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 2

Highlights:  26 

• The first meta-analysis of tissue microbiome in head and neck cancer containing eleven 27 

16S ribosomal RNA and The Cancer Microbiome Atlas dataset.  28 

• Microbiome from head and neck tissues were able to distinguish tissue types (cancer, 29 

cancer-adjacent, non-cancer) using 16S rRNA sequencing and whole genome sequencing 30 

datasets. 31 

• Specific bacterial genera correlate with different tumour microenvironment phenotypes.  32 

• High abundance Fusobacterium in tumour tissue correlates with better overall survival.   33 

 34 

Abstract: 35 

Objective:  Multiple reports have attempted to describe the tumour microbiota in head and 36 

neck cancer. However, these have failed to produce a consistent microbiota signature which 37 

may undermine understanding the importance of bacterial-mediated effects in head and neck 38 

cancer. The aim of this study is to consolidate these datasets and identify a consensus 39 

microbiota signature in head and neck cancer.  40 

Methods:  We analysed 11 published head and neck cancer 16S ribosomal RNA microbial 41 

datasets collected from cancer, cancer-adjacent and non-cancer tissue to generate a consensus 42 

microbiota signature. These signatures were then validated using The Cancer Microbiome 43 

Atlas database.  44 

Results: We identified unique bacteria enrichment within tissue types and correlated it with 45 

possible functional and clinical outcomes. 46 

Conclusions:  Our meta-analysis demonstrates a consensus microbiota signature for head and 47 

neck cancer, highlighting its potential importance in this disease.  48 

 49 
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1. Introduction 53 

Recent studies have revealed that cancers previously thought to be sterile can contain unique 54 

microbial communities. The extent of microbial infiltration varies across different cancer 55 

types, with head and neck cancers (HNSC) containing one of the highest level of intratumoral 56 

microbial infiltrates while glioblastomas having the least amount of microbes.1-3 This 57 

“intratumoral microbiota” can refer to bacterial infiltrates found in the extracellular matrix or 58 

within the cellular components of the tumour such as cancer, immune and stromal cells.2 It is 59 

now widely appreciated that intratumoral bacteria can have direct and indirect effects on 60 

tumours or the tumour microenvironment (TME).4-6 The presence of specific intratumoral 61 

bacteria has been reported to influence multiple features of tumour biology including 62 

treatment efficacy, local immune composition and activity and promoting tumour 63 

metastasis.7-10  64 

 65 

Direct interaction between specific bacterial species with the tumour and the TME can induce 66 

chemoresistance, promote tumour progression, enhance therapeutic responses and modulate 67 

anti-tumour immunity through various mechanisms.11-14 Bacteria can metabolise an active 68 

drug into its inactive form or induce autophagy in cancer cells which can promote 69 

chemoresistance.12-14 Moreover, specific bacterial species can mount or suppress anti-tumour 70 

responses.15-17 Most notably, Fusobacterium nucleatum colocalises with cancer and immune 71 

cells by binding to cell surface receptors such as Toll-like receptor 4 (TLR-4), T-cell 72 

immunoreceptor with Ig and ITIM domains (TIGIT) and Carcinoembryonic Antigen-Related 73 

Cell Adhesion Molecule 1 (CEACAM-1) receptors, or sugar groups (e.g. tumour expressed 74 

Galactose-N-acetylgalactosamine), which may then promote chemoresistance and suppress 75 

anti-tumour immunity13, 15, 18-22. Alternatively, Bifidobacterium species enhance anti-tumour 76 

immunity and efficacy of PD-1 immunotherapy responses.8, 23, 24 77 
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 78 

The release of bacterial metabolites such as short chain fatty acids (SCFA), amino acids, 79 

vitamins and bile acids can indirectly affect the tumour and the TME.25, 26 Butyrate, a SCFA 80 

released by anaerobic bacteria through fermentation of carbohydrates, can decrease tumour 81 

cell growth and invasion, while increasing CD8+ T cell-mediated anti-tumour responses.27-30. 82 

