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Abstract  

Predictive modeling strategies are increasingly studied as a means to overcome clinical bottlenecks 

in the diagnostic classification of autism spectrum disorder. However, while some findings are 

promising in the light of diagnostic marker research, many of these approaches lack the scalability 

for adequate and effective translation to everyday clinical practice. In this study, our aim was to 

explore the use of objective computer vision video analysis of real-world autism diagnostic 

interviews in a clinical sample of children and adolescents to predict diagnosis. Specifically, we 

trained a support vector machine learning model on interpersonal synchrony data recorded in 

Autism Diagnostic Observation Schedule (ADOS) interviews of patient-clinician dyads. Our model 

was able to classify dyads involving an autistic patient (n=56) with a balanced accuracy of 63.4% 

against dyads including a patient with other psychiatric diagnoses (n=38). Further analyses revealed 

no significant associations between our classification metrics with clinical ratings. We argue that, 

given the above-chance performance of our classifier in a highly heterogeneous sample both in age 

and diagnosis, with few adjustments this highly scalable approach presents a viable route for future 

diagnostic marker research in autism. 
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1 Background  1 

Autism spectrum disorder is characterized by symptoms in social interaction and communication as 2 

well as repetitive behaviors. Typically diagnosed during childhood [1], autism is increasingly 3 

diagnosed in adulthood over the past years [2], with prevalence estimates around 1% [3]. Due to 4 

the lack of clear diagnostic markers, the current gold-standard diagnostic process requires multiple 5 

assessments with a trained interdisciplinary clinical team [4], including a diagnostic observation 6 

(e.g., Autism Diagnostic Observation Schedule, ADOS-2 [5]), neuropsychological tests, and an 7 

interview with a caregiver about the early developmental history (e.g., Autism Diagnostic Interview, 8 

ADI-R [6]). While thorough assessments are vital for correct diagnosis, the process itself is lengthy 9 

and resource-heavy, causing long waiting times which, thus, comes at a great cost for all involved.   10 

Due to the rising demand for diagnostics in recent years, attempts are increasingly made to 11 

advance the diagnostic process through personalized prediction approaches based on 12 

computational methods such as machine learning. One approach that naturally lends itself to 13 

further investigation is the data-driven investigation of existing diagnostic tools such as ADOS. 14 

Several studies have been conducted to improve the existing diagnostic algorithm by filtering out a 15 

subset of key items predictive for diagnosis. For example, using feature selection-based machine 16 

learning on a large data set of children’s ADOS results, Kosmicki et al. [7] significantly reduced the 17 

number of relevant items for accurate diagnostic prediction by more than 55%. Küpper and 18 

colleagues [8] found that diagnostic prediction performance for adolescents and adults with only 19 

five ADOS items was comparable to the originally proposed 11-item diagnostic algorithm. 20 

Nevertheless, this approach is prone to a certain circularity, given the outcome criterion, that is the 21 

clinical diagnosis of ASD, is heavily influenced by the features used for prediction [8]. Thus, using 22 

machine learning on objective and rater-independent datasets for the screening of potential 23 
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markers is desirable. Hence, several studies investigated structural or functional brain 24 

abnormalities as predictive markers in ASD [9], with promising accuracies especially for younger 25 

children [10]. However, methods such as magnetic resonance imaging lack scalability and are 26 

impractical to implement in standardized clinical practice. Additionally, those approaches pose 27 

special challenges for a sensory-sensitive study population such as autistic individuals. Thus, a more 28 

translational approach uses machine learning for diagnostic classification in ASD through digitally 29 

assisted diagnostics or digital phenotyping [11], which directly taps the symptomatic behavior. This 30 

approach combines the advantages of moving away from the human coding of behaviors while 31 

using more scalable methods such as tablet-based movement data or video analysis via computer 32 

vision techniques. For instance, Anzulewicz and colleagues [12] reported that a machine learning 33 

model trained to identify children with ASD based on their tablet-recorded motion trajectories 34 

performed with an accuracy of 93%. In a recent study, Jin et al. [13] developed a pipeline to 35 

objectively extract movement features correlated with clinicians’ ratings from children during ADOS 36 

interviews.   37 

Although autism is commonly referred to as a disorder of social interaction, thus, implying a certain 38 

degree of reciprocity, this aspect is challenging to assess objectively. The increasingly studied 39 

phenomenon of reduced interpersonal synchrony in ASD [14] provides such an opportunity. In a 40 

previous study [15], we found reduced interpersonal synchrony as derived from motion energy 41 

analysis (MEA [16]) in diagnostic interviews with autistic adults as compared to those who did not 42 

subsequently receive an autism diagnosis. Furthermore, we explored the predictiveness of 43 

interpersonal synchrony between autistic and non-autistic interactants on multiple modalities, 44 

finding high accuracy for the synchrony of facial and head movements [17].  However, these studies 45 

were conducted with adults, and while motor difficulties in autism tend to persist throughout 46 

