the EHR. Model I 188 

included all patients who were diagnosed with PCOS. Model II and its superset Model III was composed 189 

of patients who did not have a PCOS diagnosis code but met diagnostic criteria of PCOS based on 190 

Rotterdam criteria, representing the patient population with undiagnosed PCOS. Model IV essentially 191 

captures all women who were diagnosed or met criteria for PCOS within our population. Supplementary 192 

Table 2 details model definitions and includes the count and percent of patients in each category. The date 193 

of diagnosis was assigned by the date of PCOS ICD-9 code (256.4) for Model I, the date of the latest 194 

diagnostic criteria met for Model II and III, and the earlier date associated with Model I and Model III, for 195 

Model IV. 196 

 197 

Predictive models 198 

Classification methods 199 

We explored a variety of supervised classification methods, both linear and nonlinear. Linear 200 

methods included logistic regression (LR) and support vector machines (SVM) (18) and were fitted with 201 

an additional regularization term: an L1-norm of the coefficient vector to inject robustness (19) and 202 

induce sparsity. Regularization added a penalty to the objective function, thereby minimizing the sum of a 203 

metric capturing fitness to the data and a penalty term that is equal to some multiple of a norm of the 204 

model parameters. Sparsity was motivated by the earlier works (20–23), where it was shown that sparse 205 

classifiers can perform almost as well as very sophisticated classification methods. Nonlinear methods, 206 

including gradient boosted trees (GBT/XGBoost) (24) and random forests (RF) (25) which produce large 207 

ensembles of decision trees, may yield better classification performance, but are not interpretable or 208 

explainable to enable a safety check by a clinician. Specifically, the RF is a large collection of decision 209 

trees and it classifies by averaging the decisions of these trees. The GBT/XGBoost, also called gradient 210 

boosting machine (GBM), similarly combines decisions by many decision trees. We used LightGBM 211 

which is a fast, high-performance GBM framework (26). We tuned GBM’s hyperparameters through 212 

cross-validation.  213 

 214 

Performance metrics 215 

To assess model performance, we obtained the Receiver Operating Characteristic (ROC) curve. 216 

The ROC is created by plotting the true positive rate, which is indicative of sensitivity or recall, against 217 

the false positive rate (equal to one minus specificity) at various thresholds. The c-statistic or the area 218 

under the ROC curve (AUC), is used to evaluate the prediction performance. A perfect predictor is 219 
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defined by generating an AUC score of 1, and a predictor which makes random guesses has an AUC 220 

score of 0.5. We also used the weighted-F1 score to evaluate the models. The weighted-F1 score is the 221 

average of the F1 scores of each class weighted by the number of participants in each class. The class-222 

specific F1 scores are computed as the harmonic mean of precision and recall of a classifier which 223 

predicts the label of the given class. The weighted-F1 score is between 0 to 1, and a higher value 224 

represents a better model. The AUC is more easily interpretable, and the weighted F1-score is more 225 

robust to class imbalance (27).  226 

 227 

Statistical feature selection (SFS) 228 

Categorical variables were converted into dummy/indicator variables. To avoid collinearity, we 229 

dropped the missing or unclassified data (NaN) category. For continuous variables, missing values were 230 

imputed by the median value for that variable. A summary of the missing variables for each model is 231 

provided in Supplementary Table 3. Variables with very low variability (SD<0.0001) were assessed for 232 

removal from the models, however none were noted in any model. We applied statistical feature selection 233 

(SFS) to reduce the less informative features and simplify the models. For each of the four models’ 234 

outcomes, the chi-squared test was applied for binary variables and the Kolmogorov-Smirnov statistic for 235 

continuous variables; the variables for which we could not reject the null hypothesis of the same 236 

distribution for each class (p-value >0.01) were removed. Representative aggregated patient-level 237 

statistics for each model are shown in Supplementary Table 4. We also removed one from each pair of 238 

highly correlated variables (with absolute value of the correlation coefficient > 0.8) to avoid redundant 239 

variables. Highly correlated variables and the retained variable are provided in Supplementary Table 5. 240 

For all models we standardized the corresponding features by subtracting the mean and scaling to unit 241 

variance. 242 

 243 

Training-test splitting 244 

We split the dataset into five random parts, where four parts were used as the training set, and the 245 

remaining part was used for testing. We used the training set to tune the model hyperparameters via 5-fold 246 

cross-validation, and we evaluated the performance metrics on the testing set. We repeated training and 247 

testing five times, each time with a different random split into training/test sets. The mean and standard 248 

deviation of the metrics on the test sets over the five repetitions are reported.  249 

