
Machine-learning approach for Type 2 Diabetes
diagnosis and prognosis models over heterogeneous

feature spaces
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Abstract

This research aims to evaluate the Type 2 Diabetes (T2D) diagnosis and prog-
nosis power from heterogeneous environmental, lifestyle and biochemistry data.
Model estimation has previously addressed three main actions as: 1) Missing-
value imputation using specific univariant and multivariant imputers accommo-
dated to each particular feature; 2) Quasi-constancy detection in variables; 3)
Constructing geographical pollution and rent data from municipality informa-
tion. Next, different T2D diagnosis and prognosis models are fitted and evalu-
ated, showing increasing performance as more specific features become available
while the prediction cost rises as a consequence of requiring more specific data.
Finally, four models are obtained: two of them for T2D diagnosis and the other
two for T2D prognosis respectively, with performances ranging from 73.3 to
95.41 AUC-ROC. One pair of diagnosis and prognosis models were thought for
a global testing that can be done in general locations by only asking general
lifestyle-related questions. On the other hand, the other pair, which achieves
higher performances, is thought to be applied in a clinical environment where
it is easy to obtain more specific biochemistry measures.
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1. Introduction

In the last 30 years, the prevalence of Type 2 Diabetes Mellitus (T2D) has
increased significantly in adolescents and young adults, rising from an incidence
of 117.07 per 100,000 population in 1990 to 183.36 in 2019 [1]. At ages under 30,
women have higher mortality and disability-adjusted life years (DAILY) rates
than men. This difference is reversed when we study a population aged over 30,
except in countries with a low sociodemographic index. Countries with a low-
medium and medium sociodemographic index have the highest age-standardized
incidence rate. Studies [1] and [2] indicate that, in all regions, the leading risk
factor for DAILY rate is the body mass index, although the proportional im-
pact of other factors varies across regions and sociodemographic index. Other
relevant factors are air pollution and smoking [3], household air pollution from
solid fuels, and diets with low fruit intake, particularly in countries with a low
sociodemographic index and high stress [4]. Early prevalence of T2D increases
health problems as the population becomes older. As T2D appears earlier, the
hyperglycemia duration is higher, and the pathological process speeds up, which
drives towards a worsened glycemic control. The work of [5] shows evident gen-
der inequality in general risk cardiopathies and T2D. Thus, from an economic
perspective, T2D prevention produces excellent savings to health systems world-
wide [6]. A better understanding of this disease would allow for a more accurate
AI-based risk prevention models, and help to make patient personalized deci-
sions to delay T2D appearance, which would result in an improved health status
and longer lifetime for individuals, as well as significant economic savings for
healthcare administrations.

T2D is a complex multifactorial disease that often requires complex models
to achieve the best performances when attempting to predict it or its risk of
appearance. In this work, several techniques and heuristics have been devel-
oped for relevant environmental factor identification, by increasing the quality
of the original data and obtaining their structural relations. Thus, we chal-
lenged a double objective: 1) finding factors directly associated with T2D; and
2) obtaining T2D models for diagnosis and prognosis. The data utilised in this
work, retrieved from T2D patients and individuals that develop the disease in
the follow-up, includes heterogeneous clinical and environmental variables. In
future work, we hope to use the developed heuristics and tools to include differ-
ent kinds of genetic variations and individual information, in order to estimate
prospective T2D detection models. These predictions are hoped to help prevent-
ing or delaying T2D appearance by proposing healthy lifestyles and scheduling
temporary patient reviews to the correspondent risk group.

2. Material and methods

2.1. Data preparation and extension

The utilized dataset consists of 242 environmental features gathering basal
information from 4617 anonymized patients from the Di@bet.es Study, a population-
based study that has been described in detail [7]. All participants signed the
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informed consent for the Di@bet.es Study. Valencian Clinical Hospital Ethics
Committee aproved the work (references 2017.184 and 2031/036).

Features were grouped by their subject. Table 1 shows the number of vari-
ables for each type.

Type Number

Environmental-sociological 119
Diseases and treatments 85(explanatory variables)+1(Response variable)

Antropometric-clinic-biochemistry 35
Others 2

Table 1: Number of features per thematic cluster.

The raw data exhibits several problems like missing values, quasy-constancy,
string errors, etc, that severely affect its quality. Different processing steps must
be applied to improve data quality and homogenization before further analysis is
done. This includes feature filtering, string correction, missing data imputation,
and quasi-constant features filtering. First, columns with over 90% of missing
values are deleted. Then, string correcting is carried out using a weighted finite
states transducer composition technique [8].

