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ABSTRACT 

 

Introduction. Injuries induced by falls represent the main cause of failure in the Commando 

marine selection course of the French Army. In the present study we made the assumption that 

probing the posture might contribute to predicting the risk of fall-related injury at the individual 

level.  

Methods. Before the start of the selection course, the postural signals of 99 male soldiers were 

recorded using static posturography while they were instructed to maintain balance with their 

eyes closed. The event to be predicted was a fall-related injury during the selection course that 

resulted in the definitive termination of participation. Following a machine learning 

methodology, we designed an artificial neural network model to predict the risk of fall-related 

injury from the descriptors of postural signal. 

Results. The neural network model successfully predicted with 69.9% accuracy (95% CI=69.3-

70.5) the occurrence of a fall-related injury event during the selection course from the selected 

descriptors of the posture. The area under the curve (AUC) value was 0.731 (95% CI=0.725-

0.738), the sensitivity was 56.8% (95% CI=55.2-58.4), and the specificity was 77.7% (95% 

CI=76.8-0.78.6). 

Conclusion. If confirmed with a larger sample, these findings suggest that probing the posture 

using static posturography and machine learning-based analysis might contribute to inform risk 

assessment of fall-related injury during military training, and could ultimately lead to the 

development of novel programs for personalized injury prevention in military population. 
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KEY MESSAGES  

• Fall-related injuries are a major concern that leads to failure in the French 

Commando marine selection course.  

• This study demonstrates that analyzing the posture with machine learning can 

predict the risk of fall-related injury at the individual level. 

• The findings may prompt the development of novel programs for personalized injury 

prevention in military settings.  
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INTRODUCTION 

In the military environment, physical activity and sport play a fundamental role in the 

development and optimization of combatants’ operational capacity. The benefits of sporting 

activities last throughout a soldier’s career, as they contribute to the individual’s ability to adapt 

to operational constraints, and the maintenance of good health, notably with respect to the 

prevention of chronic, stress-related pathologies (e.g., cardiovascular disease, chronic pain, 

depression). 

However, physical activity and sport are also the cause of acute (e.g., sprains, fractures) 

and chronic (e.g., tendinopathies) musculoskeletal pathologies. In particular, lower limb trauma 

is prevalent (15–20%) among young recruits of the French Army, both in the context of 

operational units,1,2 and during selection tests for specialized units (30–45%).3-5 In addition to 

their direct impact on the health of personnel, these injuries also have significant economic and 

operational costs, due to incapacity.6 

Fall injuries during the French Commando Marine selection course 

In the French Army, a dedicated course, the Commando Marine selection course (Stage 

Commando, STAC) aims to select candidates for the Special Forces Naval Commando units 

(Commandos Marine). It comprises an initial three-week assessment phase, which is extremely 

demanding both physically and mentally. Epidemiological data from the assessment phase have 

shown that medical discharge is the leading cause of failure (70%), and that this is most often 

the result of acute musculoskeletal trauma (60%), mainly to the lower limbs.3-5 In 90% of cases, 

these injuries are the result of a fall due to a loss of balance.3 The physical activities that must 

be completed during the STAC severely test participants’ balance: candidates must carry heavy 

loads (a 15 kg combat bag and weapon) for prolonged periods, and complete demanding 

challenges, with little sleep and regardless of weather conditions. The ‘jungle’ obstacle test is 
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a particularly demanding test; participants must negotiate obstacles up to 5 meters high, with 

no safety nets or lines, and the course has been reported to be the most frequent source of 

balance-related injuries.5 Overall, the epidemiological data suggest that the candidate’s postural 

control may play a role in the occurrence of fall-related injuries during the STAC. 

Posturography  

Posturography is a tool that is used to characterize postural control.7,8 During posturography, 

the subject stands on a fixed surface, called a stabilometric platform (see Figure S1), and is 

instructed to maintain balance. From a biomechanical point of view, postural balance in the 

static standing position is described using the inverted pendulum model: the body moves 

continuously along a medio-lateral and an antero-posterior axis, both of which originate in the 

medial malleoli of the ankles.9 Both endogenous physiological disturbances (e.g., breathing, 

the heartbeat) and the physiognomy of the human body (⅔ of the body’s mass is located in the 

upper ⅔ of the body) mean that the standing position is inherently unstable.10,11 Consequently, 

even when in a static, standing position, postural control must be exercised to maintain balance 

and avoid falling.  