 250 

Development of the MLP score 251 

For every model, there was a considerable difference between the AUC of linear models and non-252 

linear models. To improve the performance of our linear models, we utilized nonlinear models to capture 253 

intricate relationships between features. We utilized Gradient Boosted Trees (GBT) to find which features 254 

most commonly appeared together among decision trees. We found FSH, LH, SHBG, and estradiol levels 255 

to be a meaningful group of features which are all reproductive hormones and continuous variables that 256 

appeared together among trees for all our models. We subsequently used these four features as input 257 

features into a multilayer perceptron (MLP) neural network model with three hidden layers, each 258 

employing the rectified linear unit (ReLU) activation function. The neural network was trained using the 259 

training set to classify PCOS. We used the output probability of the MLP model, which we called “MLP 260 

score,” as a new feature into our original predictive models.  261 

 262 

Recursive feature elimination (RFE) 263 

We also used a recursive feature elimination approach with L1-penalized logistic regression (L1-264 

regularized RFE) to extract the most informative features and develop parsimonious models. Specifically, 265 

after running the L1-penalized logistic regression (L1-LR), we obtained weights associated with the 266 

variables (i.e., the coefficients of the model, denoted by β), and we eliminated the variable with the 267 

smallest absolute weight in each turn. We iterated in this fashion, eliminating one variable at a time, to 268 

select a model that maximizes a metric equal to the mean AUC minus the standard deviation (SD) of the 269 
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AUC in a validation dataset (using 5-fold cross-validation on the training set to obtain an average of this 270 

metric over five repetitions).  271 

 272 

Final predictive models 273 

We computed the performance of the following models: L1-penalized logistic regression (LR-274 

L1), support vector machine (SVM-L1), random forests (RF), and gradient boosted trees 275 

(GBT/XGBoost). We calculated each variable’s LR coefficient with a 95% confidence interval (β 276 

[95%CI]), the correlation of the variable with the outcome (Y-correlation), the p-value of each variable 277 

(p-value), the mean of the variable (Y1-mean) in the PCOS labeled patients, the mean of the variable (Y0-278 

mean) in the patients without the PCOS label, and the mean and standard deviation of the variable over all 279 

patients (All-mean and All-SD). Ranking predictor variables by the absolute value of their coefficients in 280 

the logistic regression model amounts to ranking these variables by how much they affect the predicted 281 

probability of the outcome. A positive coefficient implies that the larger the value of the variable within 282 

the range specified by the data, the higher the chance of having a PCOS diagnosis as defined by the model 283 

outcome.   284 

 285 

Results 286 

Results of data acquisition and data pre-processing 287 

After inclusion and exclusion criteria were applied to all 65,431 women within the initial data 288 

pool, 30,601 patient records were available for this analysis and defined populations are included in 289 

Figure 1. There were 1,329 patients (4.5%) with a PCOS ICD-9 diagnosis code (Model I). 1,465 patients 290 

had records with PCOM results as present, absent, or unidentifiable. There were 1,056 patients (3.6%) 291 

with undiagnosed PCOS (Model II), and a total of 1,116 (3.8%) of patients with no ICD 256.4 indication 292 

and two out of IM/HA/PCOM positive criteria (Model III). Finally, there were 2,445 PCOS patients 293 

(8.0%) in the combined analysis (Model IV). The total number of records in each model are included in 294 

Supplementary Table 2. In the total cohort, the patients were predominantly Black/African American 295 

(40.3%) and White (26.5%), with an average age of 33.6 years (SD = 6.6). Complete demographic 296 

characteristics are described in Table 1.   297 

There were 43 categorical variables and 12 continuous variables retained as predictors after the 298 

data pre-processing procedures. There were four pairs of highly correlated variables and one variable 299 

from each correlated pair included in the final model as noted in Supplemental Table 5. Supplementary 300 

Table 4 describes all 51 variables used by the predictive models. 301 

 302 

Model Performance 303 

Tables 2, 3, 4 and 5 display the parsimonious models that use the MLP score (LR-L2-MLP score) 304 

and show the most significant variables in the prediction of the outcome for Models I, II, III, and IV, 305 

respectively. All p-values were less than 0.05, which was set as the significance level. 306 

For Model I, the parsimonious predictive model achieved an AUC (SD) of 82.3% (1.7). The MLP 307 

score (β = 0.71) and obesity (β = 0.45) were positively correlated with PCOS diagnosis. Pregnancy 308 

