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Abstract 

Aims 

Diabetes is one of the leading causes of morbidity and mortality in the United States and worldwide. 

This research aimed to develop an artificial intelligence (AI) machine learning model which can 

detect the presence of diabetes from fundus imagery of eyes without diabetic eye disease.  

Methods 

Our researchers trained a machine learning algorithm on the EyePACS dataset, consisting of 47,076 

images. Patients were also divided into cohorts based on disease duration, each cohort consisting of 

patients diagnosed within the timeframe in question (e.g., 15 years) and healthy patients.  

Results 

The algorithm achieved 0.83 area under receiver operating curve (AUC) in detecting diabetes per 

image, and AUC 0.86 on the task of detecting diabetes per patient. 

Conclusion 

Our results suggest that diabetes may be diagnosed non-invasively using fundus imagery alone. This 

may enable diabetes diagnosis at point of care, as well as other, accessible venues, facilitating the 

diagnosis of many undiagnosed people with diabetes.   
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Introduction 
Instances of diabetes, one of the leading causes of morbidity and mortality in the United States, are 

rapidly increasing and projected to continue climbing. Worldwide, an estimated 536.6 million were 

living with diabetes in 2021, with an anticipated 46% increase by 2045.1 As of 2019, it is estimated 

that a total 37.3 million (11.3%) Americans have diabetes,2 with projections placing the prevalence 

of diabetes in 2031 at roughly 14%.3,4 As a whole, diabetes patients report much higher rates of 

medical disability than those of the general American population, including disabilities resulting from 

or comorbid with diabetes.
2
 Among these are vision disabilities, cardiovascular disease, lower-

extremity amputation, and chronic kidney disease.
2,5

 While many of these are preventable or may be 

mitigated with proper care, they are rarely reversible and may develop before treatment is begun.6 

As such, early diagnosis is critical to the disease management and continuing health of many 

Americans. Fasting glucose and glycated hemoglobin blood test screening are currently the most 

established and accepted tools for the diagnosis of diabetes. While both have been shown to be 

accurate,
7,8

 an estimated 23% of adults with diabetes in the United States and 44.7% of the global 

adult population with diabetes remain undiagnosed.
2,9

 

The eye, and the retina in particular, is a convenient and accessible window into the body in that it is 

the only place where neural, vascular, and connective tissues may be viewed non-invasively. Much 

like ocular disorders visibly manifest in the eye, systemic disorders may have manifestations in the 

fundus, allowing the detection, diagnosis, and monitoring of these diseases. Recent work has shown 

that even “healthy” fundus images, i.e., images with no humanly diagnosable disorders, can be 

informative and predictive when presented to a machine learning algorithm. Artificial intelligence 

(AI) algorithms have shown the ability to interpret subclinical information from retinal anatomy in 

order to make predictions about systemic indications, such as cardiovascular risk factors,10 

biomarkers including muscle mass and height,
11

 and chronic kidney disease (CKD) and diabetes.
12

 

Additionally, a pivotal FDA study by our group reported on clinical validation for the diagnosis of 

diabetic retinopathy from a single image per eye, with sensitivity and specificity both significantly 

above 90%.13 

One of the key arguments in favor of the use of AI in healthcare is that of scalability.
14–16

 Records 

may be reviewed, data aggregated, and patients diagnosed in the time it would typically take a 

doctor to see a patient. Additionally, the portability of many AI systems allows patients access to 

healthcare in areas or locations that are typically underserved or unvisited by specialists. Although a 

lack of stable computational infrastructure and resources remains a challenge in particularly low-

resource areas and settings, AI systems which utilize smartphones and handheld cameras have been 

shown to be effective.
16,17

 More specifically, one study showed impressive results with the use of 

fundus images for the detection of T2DM.
12

  

The aforementioned work, which was performed on a Chinese population, utilized both fundus 

cameras and smartphones in order to accurately diagnose diabetes from fundus images. However, 

due to the demographically narrow population, and the lack of filtering of patients with diabetic eye 

disease, there were limitations which this study aims to address. Additionally, in the previous study 

there was no differentiation between different disease durations, while the patients in the current 

study were selected for their recent diagnosis and low disease duration. The diagnosis of diabetes is 

significantly easier and more accurate in patients with a longer disease duration due to vascular 

changes in the eye, and in this study the accuracy of diagnosis improved in correlation with disease 

duration.  
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This study utilized retinal fundus images of patients with and without diabetes, all of whom had no 

evidence of diabetic eye disease. It aimed to develop an AI system for the early diagnosis of diabetes 

from the analysis of retinal fundus images.  