Posturography records a signal that corresponds to the trajectory of the body’s center of 

pressure (CoP),7,8 the latter being considered as the projection on the ground of the person’s 

center of mass.11 Sixteen variables can be extracted from the postural signal that identify 

differences in postural control between individuals. As these variables combine high inter-

individual variance with low intra-individual variance, linear discriminant analysis can be used 

to distinguish between individuals.12 In the present study, these 16 postural variables are 

considered as relevant for modeling the risk of fall injury at the individual level.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 28, 2023. ; https://doi.org/10.1101/2023.07.26.23293231doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.26.23293231
http://creativecommons.org/licenses/by-nc-nd/4.0/


Using posture analysis to predict risk of fall injury  

Modelling the relationship between the posture and the risk of fall-related injury is complex, 

not least because it is both non-linear and multifactorial.13 Factors are both specific to the 

individual (not only their postural stability, but also their weight, level of training, etc.) and 

linked to the environment (weather conditions, the physical challenge, etc.), and interact in 

unpredictable ways. These issues led us to use a non-linear statistical model to predict the risk 

of fall injury from an analysis of the postural signal. In particular, we adopted a machine 

learning-based approach that included the design of an artificial neural network (NN) model for 

predictive analysis. The NN model has the advantage of being parsimonious—in other words, 

it requires less experimental data than other non-linear polynomial approaches to model a 

relationship with a given degree of accuracy.14 

Hypothesis  

Our hypothesis was that the postural signal, collected before the selection course begins in a 

static, eyes closed, standing position, and analyzed using a machine learning methodology, 

would provide information to predict the individual risk of fall injury during the selection 

course. 
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MATERIALS AND METHODS 

Population  

The population consisted of 113 STAC male candidates: 53 were recruited during the March 

2014 STAC, and 60 during the September 2014 STAC. The only inclusion criteria were being 

declared medically fit to be a Commando Marine15 and being aged under 40. All participants 

provided written informed consent before participation and were not financially compensated 

for their involvement in the study. At the end of data collection, 14 participants were excluded 

from the final analyses due to missing data. 

Procedure 

Data were collected at the 190th Medical Unit that provides medical support to the Naval 

Fusilier and Commando Training center (Lorient). The postural signal was collected before the 

selection course begins, using the FEETEST 6 platform (TECHNO CONCEPT®, France), with 

the simple instruction to maintain balance for 52 seconds while keeping the eyes closed 

(Supplementary Methods 1). The event to be predicted from the postural analysis was a fall 

injury secondary to a loss of balance that resulted in the definitive termination of participation 

in the STAC for medical reasons. Information about the event was collected by the staff of the 

190th Medical Unit throughout all the selection course, and the causal link between the injury 

and a fall due to a loss of balance was established retrospectively (Supplementary Methods 2). 

Postural signal processing 

The postural signal was processed using custom scripts in Matlab 2021a (Mathworks®). We 

first filtered the postural signal with a 10 Hz high-pass (fourth order Butterworth) filter. Then, 

the values of the 16 individual-specific descriptors were extracted from the postural signal 

(Supplementary Methods 3). The 16 descriptors were chosen because they have been 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 28, 2023. ; https://doi.org/10.1101/2023.07.26.23293231doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.26.23293231
http://creativecommons.org/licenses/by-nc-nd/4.0/


characterized in the literature as individual-specific, in other words, they can identify inter-

individual differences.12,16 In addition to the 16 descriptors, their pairwise products (except 

products of a descriptor by itself) were computed. Indeed, the product of two descriptors may 

provide more relevant information than the two descriptors separately, particularly when they 

are interdependent as is the case for postural descriptors.14,17 Thus, a total of 136 candidate 

postural descriptors were generated, including the 16 descriptors and their 120 pairwise 

products. 