(gravidity β = -0.53; positive pregnancy test β = -0.50), normal BMI (β = -0.24), smoking (β = -0.18), age 309 

(β = -0.16), and Hispanic race (β = -0.10) were inversely correlated with PCOS diagnosis as shown in 310 

Table 2.  311 

For Model II, the parsimonious predictive model achieved an AUC (SD) of 77.6% (1.3). The 312 

MLP score (β = 0.61), obesity (β = 0.21), normal BMI (β = 0.15), normal blood pressure (β = 0.16), 313 

negative pregnancy test (β = 0.12), and normal HDL (β = 0.08) were positively correlated with 314 

undiagnosed PCOS. Age (β = -0.27), pregnancy (gravidity β = -0.26; positive pregnancy test β = -0.19), 315 

and Hispanic race (β = -0.18) were inversely correlated with undiagnosed PCOS as show in Table 3. 316 

For Model III, the parsimonious predictive model achieved an AUC (SD) of 77.4% (1.6). The 317 

MLP score (β = 0.60), obesity (β = 0.19), normal blood pressure (β = 0.17), normal BMI (β = 0.14), Black 318 

race (0.13), negative pregnancy test (β = 0.12), and normal HDL (β = 0.09) were positively correlated 319 

with undiagnosed PCOS. Age (β = -0.25), pregnancy (gravidity β = -0.24; positive pregnancy test β = -320 
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0.20), and Hispanic race (β = -0.15) were inversely correlated with undiagnosed PCOS as show in Table 321 

4. 322 

For Model IV, the parsimonious predictive model achieved an AUC (SD) of 79.1% (1.1). The 323 

MLP score (β = 0.7), obesity (β = 0.31), normal BMI (β = 0.15), hypertension (β = 0.07) and some higher 324 

degree of education, such as college or vocational/technical school (β = 0.06) were positively correlated 325 

with PCOS diagnosis. Age (β = -0.21), pregnancy (gravidity β = -0.37; positive pregnancy test β = -0.34; 326 

negative pregnancy test β = -0.05), Hispanic race (β = -0.12), and smoking (β = -0.08) were inversely 327 

correlated with PCOS diagnosis as shown in Table 5.  328 

GBT models had the highest performance. Predictions of PCOS in a test set of patients not used 329 

during algorithm training achieved 85%, 81%, 80%, and 82% AUC for Models I, II, III, and IV, 330 

respectively. We also report the performance with the logistic regression model (LR-L1) after SFS and 331 

the performance when using our developed MLP score alongside variables selected via recursive feature 332 

elimination (LR-L2-MLP score). Supplementary Table 6 displays features for each model, associated 333 

with LR-L1 algorithm after SFS. As we hypothesized, developing models using the MLP score (LR-L2-334 

MLP score) leads to improvement of the performance of linear models (LR-L1) for Models I, II, III, and 335 

IV, respectively from 79%, 72%, 73%, and 75% AUC to 82%, 78%, 77%, and 79% AUC.  Table 6 details 336 

the models with the best performance (highest AUC) using all 51 features before and after statistical 337 

feature selection (SFS). In Table 6, the means and standard deviations of AUC and weighted-F1 scores on 338 

the test set over the five repetitions are listed. Supplementary Table 7 displays the performance of all 339 

models and all algorithms, before and after statistical feature selection (SFS).  340 

 341 

Discussion 342 

Evaluating an at-risk population for PCOS is essential for early diagnosis and initiating multi-343 

disciplinary care with the goal of reducing health risks (endometrial hyperplasia/cancer), infertility and 344 

pregnancy complications, and chronic disease burden including cardiometabolic disorders associated with 345 

PCOS. Retrospective analysis of the at-risk population within an urban health center allows for 346 

assessment of factors predictive of diagnosis. Of note, the study sample represents a population of 347 

patients who had any visit to BMC for primary care, obstetrics and gynecology, endocrinology, family 348 

medicine, or general internal medicine and does not represent a random sample. While this is not a 349 

population level assessment, our model is applicable to patients with high suspicion for PCOS who 350 

interact with the healthcare system.  351 

The ranked list of variables, from the most predictive to the least predictive of the PCOS 352 

outcome, informed the main drivers of the predictive models. For example, non-gravidity, high levels of 353 