Figure 1 represents the whole processes involved in data preparation, includ-
ing geospatial data construction from [9].

Non Geospatial
Heterogeneous

Missing Imputation
Raw Data

Quasy-constancy
Filtering

String correction
Geospatial Data

Construction
Municipality

Quality Data

Figure 1: Quality data and information construction process.

2.1.1. Missing values imputation

The quantity of missing values found in the dataset varies significantly among
variables. Missing-data imputation consists of replacing missing values in a
dataset by appropriate estimated values based on other available information,
either in the self-same feature or other measures in the same row. The informa-
tion used as the estimated value’s explanatory part delimits the imputer model
between univariate and multivariate cases[10]. Table 2 shows the different tested
imputers.
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Univariate Multivariate

Median[11] ✓
Most frequent[11] ✓
Mean[11] ✓
A priori probabilistic random1 ✓
KNN imputer (K=5)[12] ✓
RF Iterative Imputer[13][14] ✓

Table 2: Classification of missing values imputers. (1)Preserves the original distribution.

Accommodating data to be imputed or deciding between classifier or regres-
sor for the corresponding imputer to be trained requires previously distinguish-
ing between nominal and quantitative variables. Hence, to consider a variable
as a nominal variable, a minimum appearance frequency of 5 of every unique
value is required, such as shown in [15] for a χ2 test.

Once the nature of the variable has been established, the nominal explana-
tory features are hot-encoded internally.

Features are then imputed accordingly to its type. Imputers shown in table
2 are evaluated in order to use the best imputer for each feature. Once the best
imputers are selected, features with low imputation score or high missing-value
percentage are discarded.

2.1.2. Quasi-constancy filtering

Imbalanced classifiers can be affected by quasi-constant features (variables
with very low variability). Applying a quasi-constant filter to delete such vari-
ables before classification is an appropriate quality-ensuring step, especially
when working with imbalanced data, trying to avoid the tendency of some fea-
ture selection models to mistake these kinds of variables as informative variables.
For this task, we applied a filter based on Variation [16] and Gini [17] coefficients
to look for quasiconstancy by means of a score that ranges from 0 (constancy)
to 1 (high variability).

2.1.3. Dataset extension with geospatial data

Taking advantage of the availability of each patient’s municipality record,
additional geospatial information was introduced in the dataset, such as pollu-
tion [3], population density, or income per capita apart from the original 242
variables. These variables could potentially be related to the T2D disease.

The municipalities column is interesting not by itself but because it links to
other types of relevant information. The final municipality corrected strings [8]
have been used as the key to link with external datasets related to pollution
and family income, allowing the construction of new geospatial information.

On the one hand, the pollution dataset is an aggregated picture of a past
moment from [9]. It only shows information for a subset of all the municipalities
with geographical sensors, formed by 381 municipalities from a total number
of 8112 (≈ 95% missing values). However, since we know the latitude and
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longitude of the municipalities, it is possible to approximate missing values by
using a function, such is shown in equation 1, which computes the imputed value
for the municipality as a weighted mean inverse to the distance squared to the
k-nearest municipalities. On the other hand, mean rent by unit of consumption,
obtained from [18], shows only ≈ 20% missing values that are imputed by using
the same equation 1.

Let fm be the pollution feature assigned for a missing municipality m, M the
set of nearest municipalities to the municipality m with information, k one of
the nearest municipalities to the municipality m to impute, dmk the L2 distance
between the municipality m and the municipality k, and N a normalization
factor.

fm =
∑
k⊂M

1
d2
m,k

N
fk where N =

∑
k⊂M

1

d2m,k

(1)

The pollution data, after missing-data imputation, is related to either one
of these kinds of particles: 1) Suspended particles < 2.5µM , 2) Suspended
particles < 10µM , metals: 1) Cd(PM10), 2) Ni(PM10), 3) Pb(PM10), 4)
As(PM10), gases: 1) NO, 2) NO2, 3) SO2, 4) CO, organic molecules: 1)
Benzo(a)pyrene C20H12 (PM10), 2) BENZENE C6H6 (PM10). An example of
this imputation can be seen in Figure 2.