adulthood [18], little is known about the predictive power of synchrony alterations in children.  47 
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In a study on video-based pose estimation, Kojovic et al. [19] investigated videos of ADOS 48 

interviews with small children. Their deep neural network analysis of multiple aspects of non-verbal 49 

interaction differentiated between autistic children and typically-developing (TD) children with an 50 

accuracy of 80.9% and additionally revealed associations between their model and the overall level 51 

of symptomatology. Thus, modeling based on direct extraction of predictive features from 52 

diagnostic videos opens a promising avenue for the clinical setting. 53 

Our aim in this proof-of-concept study was to investigate automatic video analysis as a scalable 54 

approach to screen for synchrony alterations as an objective marker to classify autism in children 55 

and adolescents. To this end, we trained several support vector machine (SVM) classification 56 

models using synchrony features extracted from videos of real-life ADOS interviews and 57 

investigated the associations of our classifiers’ outputs with professional clinical ratings. 58 

Importantly, to explore model specificity in a realistic clinical scenario, we used a representative 59 

clinical sample that included participants who were subsequently diagnosed with ASD as well as 60 

patients with other psychiatric diagnoses.  61 

 62 

2 Methods 63 

In the following, we report the details of our prediction model following the Transparent Reporting 64 

of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) guidelines [20]. 65 

2.1 Sample 66 

The ADOS videos and their related datasets were compiled from two different sources at Seoul 67 

National University Bundang Hospital: the patient pool of the psychiatric outpatient clinic for 68 

children and adolescents as well as from a study population of an unrelated study that included the 69 

ADOS. Therefore, the inclusion criteria and available data slightly differed. Patients referred to the 70 
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outpatient clinic underwent extensive clinical examination to evaluate the presence of an ASD or 71 

differential diagnosis. Additional information on comorbidities and medication for this subsample is 72 

available in the supplementary material (see Supplementary Table S4.1) and was not included in 73 

the final analysis. For the patients from the unrelated study, ADOS was performed as part of the 74 

study protocol, though the diagnosis had either already been suspected or given elsewhere. In 75 

contrast to the outpatient pool, exclusion criteria were applied in the unrelated study which 76 

comprised severe motor impairments restricting patients from engaging in the required ADOS 77 

activities, as well as sensory-related issues or selective mutism. No age limit applied.  78 

For all cases from both sources, the autism diagnosis was confirmed as a best clinical estimate 79 

consensus diagnosis by two psychiatrists, taking into account ADOS and ADI-R results, as well as 80 

other neuropsychological assessments.  81 

An overview of the current sample compilation procedure can be found in Figure 1. All available 82 

ADOS video materials were initially screened for the first occurrence of at least five minutes of 83 

consecutive and unobstructed footage for every participant based upon the following criteria: (a) 84 

steady camera position and constant lighting, (b) camera angle that includes the head and upper 85 

body of both participant and ADOS administrator, (c) both participant and administrator being 86 

seated throughout all video frames (i.e., no freeplay, no running around), (d) and no use of props. 87 

As only ADOS modules three and four include longer instances of free-flowing conversation, the 88 

final sample was comprised of these modules. Excerpts were taken from the tasks Emotion, 89 

Conversation and Reporting, Social Difficulties and Annoyance, Job/School Life, Friends, 90 

Relationships, and Marriage, and Loneliness. Due to the semi-structured nature of ADOS, the final 91 

clips differed in length, ranging from 5:15 minutes to 14:37 minutes (mean length = 7:20 minutes). 92 

Interviews were conducted by six different administrators. All videos had a frame rate of 29.95 93 

seconds.  94 
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The final dataset consisted of 56 participants with a diagnosis of ASD and 38 participants with other 95 

psychiatric conditions (i.e., n = 4 Intellectual Disability, n = 1 Developmental Delay, n = 10 ADHD, n = 96 

1 Tourette Syndrome, n = 4 Depressive Disorder, n = 1 Social Phobia, n = 1 Anxiety Disorder, n = 2 97 

Bipolar Disorder) or within the wider autism phenotype (n = 2), as well as n = 12 typically-98 

developing (TD) children (including 8 unaffected siblings). This resulted in two diagnostic group 99 

allocations: ASD-administrator or clinical control (CC)-administrator. 100 

 The authors assert that all procedures contributing to this work comply with the ethical standards 101 

of the relevant national and institutional committees on human experimentation and with the 102 

Helsinki Declaration of 1975, as revised in 2008. The study to use fully anonymized data collected 103 

retrospectively and prospectively were approved by the Institutional Review Board at Seoul 104 