LH, low levels of FSH, obesity, and higher BMI increase the likelihood of PCOS. These variables are 354 

consistent with key variables from other models and in the pathophysiology of PCOS. The overall 355 

predictive accuracy was high for all models, suggesting that a predictive model may assist in early 356 

detection of PCOS within those at risk in an electronically interfaced medical record. Furthermore, we 357 

found that non-linear models had superior predictive capacity compared to linear models for all four 358 

model outcomes, potentially allowing for inclusion of non-linear reproductive hormone relationships.  359 

When assessing patients who received a diagnosis of PCOS (Model I), the most predictive factors 360 

related to diagnosis were hormone levels (as captured by the MLP score) and obesity, a clinical factor in 361 

supporting a PCOS diagnosis. Specifically, there is a non-linear relationship between reproductive 362 

hormones such as FSH, LH, and estradiol. Often these hormonal lab tests are obtained randomly in those 363 

with oligomenorrhea, and it is also common to find an elevated FSH to LH ratio. A concern may also be 364 

the misclassification of hypothalamic amenorrhea into the group classified as PCOS where the FSH and 365 

LH levels would be low or suppressed, or in the setting of premature ovarian insufficiency, notable by an 366 

elevated FSH and low estradiol. The MLP score allows for the diversity of relationships of these hormone 367 

levels and was trained using a neural network to appropriately classify PCOS. Additionally, prior 368 

pregnancy (gravidity) and a positive pregnancy test were negatively associated with a diagnosis of PCOS, 369 

consistent with the underlying increased risk of infertility due to oligo-ovulation. Normal BMI and 370 

smoking, a known ovarian toxicant, were negatively associated with the presence of a PCOS diagnosis, 371 
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which may indicate patient characteristics that increase risk of a delayed PCOS diagnosis. These 372 

identified variables demonstrate the robustness of the model towards predicting phenotypic traits of 373 

patients with PCOS, which is aligned with the performance accuracy. While the significant factors such 374 

as hormone levels, gravidity, bHCG, and obesity identified in the model are already known to be 375 

associated with PCOS, the true impact of our model lies within the implementation of such a tool within 376 

the EHR. For example, a real-world application of this model in the clinical setting would entail 377 

integration of our model into the electronic health record system that would provide the probability of 378 

PCOS diagnosis or set a threshold for suspicion for each patient to aid a provider’s evaluation. This 379 

would lead to more timely diagnosis and optimize referrals for downstream follow-up for known clinical 380 

sequelae associated with PCOS.  381 

When assessing patients who met diagnostic criteria without the ICD-9 label of PCOS (Models II 382 

and III), predictive factors both supported the underlying PCOS diagnosis and alluded towards factors 383 

that may contribute to missing the diagnosis despite meeting Rotterdam criteria. Similar to Model I, 384 

gravidity and a positive pregnancy test were negatively associated with Models II and III diagnosis, while 385 

obesity was positively associated with Models II and III diagnosis, consistent with Model I. Interestingly, 386 

distinct positive predictors among Models II and III were normal BMI, normal blood pressure, and 387 

normal HDL. These patients may present as the “lean” phenotype of PCOS or those with mild features, 388 

leading to underdiagnosis of PCOS. Diagnosing “lean” PCOS can be more nuanced, potentially delaying 389 

diagnosis or requiring more specialized consultation (28). Within our cohort, 1,116 individuals were 390 

identified by the model without the ICD-9 code that met Rotterdam PCOS diagnostic criteria (Model III), 391 

suggesting the predictive value of our models to identify at risk groups within a large health system and 392 

reduce delays in diagnosis. Given that women often wait over two years and see numerous health 393 

professionals before receiving a diagnosis of PCOS, the integration of high-quality AI-based diagnostic 394 

tools with the EHR could significantly contribute to more timely diagnosis (8).  395 

Consistent with Models I, II, and III, positive pregnancy test and gravidity were both negatively 396 

associated with PCOS diagnosis in Model IV while obesity and presence of hypertension were both 397 

positively associated with the Model IV combined PCOS outcome. Some higher degree of education, 398 

such as college or vocational/technical school, was also positively associated with the outcomes of 399 

undiagnosed PCOS and combined PCOS (Models II, III, and IV), which may suggest that education 400 

status and patient’s self-advocacy for seeking care within a medical system may be implicated specifically 401 

in under-diagnosed individuals. Of note, we dropped insurance status after finding that the null was a 402 

strong predictor of PCOS, though it is interesting to note that 83% of 331 patients in this dataset with 403 

missing insurance have PCOS. Insurance status alludes to socioeconomic barriers such as access to care, 404 

which can result in a delay in timely diagnosis through either inability to seek evaluation or follow 405 

through with testing. While the implications of insurance status and social determinants of health are 406 

beyond the scope of this paper, it is important to note that persistence in seeking treatment within a 407 

fractionated health care system can be challenging financially and psychologically, as patients may need 408 

multiple evaluation or specialist’s consultation to reach the right diagnosis.  409 