Nitrogen Dioxide (NO2)

3.43

7.49

11.56

15.62

19.68

Arsenic (As)

0.16

0.49

0.82

1.15

1.47

Figure 2: Geographical particle pollution related to NO2 and As respectively. The two differ-
ent pollution compounds are fully imputed through the available geospatial data interpolation
with the formula specified in equation 1.

2.2. Model training and evaluation

Four different 10-Fold XGBoost classifier models [19] are fitted, each one
focusing on a different role with different economic cost for T2D prediction
and diagnosis. Each proposed model selects its features from the most relevant
through a permutation-based featured model for AUC-ROC performance [20]
with 100 repetitions using a XGBoost-Classifier as the prediction model. The
resulting training sets include those features with a left 95% confidence interval
for AUC-ROC variation greater than 0.001. Afterwards, with the chosen set of
features for each one of the models, the corresponding XGBoost classifier model
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is trained and evaluated using a 10-fold cross-validation. Finally, prognosis
models explainability has been tackled by using Partial dependence estimations
[21]. These models can help to identify the factors that can be relevant in the
risk of developing T2D, and the differences between patients and healthy people
in their behavior and other risk factors. Differences solely between patients can
also be assessed to study possible differences between those that know or do not
know that they have T2D. In addition, using the clinical parameters used for
T2D diagnosis allows us to verify the procedure’s viability.

Two scenarios are proposed:

• The environmental and lifestyle scenario has the lowest economic cost be-
cause it only requires modifiable and unmodifiable environmental factors
to compute the final T2D risk without any biochemistry values and can
be obtained directly by the patient with minimal aid.

• The healthcare scenario uses a set of general biochemistry values joined
to other environmental features to establish the corresponding T2D risk
and can be considered of medium economic cost.

For each of these two scenarios, two models are fitted: one for diagnosis (the
patient has the T2D at the moment but does not know it yet) and prognosis
(each individual could develop T2D up to 7 years after the test but does not
present the illness at the moment of data adquisition).

For the creation of each one of the predictive models, individuals can or
cannot have T2D. However, all the patients included in the dataset either do
not have T2D or they do but still do not know it. The latter group, which are
assigned the T2D-positive target, are diagnosed for the first time during data
acquisition for this study. This ensures no biases are included due to the lifestyle
and treatment adjustments that can be expected once a patient is diagnosed.
Besides, in prognosis models all the individuals with T2D presence in the present
time are discarded looking for a real prognosis of the illness.

3. Results

Firstly, variables with a 90% of missing data have been filtered. Table 3
shows the set of variables filtered by this subject.

Features Missing values (%)
Second psychrotopic (PSIC CL2) 95.71%

Second analgesic (AINE CL2) 99.26%

Second hypotensive (HIPO CL2) 90.77%

Third hypotensive (HIPO CL3) 97.21%

Fourth hypotensive (HIPO CL4) 99.42%

Table 3: Variables filtered by high missing values proportion (τ > 90%).
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Next, the remaining variables with missing values are imputed by the best
individual corresponding imputer model. The subset of variables that do not
reach a minimum score of 70% after imputation is also filtered out as it is
commented previously in section 2.1.1. The quasi-constancy variable filter is
the last data quality step to be applied. Table 4 shows the variables filtered by
lower missing value imputer model performance and the ones filtered out due
to quasi-constancy.

Imputation quality filtering Quasi-constancy filtering
Menopause treatment Pregnant

Gestational diabetes Taking alpha-blockers

Causes amenorrhoea Serious illness

Other infusions Taking uricosorics

Physic exercise type Number of children with T2D

Disease Peripheral vasculopathy

Analgesic (AINES CL) Lead pollution

First psychrotopic (PSIC CL1) Surgery

Surgery

BMI ≥ 40

BMI ≤ 19

Birth less than 6 months ago

Taking renin inhibitors

Table 4: Variables filtered by lower missing value imputer accuracy (< 70%) and quasicon-
stancy.

Finally, four different 10-Fold XGBoost models are fitted. The two evaluated
scenarios, named environmental and lifestyle and healthcare, are described in
Section 2.2. The required features and performances of the diagnosis models for
each of the two scenarios are shown in Figure 3 and Figure 4 respectively. Table
5 describes the final environmental chosen features for each one of the different
models.