Predictive model: design and performance assessment  

Selection of postural descriptors  

The purpose of predictor selection is to identify irrelevant or redundant predictors that should 

be removed from the available dataset before designing the predictive model. Indeed, the 

inclusion of irrelevant predictors is detrimental to the understanding and performance of the 

predictive model, while rejecting relevant predictors can be just as bad.17 In the present work, 

we selected the appropriate set of postural descriptors for predicting fall-related injury event in 

using the forward stepwise regression method,14,18 which was implemented via Matlab 2021a 

(The Mathworks®), including the Statistics and Machine Learning toolbox, the Deep Learning 

toolbox, and custom scripts (Supplementary Methods 4). 

Data over-sampling  

Our dataset was characterized by a number of participants identified as ‘Injured due to a fall’ 

that was lower than the number of participants identified as ‘Not injured due to a fall’ (see Table 

1 in Results), which is known as the “class imbalance problem”.19 Learning from a dataset with 

the class imbalance problem may make the learned predictive model unreliable. In the present 

study, we addressed the class imbalance problem by implementing a data over-sampling 
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approach, which adds examples to the minority class of the training set,  using the SMOTE 

method20,21 (Supplementary Methods 5) implemented in R (R version 4.2.1;22 “smotefamily” R 

package). 

Data analysis  

Our hypothesis was as follows: Is it possible to predict the risk of a participant suffering a fall-

related injury from the analysis of his or her posture? The question was addressed using a 

classification approach where the occurrence of a fall-related injury event during the selection 

course, as a categorical variable (i.e., presence vs. absence), was predicted from the selected 

postural descriptors. To this end, we designed a predictive model that was an NN model 

including one layer with a single hidden neuron (Supplementary Methods 6). NN models are a 

very popular family of classifiers that are particularly efficient for modeling nonlinear 

relationships,14 such as the relation between physiological signal of posture and fall-related 

injury.13 Demographic and biometric data were analyzed using Mann-Whitney tests and its 

Bayesian equivalent, the latter facilitating the testing of evidence for the null hypothesis 

(negative log(BF10) values; Supplementary Methods 7, Table S3), and were performed in JASP 

version 0.14.1 (https://jasp-stats.org/). 

Evaluation of prediction performance  

The predictive performance of our NN model was assessed by means of 5-fold cross-validation. 

Fivefold cross-validation entails that the set of available data is split into five disjoint subsets; 

the model is trained with four subsets (including 80% of available data) and tested in the fifth 

(the validation set, made of the remaining 20% of available data).23 For the performance 

metrics, including the accuracy, the area under the receiving operating characteristic curve 

(AUC), the f1-score, the sensitivity (Sens), the specificity (Spec), we estimated 95% confidence 
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intervals based on 100 iterations (Supplementary Methods 8). All steps for data analysis and 

evaluation of prediction performance were performed using custom scripts in R (tensorflow”, 

“keras”, “caret”, and “ModelMetrics” packages). 
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RESULTS 

Demographic, biometric, and epidemiologic data  

Table 1 shows descriptive statistics (age, weight, and height) for the 99 males participants 

included in the final analyses. Participants injured due to a fall did not differ from uninjured 

participants in terms of age (p=0.92, log(BF10)=−1.46), weight (p=0.22, log(BF10) =−0.85) or 

height (p=0.13, log(BF10) =−0.87).  

 

Table 1. Demographic (age) and biometric (weight and height) variables for the 99 male 

participants included in the final analyses. 

 

 Variables 

 Age 

(years) 

Weight 

(kg) 

Height 

(cm) 

 M ± SD M ± SD M ± SD 

       

STAC participants 

(N=99) 
22 ± 4 74 ± 10 176 ± 18 

       

Participants injured due to a fall 

(n=37) 
22 ± 3 73 ± 7 177 ± 7 

       

Participants not injured due to a fall  

(n'=62) 
22 ± 3 75 ± 7 179 ± 6 

       

 

 

 

 

 

Figure 1 shows the number of participants injured as the result of a fall as a function of time 

since the start of the STAC.  

  

N, n and n'=number of participants; kg: kilograms; cm: centimeters; 

M=mean; SD=standard deviation   
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Figure 1. Graphical representation of the number of participants injured as a result of a fall 

due to loss of balance as a function of the time elapsed since the start of the STAC. Each step 

corresponds to an event, and the height of the step is proportional to the number of events 

over the interval. 