National University Bundang Hospital (IRB no., B-1812-513-105; B-1912-580-304). Informed 105 

consent was obtained for the participant data collected prospectively from both participants and, in 106 

case the participant was a minor, their parent or legal guardian. A separate informed consent for 107 

the analysis of completely anonymized retrospective data was waived.  108 

 109 

[PLACEHOLDER FIGURE 1] 110 

 111 

2.2 Video pre-processing and synchrony computation 112 

Motion Energy Analysis (MEA) [16] was applied to all video clips, defining two regions of interest 113 

per participant and administrator (head and upper body). MEA extracts frame-to-frame gray-scale 114 

pixel changes. Keeping the camera position, lighting and background constant, all pixel changes 115 

above a manually set threshold represent movement within the regions of interest. After careful 116 

visual inspection of the resulting data quality, a threshold of eight was chosen for all videos.  117 
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Raw motion energy time series were subsequently forwarded to pre-processing using the RStudio 118 

package rMEA [21]. Videos were filmed in four different rooms. To account for potential biases of 119 

any distortions in the video signals, all MEA time series were scaled by standard deviation and 120 

smoothed with a moving average of 0.5 seconds, according to the default setting in rMEA. A 121 

comparison analysis of potential feature differences depending on the room can be found in the 122 

supplementary material (S2.2).  123 

Interpersonal synchrony between participant and administrator in their head and body motion was 124 

computed with windowed cross-lagged correlations. In line with a previous analysis of diagnostic 125 

interviews with autistic adults [15], a window size of 60 seconds was chosen. To capture all 126 

instances of synchrony, time series were cross correlated with lags of 5 seconds and increments of 127 

30 seconds. All values in the resulting cross-correlation matrices were converted to absolute Fisher 128 

Z values. Time series were subsequently shuffled and randomly paired into 500 pseudodyads. Cross 129 

correlations were conducted in the same manner, yielding a measure of pseudosynchrony per 130 

artificial dyad. They were subsequently compared to the interpersonal synchrony values to assess 131 

whether the interpersonal synchrony values were above-chance. Detailed results can be found in 132 

the supplementary material (S2.3). 133 

Moreover, following procedures from Georgescu et al. [22], intrapersonal head and body 134 

coordination was computed for every patient, using window sizes of 30 seconds, lags of 5 seconds 135 

and a step size of 15 seconds.  136 

Lastly, we derived the head and body movement quantity per participant from the respective MEA 137 

time series. Following previous procedures [15,23], they were defined as the number of frames 138 

with changes in motion energy divided by the total number of frames, resulting in four values per 139 

dyad (two for participant and administrator, respectively).  140 
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In addition to the processing of motion, we submitted our videos to an exploratory vocal output 141 

analysis. For this purpose, the audio tracks of the selected clips were processed with the software 142 

Praat [24] to semi-automatically extract annotations of intervals of vocalizations and silences. As 143 

there was no speaker distinction within the audio tracks, this analysis was considered exploratory 144 

and is not included in the main machine learning analysis. Details can be found in the 145 

supplementary material (S1.1). 146 

 147 

2.3 Feature engineering 148 

Because the videos in our sample varied in both length and conversational content (see 149 

Supplementary Material S2.1), as well as to account for the interview context, our aim was to gain 150 

the best estimate of the overall synchrony (i.e., instances in and out of synchrony). For this reason, 151 

summary statistics of each cross-correlation matrix were computed (i.e., minimum, maximum, 152 

mean, median, standard deviation, skew, and kurtosis), resulting in seven features per participant-153 

administrator dyad and region of interest (ROI). We additionally computed the same summary 154 

statistics for the intrapersonal head-body coordination of each participant. This approach slightly 155 

differed from a previous study [17], where we were interested in the trajectory of maximum 156 

synchrony instances during naturalistic and free-flowing conversations. To comply with previous 157 

procedures, we additionally computed a feature set using a peak-picking algorithm to obtain a 158 

measure of the trajectory of the highest synchrony instances during each interview. Details and 159 

results can be found in the supplementary material (S2.4). 160 

The final feature set for each dyad consisted of 25 features per participant-administrator dyad (see 161 

Supplementary Table S4.2): seven interpersonal synchrony features per dyad and ROI (head and 162 

body), seven features for the intrapersonal head-body coordination of every participant, as well as 163 

four features for the individual amount of head and body movement of both interactants. IQ and 164 
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sex of the participant were additionally included as features in a second model, as both are 165 

frequently associated with autism symptomatology and the likelihood of receiving a diagnosis 166 

[25,26].  167 

 168 

2.4 Support Vector Machine (SVM) Learning Analyses 169 

We trained two separate binary machine learning models to classify between dyad type: (1) a 170 