Next, figure 5 shows us the T2D risk prediction for the environmental and
lifestyle prognosis model trained with individuals without follow-up and tested
with individuals with follow-up that do not have T2D in the present but could
have T2D or not in a future revision. In summary, results shown in figures 3 and
4 are for T2D diagnostic but the results shown in 5 are for T2D environmental
and lifestyle prognosis model. Figure 6 show us T2D probability contribution
for each explanatory variable used in this latter prognosis model.
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Features Models

Age 1,2

Waist to Hip Ratio (WHR) 1,2

Waist 1,2

# Parents with T2D 1

Body Mass Index (BMI) 1,2

Chocolate 1

Physical activity 1

Sugar, honey, candies, jam 1

Non-sugar soft-drinks number 1

# Brothers with T2D 1

# Hypotensive drugs (N HIPOTE) 1

Civil status 1,2

Moderate MET-minutes/week (MET) 1,2

Weight at 18 1

Province 1

Arterial hypertension 90/140 (HTA140) 1

Benzoapyrene (C20H12) 1

# Sugar Soft-drinks 1

Sweet, cakes, buns 1

# Hours sleeping 1

# of times eating outside 1

# MET-minutes/day 1

DM family background (AF DM) 1

Whole grains 1

Canned fish, sellfish 1

Salads 1

How many cigarretes? 1

Hematocrit according to patient (HCT) 1

Basal glucose (mg/dL) (GLUCOSE) 2

Arsenic (As) 2

Autonomous community 2

# Years taking the contraceptive 2

# Hours sit during the last 7 days 2

Table 5: Environmental features description used for the different models. Models: 1 Envi-
ronmental and lifestyle, 2 Healthcare.
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Figure 3: Environmental and lifestyle AUC variable importance for the diagnostic model (left)
and 10-fold cross validation ROC curve (right).

Figure 4: Healthcare AUC variable importance for the diagnostic model (left) and 10-fold
cross validation ROC curve (right).

Figure 5: Environmental and lifestyle AUC variable importance for the prognosis model (left)
and 10-fold cross validation ROC curve (right).
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Figure 6: Variable contribution to T2D probability in Environmental and lifestyle prognosis
model.

Lastly, figure 7 shows us the T2D risk prediction for the healthcare prognosis
model trained with individuals without follow-up and tested with individuals
with follow-up that do not have T2D in the present but could have T2D or not
in a future revision. The T2D probability contribution for each explanatory
variable used in this healthcare prognosis model is presented in Figure 8.
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Figure 7: Healthcare AUC variable importance for the prognosis model (left) and 10-fold cross
validation ROC curve (right).

Figure 8: Variable contribution to T2D probability in Healthcare prognosis model.
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4. Discussion

T2D is a complex disease influenced by diverse heterogeneous factors, from
genomics to environmental features. Genomics is hoped to be most relevant in
future T2D risk detection and disease prediction. Environmental and lifestyle
features not only show a relevant role to detect the T2D presence in a patient
but also for risk of developing T2D in the future.

The work developed in this article aims to find a way to discover relevant
factors related to T2D present in the different heterogeneous environmental
features dataset, which requires working with nominal, ordinal and quantita-
tive mixed information and solving different issues present in data. First, the
geographical pollution and rent data construction from the municipality field.
Secondly, a hybrid missing-value imputation, which allows accommodating a
different imputation model for each one of the features in the dataset automati-
cally and independently. Thirdly, a quasi-constancy detection for heterogeneous
variables through a new proposed adimensional 0-1 heuristic, which allows us
to detect and filter it in an easy and ordered way.

This work proposes the creation of four different models to predict T2D
(diagnosis) and also risk of future T2D (prognosis) after using all the tools
mentioned above to improve data quality, constructing new features from the
available data from heterogeneous sources. Each of the proposed models is
intended to be used in different use case scenarios, designed with different roles
and different expected costs and performances.

For the record, an additional, more specific model was trained, one that
requires a set of more specific biochemistry values joined to some environmen-
tal features, as well as the most expensive tests. This model proved to be the
best perfomant model, with an almost perfect 99.0 AUC-ROC. This suggests
that current clinical tests are accurate enough in T2D diagnosis. The explana-
tory features used for this classifier are: GLUCOSE, OGTT GLUCOSE and
CAPILLARY OGTT GLYCEMIA.