 

Selection of postural descriptors 

Table 2 presents the postural descriptors identified as relevant in predicting fall injury risk. It 

should be noted that only the product of two postural descriptors were selected.  
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Table 2. Postural descriptors selected to predict fall injury risk. A description including a 

simplified mathematical definition of each selected descriptor is available in the Supplementary 

(Supplementary Methods 3). 

Selected postural descriptors 

1. MP3 × log-Alpha-AP 5. log-slope-MP × PF95AP 

2. Beta-ML × log-Alpha-ML 6. log-MV × log-MV-ML 

3. Beta-AP × log-slope-MP 7. log-MV-AP × log-Power-ML 

4. log-slope-MP × log-MV-ML 8. log-Power-ML × PF95AP 

 

Prediction performance  

Figure 2 and Table 3 show the performance of the NN model for predicting the fall-related 

injury event during the selection course from the selected postural predictors. Of note, in Table 

3, the training set shows the same percentage (50%) of examples identified as ‘Injured due to a 

fall’ and examples identified as ‘Not injured due to a fall’, as a result of data oversampling step 

that was implemented to address the class imbalance problem (see Supplementary Methods 5); 

the validation set includes the same proportion of examples identified as ‘Injured due to a fall’ 

as the original dataset.   
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Figure 2. Receiver Operating Characteristic (ROC) curves for the Neural Network model for 

prediction of the fall-related injury event during the selection course from the selected postural 

predictors. Error bars of the ROC curves indicate 95% confidence interval for the area under 

the ROC curve (AUC). 

 

 

Table 3. Performance of the Neural Network model when predicting the fall-related injury 

event during the selection course from the selected postural predictors (Mean [95% confidence 

interval]). Results are reported separately for the training set and the validation set. 

 Performances metrics  

 AUC  Accuracy f1-score Specificity Sensitivity Injury due to 

a fall (%) 
      

Training  0.805 

[0.803 - 

0.807] 

0.792 

[0.789 - 

0.794] 

0.713 

[0.710 - 

0.716] 

0.856 

[0.849 - 

0.862] 

0.686 

[0.679 - 

0.694] 

50 

Validation  0.731 

[0.725 - 

0.738] 

0.699 

[0.693 - 

0.705] 

0.561 

[0.549 - 

0.573] 

0.777 

[0.768 - 

0.786] 

0.568 

[0.552 - 

0.584] 

37 

AUC: Area under the receiving operating characteristic curve; Injury due to a fall: percentage 

of participants identified as ‘Injured due to a fall’.  
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DISCUSSION 

Our study analyzed the postural signals of 99 male participants that were recorded before they 

start the French Commando marine selection course, and we investigated whether postural 

descriptors can contribute to predict the risk of a fall injury during the selection course. 

Following a machine learning methodology, a neural network model was designed to predict 

the risk of a fall injury event from the selected descriptors of postural signal. The main result is 

that the neural network model was able to predict with 69.9% accuracy the risk of fall-related 

injury at the individual level. In other words, the analysis of posture allows to correctly predict 

the risk of fall injury in more than two-thirds of participants of the selection course. This result 

suggests that it is reasonable to think that analysis of the posture using machine learning-based 

model is a particularly rich source of information for predicting the risk of fall-related injury. 

If this result is confirmed with larger sample sizes, and in the context of the other physical 

activities that armed forces’ personnel undertake, its application would be very interesting for 

the future of military medicine. Indeed, one of the responsibilities of the military doctor is to 

preserve the health of the combatant, including the detection of functional weaknesses 

conducive to injury. A tool that combines postural recording with posturography, and its 

analysis using a machine learning-based software application, could help the doctor to detect a 

functional weakness in postural control. Such a device would have the advantage of being quick 

and easy to use: recording and analysis take just a few minutes. This procedure could 

supplement other clinical information collected by the doctor. At the present time, the 

recommendations given to sports medicine practitioners are limited to the use of a clinical test 

called the Balance Error Scoring System (BESS), which assesses postural control.24 In brief, 

the BESS test assesses three postural control configurations (double leg stance vs. single leg 

stance vs. tandem stance) and two types of surfaces (firm vs. foam) (see Figure 1 in 25). 