“behavioral” model containing only synchrony data objectively extracted from the videos (MEA), 171 

and (2) a model additionally containing sex and IQ as demographic features (MEA + DEMO). Age 172 

was regressed out in both models. By constructing two separate models, we could explore whether 173 

demographic features frequently associated with ASD might improve the purely behavioral 174 

predictive performance. A L1-loss LIBSVM algorithm was chosen for both models, as it is frequently 175 

used in psychiatric research [27], known to perform robustly with reduced sample sizes [28]. In 176 

each model, the SVM algorithm independently modeled a linear relationship between features and 177 

classification labels by optimizing a linear hyperplane in a high-dimensional feature space to 178 

maximize separability between the dyads. Subsequently, the data was projected into the linear 179 

kernel space and their geometric distance to the decision boundary was measured. Thus, every 180 

dyad was assigned a predicted classification label and a decision score. 181 

Machine learning analyses were conducted in NeuroMiner (Version 1.1; 182 

https://github.molgen.mpg.de/pages/LMU-Neurodiagnostic-Applications/NeuroMiner.io/) [29], an 183 

open-source mixed MATLAB [30]-Python-based machine learning library. To prevent any possibility 184 

of information leakage between training and testing data, our diagnostic classifiers were cross-185 

validated in a repeated, nested, stratified cross-validation scheme. We used ten folds and ten 186 

permutations in the outer CV loop (CV2) and ten folds and one permutation in the inner loop (CV1). 187 

Specifically, at the CV2 level, we iteratively held back 9 or 10 participant-administrator dyads as test 188 
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samples, while the rest of the data entered the CV1 cycle, where the data were again split into 189 

training and validation sets. This way training and testing data were strictly separated, with hyper-190 

parameter tuning happening entirely within the inner loop while the outer loop was exclusively 191 

used to measure the classifier’s generalizability to unseen data and generate decision scores for 192 

each dyad in this partition. This process was repeated for the remaining folds, after which the 193 

participants were reshuffled within their group and the process was repeated nine times, producing 194 

10x10=100 decision scores for each held out participant. The final median decision score of each 195 

held out dyad was computed from the scores provided by the ensemble of models in which given 196 

dyad had not been used at the CV1 level for training or hyperparameter optimization. Additionally, 197 

the stratified design ensured that the proportion of the diagnostic groups in every fold would 198 

adequately reflect the proportion of the diagnostic group in the full sample and, thus, guarantee 199 

that each class is equally represented in each test fold to avoid bias during model training.  200 

The preprocessing settings for the respective models can be found in Table 1. 201 

Class imbalances were corrected for by hyperplane weighting. Balanced Accuracy (BAC = 202 

[sensitivity+specificity]/2) was used as the performance criterion for hyperparameter optimization. 203 

The C parameter was optimized in the CV1 cycle using 11 parameters within the following range: 204 

0.0156, 0.0312, 0.0625, 0.1250, 0.2500, 0.5000, 1, 2, 4, 8, and 16, which represent the default 205 

settings in NeuroMiner [29]. Model significance was assessed through label permutation testing 206 

[31], with a significance level α = .05 and 1000 permutations. The permutation testing procedure 207 

determines the statistical significance of a model’s performances (i.e., BAC) by using the current 208 

data compared to models trained on the dataset but with the labels randomly permuted. The 209 

predictive pattern of the models was extracted using cross-validation ratio (CVR) and sign-based 210 

consistency. Firstly, CVR was computed as the mean and standard error of all normalized SVM 211 

weight vectors concatenated across the entire nested CV structure. CVR measures pattern element 212 
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stability and was defined as the sum across CV2 folds of the CV1 median weights divided by their 213 

respective CV1 standard error, all of which was subsequently divided by the number of CV2 folds 214 

[32]. Secondly, we used the sign-based-consistency method [33] to test the stability of the 215 

predictive pattern by examining the consistency of positive and negative signs of the feature weight 216 

values across all models in the ensemble (see Supplementary Material S1.2 for additional 217 

information). Feature stability was assessed for statistical significance at α = .05, using the 218 

Benjamini-Hochberg procedure of false discovery rate correction (FDR) [34]. 219 

 220 

[PLACEHOLDER TABLE 1] 221 

 222 

2.5 Associations of SVM model and clinical variables 223 
 224 
To investigate potential underlying clinical factors associated with our classification models, post-225 

hoc correlation analyses with the SVM decision scores and ADOS, as well as ADI scores were 226 

performed in RStudio (version 2022-07.2) [35]. A dyad’s predicted SVM decision score represents 227 

their distance from the hyperplane. ADOS scores included domain scores for social affect (SA) and 228 

restricted and repetitive behaviors (RRB), as well as the total score (Total). Because our sample 229 

included data from both modules three and four, calibrated severity scores [36,37] were used for 230 

the correlation analyses for better comparison. For ADI-R, ratings on three subdomains based on 231 

caregiver report were used: reciprocal social interaction (A), social communication (B), and 232 

restricted and repetitive behaviors (C). Statistical significance was determined at α = .05 and two-233 

sided p values were corrected for multiple comparisons using FDR. 234 
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2.6 Exploratory SVM analysis 235 

To further address the specificity of synchrony, given that phenotypic movement difficulties overlap 236 

in neurodevelopmental disorders (e.g., dyspraxia and autism, or hyperkinetic movement in ADHD), 237 

the MEA classifier was retrained within the same sample but using different class labels: i) a 238 

neurodevelopmental disorders class, which grouped all 74 patients with a diagnosis of a 239 

neurodevelopmental disorder as defined by DSM-5 [38] (n = 56 ASD, n = 10 ADHD, n = 1 240 