Methods 
Dataset 
We utilized a dataset compiled and provided by EyePACS (http://www.eyepacs.org), comprised of 

fundus retinal images. The data consisted of 51,394 images from 7,606 patients who visited the 

clinics between 2016 and 2021. Of the patients, 39% were male and 61% were female or other; 

mean age was 56.18 years old (table 1). All images and data were de-identified according to the 

Health Insurance Portability and Accountability Act “Safe Harbor” before they were transferred to 

the researchers. Institutional Review Board exemption was obtained from the Sterling Independent 

Review Board.  

The dataset contained up to 6 images per patient per visit: one macula centered image, one disk 

centered image, and one centered image, per eye. Patients’ metadata contained a self-reported 

measure regarding the presence or absence of diabetes (for demographic data of the two groups see 

table 2). Images without this metadata were excluded. Indications of diabetic eye disease were 

provided by professional ophthalmologists as part of the EyePACS dataset metadata and were 

subsequently excluded as well. Patients were also divided into cohorts based on disease duration, 

each cohort consisting of patients diagnosed within the timeframe in question (e.g., 15 years) and 

healthy patients (for demographic data divided by disease duration see appendix A). 

Algorithm Development 
In order to accurately measure performance, given the relatively small size of the dataset, the 

models were trained using 10-fold validation, i.e., the dataset was divided into tenths and each 

model was trained on 9/10 parts, and validated on the final tenth. Each model was validated using a 

different tenth of the data. The model was then validated on the entire dataset.  

Additionally, the model was trained on cohorts of patients divided according to disease duration. 

Each cohort consisted of patients diagnosed within the timeframe in question (e.g., 15 years) and 

healthy patients. Ten-fold validation was similarly done on these cohorts. Patient images were 

additionally adjusted for camera type, meaning an equal number of patients with and without 

diabetes were used across camera types, and age-adjusted for equality between types of patients. 

Cohort distribution is available in table 1. 

Results 
The model’s performance in diagnosing diabetes from fundus images was AUC 0.83 (0.83, 0.84 - 95% 

CI) per image, and AUC 0.86 (0.84, 0.88 - 95% CI) per patient (see figure 1). The results were 

unaffected by ethnicity (see table 4) and were affected by camera model (see table 5). For extended 

versions of these tables see appendices C and D. Model performance also improved as a function of 

disease duration (correlation 0.92 (p < 0.001), see figure 2). For full model performance statistics 

divided by disease duration see Appendix B.   

Discussion 
Diabetes is currently one of the leading causes of morbidity and mortality, with many patients 

remaining undiagnosed. Although diabetes is often diagnosed from fundus imagery after the 

development of related retinal complications, we hypothesized that a machine learning model could 

be trained to accurately diagnose patients from images of fundi without diabetic eye disease, doing 

such before an ophthalmologist can do so. The model performed as expected, further improving as a 
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function of disease duration, seemingly due to the increased impact of the disease on optical 

microvasculature over time. As previously mentioned, AI-based screening for various conditions 

offers a low-cost, accessible, and scalable tool with great potential. In the case of diabetes, 

specifically, the use of AI-based retinal screening may increase testing, due to factors of both 

comfort and ease. Additionally, due to the same factors, this may also increase early testing which is 

critical for previously discussed reasons.  

Currently, to perform the standard blood work required for screening, a referral from a physician is 

required. The increased burden of follow-up, or a lack of concern, on the patient’s part may very 

well be a major cause for under-detection, especially if they are presumably healthy. Many patients 

remain undiagnosed up to the point of vision impairment and their subsequent ophthalmological 

exam.
19

  

As a whole, novel non-invasive technologies may be of value as alternative screening tools, 

facilitating early detection and diagnosis of diabetes. There are currently a handful of devices that 

allow non-invasive detection of diabetes, such as the Scout DS,20,21 which uses light to detect 

advanced glycation end-products (AGEs) and other biomarkers in the skin. To our knowledge, the 

usage of these technologies in the clinical field is limited. 

Novel methods will not necessarily replace traditional ones, but their adoption will enable the 

development of parallel, physician independent screening processes. Integrating these novel 

technologies will make screening at accessible sites possible. Possible screening sites could be at 

workplaces, at pharmacies, shopping malls or even at home, using portable devices. Increasing the 

screening ratio, and specifically at earlier stages of diseases, may decrease long term microvascular 

complications,22 and may prove to be cost-effective. 

There are, however, legal and ethical issues concerning the use of these new technologies. 

Community screenings, independent of an established healthcare setting, are currently generally not 

encouraged by the ADA. There are questions of liability on the results of the tests, follow-up testing, 

and the provision of proper explanations to and treatment of the patients. Lastly, there are 

economic issues regarding the costs of these tests, coverage by medical insurance companies both 

for the test itself and further diagnostic tests, and the ability of existing healthcare systems to 

accommodate the increase in referrals of newly diagnosed patients.  