However, this test must be performed by a physician, and the method used to calculate the score 
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has not yet been standardized. Looking ahead, it would be interesting, in the future, to compare 

results from the BESS test with the analysis of postural signal, both in isolation and in 

combination, regarding their respective accuracy in predicting the risk of fall-related injury. A 

medium-term aim is to optimize the clinical-physiological tools that armed services’ doctors 

can use to detect functional weaknesses in postural control that increase the risk of fall-related 

injury. 

If the functional weakness that contributes to the risk of injury can be identified, 

appropriate countermeasures and targeted interventions could be implemented to reduce risk.26 

We hypothesize that improving the individual’s perception of the position of their body in space 

(i.e., proprioception) could improve postural control, and consequently reduce the risk of fall 

injury. Interestingly, in the French Army, the Optimization of the Resources of the Armed 

Forces (ORAF, formerly known as Tactics to Optimized the Potential - TOP) program draws 

upon cognitive techniques that may be relevant to improving the individual’s perception of their 

body in space, and includes mental imagery exercises such as a body scan. Regular training and 

individual practice during physical activities could also help. In this context, the POSITION 

study (which is currently being conducted in several French Special Forces units) aims to 

evaluate the effectiveness of the ORAF method in preventing fall-related injuries.27 The aim of 

the POSITION study is to validate or invalidate the usefulness of such a prevention program, 

based on the ORAF method, in reducing the risk of fall-related injury during the physical 

activities undertaken by military personnel. 

In the present study, the design of our predictive model included the selection of postural 

descriptors, based on their relevance in predicting fall injury risk. The vast majority of the 

selected descriptors relate to the CoP velocity profile. It must be acknowledged that the 

interpretation of these results remains difficult. What is the functional (biomechanical) 

significance of the selected descriptors in terms of postural control? In other words, how is 
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postural control associated with the risk of falling, characterized from a biomechanical point of 

view? At the present time, the available data do not offer a simple explanation of what 

characterizes the postural control of an individual who is at risk of fall injury.   

Our study modeled the risk of fall injury based solely on a postural analysis. This 

reductionist approach, which was intended to simplify the development of our machine learning 

algorithm, does not take into account the (often multifactorial) nature of the injuries that can 

occur during sporting activities.13 In the specific context of the Commando marine selection 

course, other factors, notably fatigue and anxiety, could play an important role. For example, it 

has been shown that participants with a sleep debt (between three and 20 hours) are five times 

more likely to suffer a fall-related injury during the selection course.3 Nevertheless, the analysis 

of the timing of the occurrence of injuries suggests that fatigue may not be the predominant risk 

factor. Indeed, the majority of injuries (75%) occur during the first two weeks of the course, 

rather than the last week, when fatigue levels are highest.3-5 At the same time, anxiety levels 

are probably very high due to both the context and the psychophysiological demands imposed 

by the selection course. Earlier work shows that anxiety increases among STAC participants.4 

The role of anxiety in fall injuries is a particularly important avenue of further study, as the 

neurophysiological systems involved in postural control are influenced by stress response 

regulation mechanisms.28 For example, the excitability of the postural myotatic reflex, at the 

level of the spinal cord, is modulated by subcortical structures (notably the periaqueductal gray 

matter and the amygdala) that are activated during the stress response. It is interesting to note 

that body awareness plays an important role in regulating the stress response, as it contributes 

to the identification, evaluation, and modulation of the body’s internal physiological state (also 

known as interoception), which characterizes the neurobiological response to stress response 

and the related emotional feeling of anxiety.29,30 Thus, body awareness could influence the 

occurrence of fall injuries either directly, as a central player in the postural control loop, or 
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indirectly, by acting on non-postural pathways that affect posture, such as the stress axis. Future 

work should focus on integrating these two dimensions (postural and interoceptive) in order to 

characterize the mechanisms that play a role in the prevention of fall injuries. 