Developmental Delay, n = 1 Tourette Syndrome, n = 4 Intellectual Disability, n = 2 Broad 241 

Spectrum/Pervasive Developmental Disorder – Not Otherwise Specified (PDD-NOS)), and ii) a 242 

clinical control group consisting of the 20 patients with other psychiatric diagnoses or typically-243 

developing participants (n = 12 TD including 8 unaffected siblings, n = 1 Anxiety Disorder, n = 2 244 

Bipolar Disorder, n = 4 Depressive Disorder, n = 1 Social Phobia). The stratified CV structure was 245 

adapted accordingly.  246 

 247 

3 Results  248 

3.1 Sample Description  249 
 250 
A description of the final sample grouped according to the ADOS module can be found in Table 2. A 251 

chi-square test of independence revealed no significant association between the diagnostic group 252 

and sex (c2(1,94) = .045, p = .831). Though naturally participants across both modules differed in 253 

age, there was no significant difference in age between diagnostic groups within each module. 254 

Because final diagnosis was partly based on ADOS and ADI-R results, autistic patients across both 255 

modules had significantly higher ADOS as well as ADI-R scores compared with the clinical control 256 

group. Best-estimate IQ values were significantly higher in the CC group for module 3. This effect 257 
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was reversed in module 4, with autistic patients scoring significantly higher on their respective IQ 258 

assessment. 259 

[PLACEHOLDER TABLE 2] 

 

3.2 SVM Classification Performance and Feature Importance 260 

Using only motion energy analysis data and regressing out age, our MEA model was able to classify 261 

interview dyads with an autistic participant as opposed to those with other psychiatric diagnoses 262 

with a BAC of 63.4% (Figure 2). Detailed performance metrics, i.e., sensitivity, specificity, accuracy, 263 

positive and negative predictive values, and Area-Under-the-Receiver-Operating-Curve (AUC) can 264 

be found in Table 3. There was no significant residual association between age (M = 13.53, SD = 265 

4.70) and the model’s resulting decision scores (M = .19, SD = .89) after regressing out age during 266 

pre-processing (rPearson = .06, p = .558). The model that additionally included sex and IQ as features 267 

(MEA + DEMO) had a lower BAC of 59.4% (Sensitivity = 71.4%, Specificity = 47.4%, AUC = .58[CI = 268 

.46 - .70], also see S4.3 Supplementary Table).  269 

 

[PLACEHOLDER FIGURE 2] 

 
 
A closer investigation of the cross-validation ratio revealed that classification towards the autism-270 

administrator dyads was driven by higher kurtosis and skewness of their body synchrony values 271 

(Figure 3a). This means that a dyad with more pronounced outliers in their body synchrony, 272 

especially in the positive direction, was considered more autistic. In contrast, our model considered 273 

higher mean body synchrony values as non-autistic. Sign-based consistency revealed that this effect 274 

was relatively stable (Figure 3b). Interestingly, the opposite effect was visible for head synchrony: 275 

higher kurtosis and skewness of head synchrony values were considered non-autistic, whereas 276 
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higher mean head synchrony values were considered autistic. However, this was not consistent and 277 

of less feature importance than body synchrony.  278 

A closer look at the movement parameters of both participant and administrator revealed that 279 

more movement by the administrator was taken into account when classifying an autistic dyad, 280 

whereas more movement by the participant was classified as a clinical control dyad. 281 

A comprehensive list of cross-validation ratios and sign-based consistencies for all features of the 282 

MEA model can be found in the Supplementary Material (Supplementary Figures 2 and 3). 283 

 

 [PLACEHOLDER FIGURE 3] 

 

3.3 Associations between SVM model scores and clinical variables 284 
 285 
We conducted a range of correlation analyses of the resulting SVM scores of our models with 286 

ADOS-2 [5]  and ADI-R [6] domain and total scores (Figure 4). ADI-R data was incomplete for ten 287 

participants, who were discarded from the respective analysis.   288 

In general, classification towards the autistic group was loosely associated with higher ADI-R ratings 289 

on all three scales, although these findings were not statistically significant. No significant 290 

associations were found for the ADOS ratings. Detailed correlation results can be found in S4.4 291 

Supplementary Table. 292 

 293 

[PLACEHOLDER FIGURE 4] 

 294 
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3.4 Exploratory SVM analysis: NDD vs. CC 295 