A recent systematic review investigated the utility of artificial intelligence and machine learning 410 

in the diagnosis or classification of PCOS (29). Their search ultimately included 31 studies with sample 411 

sizes ranging from 9 to 2,000 patients with PCOS. Methods employed by these models included support 412 

vector machine, K-nearest neighbor, regression models, random forest, and neural networks. Only 19% of 413 

included studies performed all major steps of training, testing, and validating their model. Furthermore, 414 

only 32% of included studies used standardized diagnostic criteria such as the Rotterdam criteria or NIH 415 

criteria. The authors found that the ROC of included studies ranged from 73-100%. Only one study 416 

sourced their data from electronic health records to build their model (30). Despite the lack of 417 

standardized model training and diagnostic criteria used in these studies, the review concluded that 418 

artificial intelligence and machine learning provide promise in detecting PCOS, allowing for an avenue 419 

for early diagnosis.  420 

Outside of the machine learning models included in the systematic review, other predictive 421 

models have been created for earlier detection of PCOS as well as for predicting long-term health 422 
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outcomes among women with a diagnosis of PCOS. One such model was created from 11,720 ovarian 423 

stimulation cycles at Peking University Third Hospital. The model used serum antimullerian hormone 424 

(AMH) and androstenedione levels, BMI, and menstrual cycle length to predict a diagnosis of PCOS. The 425 

algorithm was then developed into an online platform that is able to calculate one’s risk of PCOS given 426 

certain indicators that are inputted into the model, allowing for better screening abilities in the clinic (31). 427 

Another study created a similar model, taking into account AMH and BMI to predict a diagnosis of PCOS 428 

or other ovulatory dysfunction disorders among 2,322 women (10). They found that in women with 429 

higher BMIs and lower AMH levels could be used to predict PCOS compared to normal-weight or 430 

underweight women. Deshmukh et al. created a simple four-variable model which included free androgen 431 

index (FAI), 17-hydroxyprogesterone, AMH, and waist circumference for predicting risk of PCOS in a 432 

cross-sectional study involving 111 women with PCOS and 67 women without PCOS (32). Lastly, Joo et 433 

al. used polygenic and phenotypic risk scores to develop a PCOS risk prediction algorithm (33). They 434 

found high degrees of association between PCOS and various metabolic and endocrine disorders 435 

including obesity, type 2 diabetes, hypercholesterolemia, disorders of lipid metabolism, hypertension, and 436 

sleep apnea (33).  437 

In addition to the goal of improved screening for PCOS, models have been created to predict 438 

long-term clinical outcomes in women with PCOS, such as ovulation, conception, and live birth (11,12). 439 

Given the increased risk of insulin resistance in women with PCOS, Gennarelli et al. created a 440 

mathematical model to predict insulin sensitivity based on variables such as BMI, waist and hip 441 

circumferences, truncal-abdominal skin folds, and serum concentrations of androgens, SHBG, 442 

triglycerides, and cholesterol (13). Models to predict non-alcoholic fatty liver disease risk among young 443 

adults with PCOS have also been generated (34). Combining earlier detection with more accurate risk 444 

stratification of clinical sequalae through predictive modeling can significantly improve the long-term 445 

health outcomes of women with PCOS. Application of our models to predict other downstream health 446 

risks after the diagnosis of PCOS is a future area of research. 447 

Beyond the long-term health impacts of PCOS, the condition also carries a significant economic 448 

cost for our healthcare system. A study by Riestenberg et al (2022) recently estimated the total economic 449 

burden of PCOS, as well as the cost specifically for pregnancy-related complications and long-term health 450 

morbidities (2). The authors estimated the annual economic burden of PCOS to be $8 billion as of 2020 in 451 

the United States. Furthermore, the excess cost of pregnancy-related comorbidities such as gestational 452 

hypertension, gestational diabetes, and preeclampsia attributable to PCOS totals $375 million USD 453 

annually. Outside of pregnancy, the cost of long-term comorbidities associated with PCOS including 454 

stroke and type 2 diabetes mellitus was estimated at $3.9 billion USD. Meanwhile, the cost for diagnostic 455 

evaluation of PCOS was less than 2% of the total economic burden. This estimated financial burden 456 

suggests that predictive models aiding earlier diagnosis could not only reduce long-term health 457 

consequences of PCOS but also alleviate significant healthcare costs associated with the condition.    458 