 

Conclusion 

This study demonstrates the potential of posture analysis in predicting the risk of fall-related 

injuries during the French Commando marine selection course. The findings provide early 

evidence that static posturography in combination with a machine learning-based predictive 

model can be a valuable tool for assessing individual risk and potentially preventing injuries in 

military training. The application of this approach, if confirmed with larger sample sizes and in 

broader contexts, could significantly impact military medicine by aiding in the detection of 

functional weaknesses and guiding personalized injury prevention programs.  
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Supplementary Methods 1. Postural signal measurement 

 

The FEETEST 6 platform comprises four small independent platforms that measure the ground 

reaction force (linked to the action of the body weight) with respect to the heel and metatarsals, 

for each foot separately. Mean reaction forces along antero-posterior and medio-lateral axes 

give the position of the body’s center of pressure (CoP). Hence, the CoP corresponds to the 

projection, onto the ground, of the sum of the pressures exerted on the various parts of the body 

that are in contact with the ground. The postural signal was sampled at 40 Hz and transmitted 

to a software package (PostureWin 4©) via a USB connection (Figure S1). Due to technical 

specifications of the FEETEST 6 platform, the recording of postural signal lasted 52 s. The 

participants were instructed to stand quietly with eyes closed, and with their arms hanging at 

their sides and head in a normal forward-facing position. 

 

 

Figure S1. (A) The stabilometric platform. (B) A sample postural signal collected after filtering 

and normalization. This signal corresponds to the position of the body’s center of pressure 

(CoP) along medio-lateral (x) and antero-posterior (y) axes. The origin of these axes (0, 0) 

represents the midpoint of the distance between the two medial malleoli. cm: centimeters;  
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Supplementary Methods 2. Definition of fall-related injury 

 

The event to be predicted from the postural analysis was a fall injury secondary to a loss of 

balance that resulted in the definitive termination of participation in the STAC for medical 

reasons. The causal link between the injury and a fall due to a loss of balance was established 

retrospectively. Specifically, an initial patient history and diagnosis was carried out by the 

doctor responsible for providing healthcare support during STAC activities, then six other 

doctors assessed whether or not the injury was related to a fall due to a loss of balance. Thus, 

each injury was the subject of a diagnosis, and six assessments of the causal link with a fall due 

to a loss of balance. A causal link was considered to be valid if at least four doctors assessed 

the injury as being the consequence of the fall, and the participant was identified as ‘Injured 

due to a fall’ (membership of the class being equal to 1). In other cases, the injury was not 

considered as secondary to a fall, and the participant was identified as ‘Not injured due to a 

fall’, along with participants who did not suffer any injury (membership of the class being equal 

to 0). 
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Supplementary Methods 3. Descriptors of the postural signal 

 

The Table S1 summarizes the 16 individual-specific descriptors that were extracted from the 

postural signal. The 16 descriptors were chosen because they have been characterized in the 

literature as individual-specific, in other words, they can identify inter-individual 

differences.12,16 To ensure a similar order of magnitude, they were normalized by subtracting 

the mean and dividing by the standard deviation obtained at group level (Table S2). 
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Table S1 – The list of the 16 descriptors that were extracted from the postural signal to 

characterize time-series of the center of pressure. A detailed description of the postural features, 

including their computation is available in the Supplementary information of Verdonk et al 

(2022).16 

 

 Descriptor name Description 

1. MP3 Mean peak value on sway-density curve at R = 3 

2. Mean-AP Mean position of sway on AP axis 

3. Mean-ML Mean position of sway on ML axis 

4. Zero-cross-V-AP The number of zero crosses of low-pass filtered CoP velocity on 

AP axis 

5. Beta-ML Scale parameter of Gamma distribution fitted to the duration of 

mean CoP velocity crosses on ML axis 

6. log-Alpha-ML Log of shape parameter of Gamma distribution fitted to the 

duration of mean CoP velocity crosses on ML axis 

7. log-Alpha-AP Log of shape parameter of Gamma distribution fitted to the 

duration of mean CoP velocity crosses on AP axis 

8. Beta-AP Scale parameter of Gamma distribution fitted to the duration of 

mean CoP velocity crosses on AP axis 

9. log-slope-MP Log of slope of the line obtained by linear regression of mean 

peak values on sway-density curve vs. R from 2 mm to 5 mm 

10. log-LNG Log of total path length of CoP trajectory on the horizontal 

plane 

11. log-MV Log of mean CoP velocity 

12. log-MV-ML Log of mean CoP velocity on ML axis 

13. log-MV-AP Log of mean CoP velocity on AP axis 

14. log-Power Log of total power of CoP 

15. log-Power-ML Log of total power of CoP on ML axis 

16. PF95AP 95% power frequency of CoP 

  

R: radius of circle centered at the current CoP point (in mm); AP: anterior-posterior; ML : 

medio-lateral; CoP: center of pressure; 
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Table S2 - Means and standard deviations prior to standardization of the 16 descriptors 

extracted from the postural signal. 