When regrouping the present sample and classifying participants with neurodevelopmental 296 

disorders in general and clinical controls based on motion energy synchrony (analogous to the MEA 297 

model), the BAC decreased to 56.1% (Table 3). 298 

 299 

[PLACEHOLDER TABLE 3] 300 

 301 

4  Discussion  302 

This proof-of-concept study aimed to explore the predictability of autism from non-verbal aspects 303 

of social interactions between participants and clinicians using videos of real-life diagnostic 304 

interviews. Our classification algorithm solely trained on objectively quantified synchrony values 305 

was able to predict autism in a representative clinical sample with a BAC of 63.4%. A separate 306 

model including demographic features frequently associated with the likelihood of an autism 307 

diagnosis (i.e., sex and IQ) yielded a lower balanced accuracy and, thus, did not improve predictive 308 

performance. Feature importance analyses revealed the impact of body synchrony and movement 309 

quantity for diagnostic classification. Slight but non-significant associations were found with ratings 310 

based on parent’s reports (ADI-R), while we did not find any visible associations with ratings by 311 

clinicians. When classifying neurodevelopmental disorders in general against other psychiatric 312 

diagnoses, accuracy was lower than the base model, possibly suggesting a non-verbal social 313 

interaction signature specific to autism.  314 

Compared to Kojovic et al. [19], the accuracy of our classifier based on motion energy synchrony 315 

data between participants and administrators was reduced. This might be due to several reasons: 316 

First, our sample was heterogeneous in terms of diagnosis and age. Instead of classifying ASD 317 
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against TD children, our classifier was trained on a real-life clinical sample, including a range of 318 

diagnoses often co-occurring in autism. Reduced interpersonal synchrony has been reported for 319 

adults with other psychiatric diagnoses such as depression [39] and schizophrenia [40]; the former 320 

being a frequent co-occurring condition in ASD [41] and the latter sharing phenomenological 321 

overlaps with autism [42]. For the sake of completeness, we included information on comorbidities 322 

and medication in the supplementary material. However, due to the limited availability of this 323 

information for many participants, we did not run any analyses on these data. Future studies 324 

should investigate the influence of co-occurring and differential diagnoses by, e.g., running 325 

clustering analyses. We controlled for the large age range (5.5 – 28.7 years) present in our sample 326 

by including chronological age as a covariate, leaving no significant residual association of the 327 

model’s decision scores with age. However, while reduced interpersonal synchrony has been found 328 

across the lifespan of individuals on the autism spectrum [14], they have yet to be investigated in 329 

direct comparison and the association to general motor skills remains unclear. In our sample, the 330 

continuing development of motor skills with age could have resulted in larger heterogeneity of the 331 

ability to synchronize and reduced classification performance. Another approach to increase 332 

classification performance could incorporate multi-modal aspects of synchrony. In the present 333 

study, we focused on head and body motion synchrony. However, previous research has shown 334 

high predictability of, e.g., facial expression synchrony [43]. In fact, we previously found that facial 335 

expression synchrony between two adults was superior to body movement synchrony in predicting 336 

autism [17]. As our videos were filmed from a side perspective, the automated analysis of facial 337 

expression with current algorithms requiring the presence of certain facial key points was not 338 

possible. However, slight changes in the setup, i.e., including frontal recording of distinct facial 339 

movements, could possibly improve predictive performance in the future. Additionally, the 340 

synchronization of speech and vocal output in interactions has been found to be reduced in autism 341 
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[44,45]; although, the generalizability of vocal markers across studies is rather limited as suggested 342 

by a recent investigation [46]. Furthermore, closer investigation of more fine-grained non-verbal 343 

aspects of social interaction provides the distinct advantage such that markers across the entire 344 

spectrum could be explored, given that an estimated 25% of individuals on the autism spectrum are 345 

non-verbal [47].  Thus, the approach presented in this study is straightforward to adapt for this 346 

purpose.  347 

When closely assessing the feature weights, we found that the classification was driven by body 348 

synchrony and the clinician’s total amount of body movement. More specifically, classification 349 

towards the autistic group was driven by greater movement by the administrator, while more 350 

participant movement was associated with classification towards the clinical control group. As MEA 351 

is a measure of motion energy rather than a measure of movement quality, this might possibly also 352 

reflect a unique feature of the diagnostic interview context, i.e., the clinician documenting on a 353 

clipboard and tending to document more meticulously if a patient exhibited more conspicuous 354 

behaviors. In contrast, our clinical control group included patients with attention deficit 355 

hyperactivity disorder (ADHD), a diagnosis commonly associated with elevated movement [38]. 356 

While this suggests a tendency of our model to classify movement, rather than synchrony, definite 357 

interpretations of the feature weights should be exhibited with caution before being validated on a 358 

larger sample.  359 

Contrary to Kojovic and colleagues [19], we could not detect significant associations between our 360 

classifier based on synchrony data and clinical variables in our sample. This could be due to the 361 

differences of sample characteristics between both studies. Importantly, the former study classified 362 

children with autism against TD children. In clinical outpatient units the representative comparison 363 

group is heterogeneous concerning differential diagnoses. As such, our comparison group was 364 

more heterogenous with regard to diagnosis as it included children with other psychiatric diagnoses 365 
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or social communication difficulties. Decreased specificity of ADOS in populations more 366 

representative of the real-world clinical setting has been reported in previous studies [48,49]. This 367 

was also visible in the overlap of ADOS and ADI severity scores between both groups in our sample.  368 