Given the high prevalence, significant healthcare burden, and heterogeneity in clinical 459 

presentation of PCOS, AI-based tools are well suited for earlier diagnosis of PCOS. Our study had many 460 

strengths. First, our machine learning models, which were highly accurate and robust in PCOS diagnosis 461 

prediction, were created using the largest sample size to date (29). Second, our model was tested and 462 

trained on a diverse Safety-Net hospital-sourced population not restricted to the context of fertility care. 463 

Third, it is the only model that incorporated three data streams (ICD-9 codes, clinical laboratory findings, 464 

and radiologic findings) and an MLP score. Fourth, the parsimonious and interpretable models were very 465 

close in achieving full model predictive accuracy, performing relatively closely to the best-performing 466 

non-linear models. Essentially, our parsimonious models “isolate” nonlinearities in hormone levels 467 

(captured by the MLP score) and linearly combine that score with other variables. Most models evaluate 468 

reproductive hormones (FSH, estradiol, LH, and SHBG) as individual variables within linear models, 469 

which does not account for the high inter- and intra-patient variability. By using non-linear mapping of 470 

the hormone values, we were able to generate a composite variable allowing for a linear function that 471 

correlates with the likelihood of an accurate prediction. Last, our variables are easily accessible in an 472 

electronic health dataset, rendering the models helpful for clinical prediction. Our study did not evaluate 473 
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AMH as a predictive variable because it was not widely utilized during the time window of this data 474 

extraction corresponding with ICD-9 codes. 475 

Despite these strengths, our model is not without limitations. First, it is only directly applicable to 476 

those who interact with the medical system and those deemed “at-risk” for a PCOS diagnosis, which 477 

would not facilitate population-based prediction. Additional studies need to be conducted in other patient 478 

populations or unselected community-based populations to validate the use of these models, especially 479 

expanding to the entire population within a health system to evaluate the accuracy of our models (35). 480 

Second, we must interpret our data within the limitations of informative presence in EHR data. 481 

Informative presence is defined as data that is present and informed with respect to the health outcome, in 482 

this case PCOS, as well as behavioral patterns of interaction with healthcare institutions which may be 483 

additionally impacted by marginalization (36). This is an important consideration for interpreting 484 

predictive models using EHR data (36,37). Nevertheless, we were able to extract over 1000 patients who 485 

were undiagnosed with PCOS among the population, suggesting the predictive value of the modelling in 486 

identifying diagnosis gaps among specific populations within a large health system. Third, it is possible 487 

that additional examination of the medical record beyond ICD-9 diagnosis may allow for more 488 

clarification of risk in the presumed PCOS group. Last, our exclusion of concurrent endocrinopathies was 489 

chosen to avoid incorrectly including ovulation disorders caused by other endocrinopathies, but it is 490 

possible that this was an overly strict exclusion criterion.  491 

In conclusion, this novel machine learning algorithm incorporates three data streams from a large 492 

EHR dataset to assess PCOS risk. This model can be integrated into the EHR to aid clinicians in earlier 493 

diagnosis of PCOS and connect patients to interventions and healthcare providers across their 494 

reproductive lifespan with the goal of health optimization and risk reduction.   495 
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Table 1. Demographic characteristics of the study population and by model. 

Variable Model I Model II Model III Model IV 

Age, Mean years (SD) 33.6 (6.6) 33.7 (6.6) 33.7 (6.6) 33.6 (6.6) 

Race, n (%) 

Black/African American 11881 (40.3) 11824 (40.5) 11861 (40.5) 12395 (40.5) 

White/Caucasian 7812 (26.5) 7733 (26.5) 7741 (26.4) 8086 (26.4) 

Hispanic/Latina 2858 (9.7) 2837 (9.7) 2841 (9.7) 2929 (9.6) 

Asian 1350 (4.6) 1354 (4.6) 1354 (4.6) 1406 (4.6) 

Middle Eastern 175 (0.6) 176 (0.6) 176 (0.6) 184 (0.6) 

American Indian/Native American 163 (0.6) 162 (0.6) 162 (0.6) 168 (0.5) 

Native Hawaiian/Pacific Islander 17 (0.1) 18 (0.1) 18 (0.1) 18 (0.1) 