Postural features (unit)   M ± SD 

  

MP3 (sec) 2.08 ± 0.84 

Mean-AP (mm) 47.78 ± 18.26 

Mean-ML (mm) -1.86 ± 8.80 

Zero-cross-V-AP (a.u.) 113.07 ± 14.92 

Beta-ML (a.u.) 0.13 ± 0.04 

log-Alpha-ML (a.u.) 0.28 ± 0.18 

log-Alpha-AP (a.u.) 0.31 ± 0.16 

Beta-AP (a.u.) 0.16 ± 0.05 

log-slope-MP (a.u.) 0.22 ± 0.60 

log-LNG (a.u.) 6.16 ± 0.30 

log-MV (a.u.)  2.22 ± 0.30 

log-MV-ML (a.u.)  1.34 ± 0.39 

log-MV-AP (a.u.) 2.02 ± 0.29 

log-Power (a.u.)  3.44 ± 1.12 

log-Power-ML (a.u.)  2.82 ± 0.80 

PF95AP (a.u.) 1.02 ± 0.28 

  
M: mean; SD: standard deviation; sec: seconds; mm: 

millimeters; a.u.: arbitrary unit 
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Supplementary Methods 4. Selection of postural descriptors  

 

We selected the appropriate set of postural descriptors for predicting fall-related injury event in 

using the forward stepwise regression method, which has been extensively used in the medical 

literature and has been shown to achieve the best performance for predictor selection.18 Briefly, 

the method consists in designing different regression models whose independent variables are 

subsets of the predictors. All the models are compared to a reference model, which specifically 

includes all of the predictor variables as inputs, and the best model according to a preset 

criterion is selected.14 In the present work, we used the Akaike’s information criterion (AIC) as 

a decision criterion.   
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Supplementary Methods 5. Data over-sampling 

 

Our dataset was characterized by a number of participants identified as ‘Injured due to a fall’ 

that was lower than the number of participants identified as ‘Not injured due to a fall’ (see Table 

1 in the main text). In other words, there was a skew existing between the two different classes 

of participants regarding the number of examples, which is also known as the “class imbalance 

problem”.19 Learning from a dataset with the class imbalance problem will make the learned 

predictive model unreliable, because it is more concerned with identifying the majority class 

(here, the participants identified as ‘Not injured due to a fall’) correctly and ignoring the 

minority class (here, the participants identified as ‘Injured due to a fall’). We addressed the 

class imbalance problem by adding examples to the minority class of the training set (data over-

sampling) using the SMOTE method (“smotefamily” R package). The main idea behind the 

method is to create new minority class examples by interpolating several minority class 

examples that lie together. Specifically, SMOTE created new synthetic examples by randomly 

selecting a minority class example and generating a new example from random interpolation 

with one of the k (k = 5) nearest neighbors of the initial example.20,21  
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Supplementary Methods 6. Classification analysis using a neural network 

Classification analysis  

Our hypothesis was as follows: Is it possible to predict the risk of a participant suffering a fall-

related injury as a result of a loss of balance from an analysis of his or her posture? The question 

was addressed using a classification approach: our predictive model (defined below) assigned 

each participant to one of two classes, ‘Injured due to a fall’ or ‘Not injured due to a fall’, based 

on the selected postural descriptors. The classification was divided into two steps: (i) an a 

posteriori estimation of the probability of the participant belonging to the ‘Injured due to a fall’ 

class, based on his or her postural descriptors; and (ii) the assignation of each participant to one 

of the two classes according to the following rule: if the a posteriori probability is greater than 

50%, the participant is assigned to the ‘Injured due to a fall’ class, otherwise he or she is 

assigned to the ‘Not injured due to a fall’ class.  