There are numerous ways to mitigate the above-mentioned risks of the “democratization of 

screening”. In order to properly allow this shift, a comprehensive, interdisciplinary thinking process 

is required. While further risk-benefit analysis is required, the benefits may very well outweigh the 

risks, enabling the diagnosis and proper care of millions. 

Limitations and further research 
This study’s main limitation, which we hope to address in the future, lies in the research’s 

retrospective nature, meaning that both prospective research and external validation are lacking. 

Furthermore, results were affected by camera model, probably due to uneven distribution of camera 

models in the training set. An additional limitation is that patients’ diabetes status was self-reported, 

which may have had the effect of lowering the model’s final AUC. Given the extremely high 

percentages of undiagnosed patients, there is a substantial likelihood that there are people with 

diabetes among the designated image set of healthy patients. As such, the model’s actual results 

may be different and more accurate. This research also does not differentiate between type 1 and 

type 2 diabetes. The likelihood of this differentiation causing significantly different results is low, 

given the relatively low prevalence of T1DM,
1
 but are still worth exploring. These issues may be 
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possible to address in further research, including prospective research or research utilizing different 

datasets. It should be noted, however, that research differentiating between T1DM and T2DM 

would require a much wider pool of patients, including children, in order to include patients with 

similarly low disease durations between groups.  

The diagnosis of pre-diabetes is not included in the scope of the current research, however will be 

included in future validation of the model in question.   

Our work raises an additional clinical question: assuming that machine learning models for the 

detection of diabetes from retinal images are mainly based on subclinical changes in the vasculature 

of an end organ, further research would be necessary to define whether medical treatment should 

differ in patients with positive retinal screening tests or differ based on the model’s degree of 

certainty in the diagnosis.   
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Number of patients  7,606 
Number of images  51,394 
Age: mean, years (SD)  56.51 (12.42), n=7605 
Gender (% male)  38.3%, n=7322 
HbA1c: mean, % (SD)  7.82 (2.60), n=4585 

Ethnicity  
52.2% Latin American, 13.2% ethnicity not specified, 12.7% 

Caucasian, 8.8% African Descent, 6.5% Indian subcontinent origin, 

3.7% Asian, 1.5% Other, n=7449 
Table 1: Key dataset characteristics – general 

 Patients with diabetes  Healthy patients 

Number of patients 6,934  708 
Number of images 47,076  4,318 
Age: mean in years (SD) 56.59 (12.32), n=6934  55.85 (13.30), n=707 
Gender (% male) 38.4%, n=6723  37.1%, n=634 
HbA1c: mean % (SD) 7.93 (2.52), n=4344  5.91 (3.09), n=258 

Ethnicity 

51.4% Latin American, 13.2% 

Caucasian, 12.1% ethnicity not 

specified, 9.2% African Descent, 

7.1% Indian subcontinent origin, 

4.0% Asian, 1.4% Other, n=6792 

 60.8% Latin American, 23.2% ethnicity 

not specified, 7.6% Caucasian, 4.6% 

African Descent, 2.5% Other, 1.0% 

Asian, n=693 

Table 2: Key dataset characteristics divided by diagnosis 

 

 

Ethnicity  Patients AUC  Sensitivity Specificity 

Ethnicity not specified  288 0.85 (0.80, 0.89) 0.81 (0.73, 0.87) 0.70 (0.63, 0.77) 
Latin American 901 0.84 (0.82, 0.87) 0.87 (0.84, 0.90) 0.65 (0.61, 0.70) 
Caucasian 163 0.87 (0.79, 0.92) 0.93 (0.87, 0.97) 0.52 (0.39, 0.64) 
Other 37 0.70 (0.49, 0.85) 0.88 (0.62, 1.00) 0.50 (0.26, 0.70) 
Asian 47 0.73 0.93 (0.80, 0.98) 0.29 (nan, nan) 
African Descent 95 0.85 (0.75, 0.91) 0.90 (0.80, 0.96) 0.50 (0.32, 0.66) 
Table 4: Ethnicity distribution and associated AUC 

Device  Images AUC (CI) Sensitivity Specificity 

Canon CR2  6540 0.84 (0.83, 0.85) 0.82 (0.81, 0.83) 0.72 (0.70, 0.74) 
Centervue DRS  1728 0.88 (0.86, 0.89) 0.88 (0.86, 0.90) 0.73 (0.70, 0.76) 
Crystalvue  498 0.51 (0.46, 0.56) 0.49 (0.42, 0.55) 0.51 (0.45, 0.57) 
Topcon NW400  592 0.58 (0.54, 0.63) 0.68 (0.63, 0.73) 0.41 (0.35, 0.47) 
Table 5: Camera distribution and associated AUC 

Disease length (years) Patients 

≤ 1 834 
2 828 
3 818 
4 818 
5 820 
6 - 10 821 
11 - 15 820 
16 - 20 817 
> 20 817 
Table 3: Disease length cohort distribution in years 
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