Other 979 (3.3) 966 (3.3) 966 (3.3) 1023 (3.3) 

Unknown 4250 (14.41) 4146 (14.19) 4153 (14.19) 4392 (14.4) 

Marital Status 

Single 22325 (75.7) 22155 (75.8) 22199 (75.8) 23224 (75.9) 

Married 5833 (19.8) 5753 (19.7) 5767 (19.7) 6018 (19.7) 

Separated 392 (1.3) 391 (1.3) 392 (1.3) 401 (1.3) 

Divorced 388 (1.3) 379 (1.3) 380 (1.3) 397 (1.3) 

Widowed 35 (0.1) 35 (0.1) 35 (0.1) 35 (0.1) 

Other 502 (1.7) 489 (1.7) 489 (1.7) 516 (1.7) 

Unknown 10 (0.03) 10 (0.03) 10 (0.03) 10 (0.03) 

Body Mass Index 

Normal (BMI < 25) 7534 (25.6) 7685 (26.3) 7697 (26.3) 7902 (25.8) 

Overweight (BMI between 25-30) 5694 (19.3) 5689 (19.5) 5707 (19.5) 5941 (19.4) 

Obese (BMI ≥ 30) 7645 (25.9) 7369 (25.2) 7387 (25.2) 7985 (26.1) 

Unknown 8612 (29.2) 8469 (29.0) 8481 (29.0) 8,773 (28.7) 

 

Table 2. Most significant variables for PCOS diagnosis prediction in Model I. 

Rank Variables � 
� � %95 

CI 
Y-

correlation p-value 
Y1-

mean 
Y0-

mean 
All-

mean 
All-
std 

0 MLP Score 0.71 0.028 0.33 
6.80E-

197 0.17 0.04 0.05 0.08 

1 Intercept -0.68 - - - - - - - 

2 Gravidity -0.53 0.018 -0.12 4.55E-78 1.28 2.08 2.04 1.39 
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3 Positive bHCG -0.5 0.019 -0.09 1.50E-48 0.05 0.23 0.22 0.42 

4 Obesity 0.45 0.017 0.11 1.38E-81 0.51 0.27 0.28 0.45 

5 Normal BMI -0.24 0.017 -0.05 3.57E-16 0.15 0.26 0.26 0.44 

6 Smoker -0.18 0.017 -0.03 6.62E-05 0.09 0.14 0.14 0.34 

7 Age -0.16 0.016 -0.08 1.70E-25 31.34 33.79 33.68 6.61 

8 
Hispanic/Latina 

Race -0.1 0.016 -0.02 1.82E-03 0.07 0.10 0.10 0.30 

 

Table 3. Most significant variables for PCOS diagnosis prediction in Model II. 

Rank Variables � 
� - %95 

CI 
Y-

correlation p-value 
Y1-

mean 
Y0-

mean 
All-

mean 
All-
std 

0 MLP Score 0.61 0.023 0.26 
2.13E-

142 0.12 0.04 0.04 0.06 

1 Intercept -0.44 - - - - - - - 

2 Age -0.27 0.015 -0.08 2.26E-31 31.01 33.79 33.69 6.61 

3 Gravidity -0.26 0.016 -0.09 2.35E-63 1.42 2.08 2.06 1.39 

4 Obesity  0.21 0.016 0.03 9.60E-06 0.34 0.27 0.27 0.44 

5 Positive bHCG -0.19 0.017 -0.06 4.14E-21 0.10 0.23 0.23 0.42 

6 
Hispanic/Latina 

Race -0.18 0.016 -0.02 2.69E-03 0.06 0.10 0.10 0.30 

7 Normal BP  0.16 0.015 0.03 1.37E-07 0.60 0.51 0.51 0.50 

8 Normal BMI 0.15 0.016 0.03 8.57E-07 0.34 0.26 0.26 0.44 

9 Negative bHCG 0.12 0.015 0.06 1.44E-22 0.37 0.23 0.23 0.42 

10 HDL 0.08 0.015 0.01 1.03E-10 52.13 51.59 51.61 7.86 

 

Table 4. Most significant variables for PCOS diagnosis prediction in Model III. 