In an exploratory analysis to increase accuracy, we employed a SVM classification on a re-labelled 369 

sample, grouping ASD with other neurodevelopmental disorders as defined by the DSM-5 [38]. 370 

However, this model performed slightly above chance, suggesting a synchrony signature specific to 371 

autism. Yet, we recognize that this finding needs external validation in order to be further 372 

interpreted. 373 

Our study has several limitations that should be considered: First, the videos analyzed in this study 374 

were not initially recorded for the purpose of automated machine learning-based analysis 375 

procedures. For this reason, the setup varied regarding background and camera angles depending 376 

on the different rooms. This could also have contributed to the lack of significant differences in our 377 

comparison to pseudo-synchrony (see Supplementary materials S2.3). However, we consider this a 378 

feature, rather than a flaw of our approach. When comparing the synchrony values between the 379 

different rooms, we could not detect significant differences, underling the scalability of our setup. 380 

This is in line with Kojovic and colleagues [19] who investigated their computer vision algorithm 381 

with two validation samples, finding minimal influence of video conditions. However, for future 382 

reference, we have compiled recommendations for a more standardized recording protocol of 383 

ADOS which can be found in the supplementary material (S3). Additionally, we recommend the use 384 

of separate microphones to allow for more elaborate analyses of verbal interaction, as well as the 385 

use of cameras for more fine-grained facial expression analyses.  386 

Secondly, because our videos differed in length, the use of summary statistics as best estimate 387 

measures of interpersonal synchrony were deemed most suitable. However, this approach cannot 388 

capture the temporal dynamics of synchrony throughout a conversation. During free-flowing 389 
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conversations, interactants tend to move in and out of synchrony over time [50], suggesting a 390 

certain flexibility in interpersonal alignment. However, no clear evidence exists regarding interview 391 

contexts. Thus, future research should investigate synchrony trajectories in more standardized 392 

experimental settings. 393 

Moreover, the diagnostic label of the participants in our sample was partly influenced by the results 394 

of ADOS and ADI-R. Thus, while the follow-up correlation analyses might shed light on underlying 395 

commonalities in autistic symptomatology between participants in our classification, they are not 396 

conclusive.  397 

Finally, and importantly, even though we have implemented a careful and rather conservative 398 

cross-validation structure within our model, the sample size in this study is limited, and the results 399 

require external validation. As this study served as a proof-of-concept, the present videos were 400 

chosen based on a meticulous screening process, which consequently resulted in a high number of 401 

exclusions. For example, we only analyzed video excerpts of more than five minute in length and 402 

without the use of any external props; the latter of which is an important part of the ADOS 403 

assessment. However, we are confident that the high scalability of the methodology used in this 404 

study will encourage future data collection and, hence, further external and cross-site validation. In 405 

this regard, it will be important to analyze any effects of relaxed inclusion criteria concerning, e.g., 406 

the minimum length of an analysis window for a feasible synchrony assessment.  407 

While clinicians’ judgments continue to outperform computational algorithms in their diagnostic 408 

precision [51], the notion of digital augmentation of the diagnostic process could prospectively 409 

loosen the current bottlenecks caused by resource-exhaustive clinical assessments. Considering the 410 

aforementioned limitations, we present a viable route toward a digitally assisted diagnostic process 411 

in autism. Using a heterogeneous dataset, both in age and technical setup, our classification model 412 

could detect ASD in a clinical sample with an above-chance accuracy. With few adjustments 413 
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regarding the standardization of the experimental setup, including possibilities to record nuanced 414 

facial expression and vocal output, the strength of our approach has the potential for high 415 

scalability in everyday clinical practice.  416 

 417 
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10 Figure Legends 
 
10.1 Figure 1. Consort chart of the current sample compilation. 

 
10.2 Figure 2. SVM classification results of ASD vs. CC patient-administrator dyads 

  
Note. Figure depicts mean classifier scores of each dyad in the model containing only MEA data, resulting in a balanced classification 
accuracy of 63.4%. The further the score is from the decision boundary, the more likely this dyad was predicted as belonging to their 
respective class.  

 
10.3 Figure 3. Feature importance of SVM model 
 
Note. Only the ten most important features are depicted. a. Cross-validation ratio.  Figure depicts the sum across CV2 folds of the 
selected CV1 median weights divided by the selected CV1 standard error, which is subsequently divided by the number of CV2 folds. 
Absolute values >= 2 correspond to p <= .05, absolute values >=3 correspond to p <= .01. b. Sign-based consistency. The importance of 
each feature was calculated as the number of times that the sign of the feature was consistent. The depicted scores represent the 
resulting negative logarithm of p values that were corrected using the Bonferroni-Holm false-discovery rate. Sign-based consistency -
10log(p) >= 1.3 is equivalent to p <= .05. 