The first model, aimed at identifying patients at risk of suffering from T2D,
indicates that many different factors are involved or related to T2D presence.
Many of them are known as anthropometric factors (WHR, waist, BMI), famil-
iar history or genetic background (Parents or brothers with T2D), and behavior
(physical activity, eating, hours of sleep). Other remarkable aspects include hy-
potensive drugs, civil status, province, contaminants (benzopyrene), etc. The
second scenario, healthcare, requires fewer variables as we incorporate the pa-
rameters used for diagnosis. In this way, it is interesting that arsenic, civil status,
behavior, and anthropometric variables are important in the model, although
glucose levels are the main factor, as could be expected.

In the same way, the prediction model for disease development without bio-
chemical data includes many factors affecting the risk as anthropometric (WHR,
waist, weight), age, family history, contaminants (NO2, NxOy, Pb, benzopy-
rene), behavior (eating, walking, hours sitting, coffee, beer, etc.). In the last
model, the prediction of T2D using biochemical parameters, the main factor
is the basal glucose levels. Many other parameters are included here, such as
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anthropometric (WHR), biochemical parameters (basal insulin, HLD, HIES,
FERS, PCR), family background, age, contaminants (NO2, CO, As, Cd), and
behavior (eating, drinking, exercise). It is clear that many factors affect T2D,
and our results highlight the importance of factors that often are not included
as risk factors, such as urban contamination.

The presented diagnosis models for environmental and lifestyle and health-
care scenarios, aimed for a broader, more general population, without needing
very specific tests, achieve performances of 82.32 and 95.41 AUC-ROC respec-
tively. On the other hand, prognosis models perform slightly worse than di-
agnosis, with 73.3 and 80.23 AUC-ROC respectively. Their good performance
suggest these models could aid clinicians during diagnosis and prognosis. It is
worth noting that the difference in performances for the same kind of models
are directly related to the kind of explanatory variables used for the model and
their economic cost.

5. Conclusions

Different models for diagnosis and prognosis of T2D have been designed,
each using different subsets of data preprocessed with the previously mentioned
tools. The created models obey three different role-based use cases, observing
an increasing economic cost as the model performance also increases, as more
specialized biochemistry features become available to assess the presence of the
illness. It is essential to observe that the performance of the specialist model
reaches a quasi-perfect level, which also informs us about the actual illness
detection power we already have by using the well-known specific biochemistry
tests related to T2D. Furthermore, it is relevant to remark that the cost of the
model is linked to the kind of specific tests required for each one of the models.
The lowest cost is achieved by the environmental and lifestyle model that only
requires that the patient completes a survey with a minimal level of guidance
required. Alternatively, new environmental and lifestyle and healhcare models
have been obtained as prognosis models for estimating the risk of developing
T2D in the future years. Finally, the feature contributions to T2D prediction
for both models in both scenarios have been shown.

6. Future Work

Generally, classifier models take a set of parameters and return some prob-
ability or risk score on each target class, which can be summarized in a single,
expected class prediction. However, other approaches are also viable. Instead
of assigning a binary class straight away, we could estimate to which risk per-
centile a single patient pertains by comparing their prediction with those of a
significant, random general population sample. While percentiles can be hard
to understand, bounded ranges of percentiles could be converted to a reasonable
set of risk categories, such as low, moderate or high risk, imitating a traffic-light
system. Being classified into a high-risk tier could prompt the patient to seek
further professional help or consider adopting a healthier lifestyle.
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Nevertheless, some aspects like age, genetics, ancestry or the place of resi-
dence cannot be changed to lower one’s risk of developing the disease. Compar-
ing patients with very different unmodifiable characteristics could be misleading
as to how well someone’s lifestyle is doing to prevent the disease. Thus, two
different risk scores seem to be interesting. First, comparing the general pop-
ulation would stratify patients by their actual risk. Then, on the other hand,
a separate comparison with patients with similar unchangeable characteristics
would make a fairer evaluation of someone’s risk factors associated with their
lifestyle only, which the patient could try to modify to lower their level of risk.

A new line related to future T2D risk prediction is intended to be carried out
by mixing environmental and lifestyle features with genomic data by selecting
single-nucleotide polymorphism (SNPs) that appear to be related in any way
to T2D disease. Further studies in this direction could take profit of genomic
SNPs feature selection done in a previous work during the last years by applying
an innovative ensemble feature selection algorithm explained in [22]. The final
result of the algorithm was an ordered list of the most voted features that are
directed related to feature relevance concerning T2D, which allowed biologists to
reduce cost during measuring part, focusing only on the most relevant features
for new individuals study.
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tario San Carlos, Madrid, Spain), A. Calle-Pascual (Servicio de Endocrinoloǵıa
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