Rank Variables � 
� - %95 

CI 
Y-

correlation p-value 
Y1-

mean 
Y0-

mean 
All-

mean 
All-
std 

0 MLP Score 0.6 0.023 0.26 
7.41E-

142 0.10 0.04 0.04 0.05 

1 Intercept - - - - - - - - 

2 Age -0.25 0.015 -0.08 5.91E-30 31.16 33.79 33.69 6.61 

3 Gravidity -0.24 0.016 -0.09 2.47E-63 1.46 2.08 2.06 1.39 

4 Positive bHCG  -0.20 0.017 -0.06 3.59E-20 0.11 0.23 0.23 0.42 

5 Obesity 0.19 0.016 0.03 2.73E-06 0.34 0.27 0.27 0.44 

6 Normal BP 0.17 0.015 0.04 3.94E-08 0.60 0.51 0.51 0.50 
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7 Hispanic/Latina Race -0.15 0.016 -0.02 2.00E-03 0.06 0.10 0.10 0.30 

8 Normal BMI 0.14 0.016 0.03 6.76E-06 0.33 0.26 0.26 0.44 

9 
Black/African American 

Race 0.13 0.015 0.02 2.03E-03 0.46 0.40 0.41 0.49 

10 Negative bHCG  0.12 0.015 0.06 2.20E-25 0.37 0.23 0.23 0.42 

11 HDL 0.09 0.015 0.01 4.06E-12 52.04 51.59 51.61 7.86 

 

Table 5. Most significant variables for PCOS diagnosis prediction in Model IV. 

Rank Variables � 
� - 

%95 CI 
Y-

correlation p-value 
Y1-

mean 
Y0-

mean 
All-

mean 
All-
std 

0 MLP Score 0.7 0.024 0.36 
0.00E-

01 0.20 0.07 0.08 0.10 

1 Intercept -0.44 - - - - - - - 

2 Gravidity -0.37 0.017 -0.14 
2.17E-

135 1.36 2.08 2.02 1.39 

3 Positive bHCG -0.34 0.017 -0.10 
2.23E-

65 0.08 0.23 0.22 0.41 

4 Obesity 0.31 0.015 0.10 
2.86E-

66 0.43 0.27 0.28 0.45 

5 Age -0.21 0.015 -0.10 
1.91E-

52 31.26 33.79 33.59 6.62 

6 Hispanic/Latina Race -0.12 0.015 -0.03 
2.34E-

06 0.07 0.10 0.10 0.29 

7 Smoker -0.08 0.015 -0.02 
3.00E-

04 0.11 0.14 0.14 0.34 

8 Hypertension 0.07 0.015 0.04 
3.63E-

12 0.28 0.21 0.22 0.41 

9 

Education – Some 
College/Technical/ Vocational 

School 0.06 0.014 0.03 
1.55E-

04 0.18 0.15 0.15 0.36 

10 Negative bHCG -0.05 0.015 0.05 
2.29E-

16 0.31 0.23 0.24 0.42 

 

Table 6. Model performance over the test set, in the format of mean percentage (SD percentage) over 5 

repetitions. 

 
Model I Model II Model III Model IV 

AUC F1-weighted AUC F1-weighted AUC F1-weighted AUC F1-weighted 

Best full 
models  

before SFS 

XGBoost (51 features) XGBoost (51 features) XGBoost (51 features) XGBoost (51 features) 

85.2 (1.8) 94.5 (0.2) 80.6 (0.5) 95.1 (0.2) 80.4 (0.7) 94.8 (0.1) 81.8 (1.4) 91.1 (0.4) 

Best full 
models  

after SFS 

XGBoost (14 features) XGBoost (16 features) XGBoost (17 features) XGBoost (17 features) 

83.6 (1.7) 94.5 (0.2) 80.5 (0.7) 95.1 (0.2) 79.8 (1.1) 94.8 (0.1) 81.1 (1.3) 90.9 (0.3) 
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LR-L1 (14 features) LR-L1 (16 features) LR-L1 (17 features) LR-L1 (17 features) 

79.2 (1.9) 93.9 (0.2) 71.7 (0.9) 94.7 (0.1) 72.9 (2.1) 94.4 (0.1) 74.8 (1.1) 89.7 (0.3) 

Parsimonious  
models  

LR-L2-MLP score (8 
features) 

Parsimonious  
models  

LR-L2-MLP score (10 
features) 

Parsimonious  
models  

LR-L2-MLP score (11 
features) 

Parsimonious  
models  

LR-L2-MLP score (10 
features) 

82.3 (1.7) 94.5 (0.1) 77.6 (1.3) 95.1 (0.1) 77.4 (1.6) 94.9 (0.1) 79.1 (1.1) 90.8 (0.3) 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 1, 2023. ; https://doi.org/10.1101/2023.07.27.23293255doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.27.23293255