 
10.4 Figure 4. Association between SVM decision scores of MEA classifier and ADI and ADOS 

domain scores 
 
Note. ADOS scores were transformed to calibrated severity scores following procedures in [36,37]. It should be noted that while the 
initial class labelling was heavily influenced by both ADOS-2 and ADI-R results, nevertheless, they were not sufficient for diagnosis in 
this sample. 
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11 Tables 
 
11.1 Table 1. SVM Classification Model Descriptions 

Model Features Preprocessing Pipeline 
MEA Interpersonal head synchrony (7) 

Interpersonal body synchrony (7) 
Intrapersonal head-body coordination of patient (7) 
Total head and body movement (4) 

1. Scaling between 0 and 1 
2. Pruning of non-informative features (zero variance, infinite 

values) 
3. Age as covariate (partial correlation) 

MEA + DEMO Interpersonal head synchrony (7) 
Interpersonal body synchrony (7) 
Intrapersonal head-body coordination of patient (7) 
Total head and body movement (4) 
IQ (1) 
Sex (1) 

1. Scaling between 0 and 1 
2. Pruning of non-informative features (zero variance, infinite 

values) 
3. k-nearest neighbor imputation of missing values 
4. Age as covariate (partial correlation) 

Note. Number of features of respective modality in parentheses. Missing IQ values (16% of cases) were imputed using k-nearest neighbor imputation. 
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11.2 Table 2. Sample description and demographic group differences across subsamples 

Module 
 ASD  

(n = 56, 11 female) 
CC  
(n = 38, 9 female) 

T test Effect size 

 n M SD n M SD t df p 
3 Age 37 11.35 2.79 27 10.68 2.74 0.96 56.80 .339 .244 

 IQ  33 92.09  20.87 20 103.55 17.05 -2.18 46.44 .035 -.601 

 ADOS_SA  37 10.05 2.89 27 5.37 3.65 5.53 47.94 < .001 1.42 

 ADOS_RRB 37 1.27 1.54 27 .26 .59 3.64 49.36 .001 .867 

 ADI-R_A 36 17.58 6.38 24 6.25 5.53 7.30 53.99 < .001 1.90 

 ADI-R_B 36 13.00 4.67 24 4.58 4.09 7.38 53.71 < .001 1.92 

 ADI-R_C 36 4.81 2.62 24 1.12 1.39 7.07 55.75 < .001 1.76 

4 Age 19 18.26 3.05 11 19.69 4.18 -1.00 16.25 .334 -.392 

 IQ  18 95.56 17.52 8 77.25 12.34 3.05 18.91 .007 1.21 

 ADOS_SA 19 10.74 4.11 11 5.82 3.95 3.24 21.73 .004 1.22 

 ADOS_RRB 19 2.05 1.75 11 .73 1.01 2.63 27.99 .014 .929 

 ADI-R_A 16 14.31 7.91 8 6.50 4.87 2.98 20.77 .007 1.19 

 ADI-R_B 16 10.44 4.70 8 4.88 3.80 3.12 17.16 .006 1.30 

 ADI-R_C 16 4.81 2.61 8 1.75 1.49 3.65 21.44 .001 

 

1.44 

Note. Full Scale IQ depicted as best estimate depending on age (WISC-III, WISC-IV, WPPSI-IV, WAIS à Korean versions); group comparisons computes using Welch’s t-test for unequal variances, p value 
adjusted for multiple testing with Bonferroni-Holm correction, Effect size cohen’s d 
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11.3 Table 3. Classification metrics for SVM classifiers based on Motion Energy Synchrony Analyses between Patient and Administrator. 
Classifier BAC 

(%) 
Sensitivity (%) Specificity (%) AUC TN TP FN FP Accuracy (%) Number needed 

to diagnose 
Positive 
likelihood ratio 

Diagnostic odds 
ratio 

Permutation test, p 
value 

ASD vs. CC 63.4 76.8 50.0 .61 19 43 13 19 66.0 3.7 1.5 2.4 <.001 

NDD vs. CC 56.1 62.2 50.0 .52 10 46 28 10 59.6 8.2 1.2 1.5 .005 

Note. Both classifiers were trained on the same sample, regrouping patients under different labels. The NDD group contained, additionally to patients with ASD, patients with Intellectual Disability, 
Developmental Delay, ADHD, Tourette Syndrome, and Broad Spectrum/PDD-NOS. ASD = Autism Spectrum Disorder. CC = Clinical Control. NDD = Neurodevelopmental Disorder. BAC = Balanced Accuracy. AUC = 
Area Under The Receiver Operating Curve. TN = True Negatives. TP = True Positives. FN = False Negatives. FP = False Positives. 
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Group Allocation
N = 94

Motion Energy Analysis + 
Synchrony Analysis

Eligibility Screening

Criteria:
- Camera angle
- 5 minutes 

unobstructed footage

Speech Analysis

SVM Classification

ASD - administrator
n = 56

CC - administrator
n = 38

Outpatient clinic
N = 50

Unrelated study
N = 62

n = 10 excludedn = 8 excluded
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