Neural network 

The classification analysis was implemented using an artificial neural network. A neural 

network is a statistical model that combines non-linear functions known as ‘hidden’ neurons. 

In the present work, we used the simplest form of neural network, called a perceptron, in which 

one layer includes a single hidden neuron. A graphical representation of our neural network is 

shown in Figure S2. Input variables were the postural descriptors (𝑥𝑗, j=1, …, F) and a constant 

equal to 1. The single neuron in the hidden layer was a non-linear function (the hyperbolic 

tangent) of the linear combination of postural descriptors. The output variable, denoted 𝑦, was 

the probability of belonging to the ‘Injured due to a fall’ class, calculated as the logistical 

transformation of the output of the hidden layer neuron. The values for the NN hyperparameters 

learning rate and number of epochs were 0.14 and 95, respectively. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 28, 2023. ; https://doi.org/10.1101/2023.07.26.23293231doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.26.23293231
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Figure S2.. Graphical representation of the neural network model. Information propagates from 

the bottom (input) to the top (output) layer, via a single intermediate (hidden) layer that includes 

a single neuron. In our study, input variables were the postural descriptors (𝑥𝑗  j=1, ..., F) and a 

constant 𝑥0 equal to 1, and the output variable 𝑦 was the probability of belonging to the class 

Injured due to a fall. 
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Supplementary Methods 7. Bayesian statistical analysis 

 

Table S3. A descriptive and approximate classification scheme for the interpretation of the 

log scale of Bayes factor (Log (BF10), adapted from Jeffreys, 196.31 

 

Log (BF10) Interpretation Symbol 

   

> 2 extreme evidence for H1 H1
**** 

1.48 to 2 very strong evidence for H1 H1
*** 

1 to 1.48 strong evidence for H1 H1
** 

0.48 to 1 moderate evidence for H1 H1
* 

0 to 0.48 anecdotal evidence for H1 ns 

0 no evidence ns 

-0.48 to 0 anecdotal evidence for H0 ns 

-1 to -0.48 moderate evidence for H0 H0
* 

-1.48 to -1 strong evidence for H0 H0
** 

-2 to -1.48 very strong evidence for H0 H0
*** 

< -2 extreme evidence for H0 H0
**** 
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log(BF10): log scale of Bayes factor BF10; H1: alternative 

hypothesis; ns: non-significant; H0: null hypothesis    
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Supplementary Methods 8. Evaluation of prediction performance 

 

To evaluate the performance of our predictive model, the following three indicators were 

computed: 

1) Accuracy 

The accuracy represents the percentage of examples that are correctly classified:  

 
where TP, TN, FP, and FN represent true positive, true negative, false positive, and false 

negative respectively. 

2) f1-score 

The f1-score is designed to provide a better metric of model performance for imbalanced 

datasets, as was the case for the validation sets. The f1-score is based on the harmonic average 

of precision and recall, which are computed as follows: 

● Precision 

The precision represents the percentage of examples identified as ‘Injured due to a fall’ among 

the examples classified as ‘Injured due to a fall’ by the predictive model:  

 

● Recall  

The recall (also known as sensitivity) represents the percentage of examples correctly classified 

as ‘Injured due to a fall’ by the predictive model among the examples that are identified as 

‘Injured due to a fall’:  

 

Then, the f1-score is computed as follows: 
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where N is the total number of examples 

3) Area under the receiving operating characteristic curve (AUC) 

The Receiver Operating Characteristic (ROC) curve depicts graphically the relation between 

sensitivity (or recall) and (1 − specificity) (where specificity is the percentage of examples 

identified as ‘Not injured due to a fall’ that are (incorrectly) classified as ‘Injured due to a fall’ 

by the predictive model), at various thresholds. Each threshold value represents decision 

boundary, within the range [0, 1], for predicting whether an example belongs to the class 

‘Injured due to a fall’: for instance, an example is classified as ‘Injured due to a fall’ if the 

corresponding output of the model is above threshold, otherwise it is considered as ‘Not injured 

due to a fall’. The area under the ROC curve (AUC) quantifies the ability of the model to 

correctly assign an example to the class ‘Injured due to a fall’. A value of 1 denotes perfect 

classification performance, whereas a value below 0.5 means that the model does not perform 

better than chance level. 
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