However, butyrate has also been shown to have pro-tumorigenic effects by inducing 83 

senescence-associated inflammatory phenotypes and inhibiting natural killer cell functions.31, 84 

32 Bacteria-derived indole and its derivatives (i.e. indole-3-lactic acid) have been shown to 85 

suppress anti-tumour immunity by activating immunosuppressive tumour-associated 86 

macrophages in treatment-naïve pancreatic cancer, while improving chemotherapeutic and 87 

immune-checkpoint inhibitor efficacy in pancreatic cancer and melanoma.33-35 Together, 88 

these studies demonstrate that the tumour microbiota can influence cancer clinical outcomes 89 

in a context-dependent manner. 90 

 91 

There are multiple reports describing the microbiota in HNSC.36-89 Most of these studies 92 

compared the microbiota diversity and bacterial relative abundance between cancer and 93 

healthy samples using 16S ribosomal RNA (rRNA) sequencing36-85, 88, 89, while two studies 94 

additionally correlated the impact of the microbiota with matched transcriptome analysis.86, 90 95 

Samples studied include tissues, swabs, and oral fluids (saliva or oral rinse) from cancer and 96 

healthy patients. Specifically for HNSC tissue microbiota analysis, samples included cancer, 97 

cancer-adjacent (approximately > 5 mm away from the tumour), contralateral, and healthy 98 

donor tissue samples.36-55, 57-60, 85-89 Most bacteria identified in HNSC are oral commensal 99 

bacteria from the genera Streptococcus, Rothia, Fusobacterium, Haemophilus and 100 

Prevotella.36-38 However, changes in microbial composition have been identified when cancer 101 

samples are compared to healthy controls. In general, there was an enrichment in 102 
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Fusobacterium within cancer tissue samples, that correlated with an inflammatory 103 

phenotype.36, 37, 47 However, inconsistencies are observed for microbes such as Streptococcus, 104 

Actinomyces and Prevotella warranting the need to identify a consensus microbiota signature 105 

for HNSC.37, 38, 43, 54, 85  106 

 107 

In this study, we systematically reviewed the literature and performed a meta-analysis to 108 

consolidate the currently heterogenous HNSC-associated microbiota data. Selected 16s rRNA 109 

sequencing datasets were analysed consistently to minimise variability between different 110 

sample cohorts and adjusted for batch-effects.91 These consensus HNSC-associated microbial 111 

signatures were then validated using whole genome sequencing (WGS) data from The Cancer 112 

Microbiome Atlas (TCMA).1 Finally, we correlated the presence of different microbiota 113 

signatures with the HNSC tumour microenvironment and clinical outcomes.  114 
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2. Methods 115 

This study was performed according to the Preferred Reporting Items for Systematic Reviews 116 

and Meta-Analyses (PRISMA) Statement.92 117 

2.1 Search and Study Selection 118 

The following criteria were used to select datasets: 1) Tissue samples, 2) Presence of 119 

metadata to distinguish sample types, 3) Illumina short-read amplicon sequencing of 16S 120 

rRNA V3 to V5 primers (Figure 1). Database search was performed on 16 August 2022 and 121 

datasets after this date were not included (Supplementary Table 1). The risk of biasness 122 

assessment was conducted using RoB 2 (β v9) (Supplementary Table 1).  123 

 124 
 125 

 126 
 127 

Figure 1: Study selection flow chart. 128 

 129 

2.2 Download, pre-processing, and analysis of 16S rRNA datasets 130 
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Previously published raw sequences were retrieved from the National Center for 131 

Biotechnology Information (NCBI) Sequence Read Archive (SRA) using pysradb.93 Samples 132 

were divided into three main groups – cancer, cancer-adjacent and non-cancer tissues. Cancer 133 

tissues are defined as tissues obtained directly from the tumour, while cancer-adjacent tissues 134 

are cancer-free regions obtained > 5mm away from cancer tissues. Non-cancer tissues are 135 

defined as tissues that were either obtained from healthy patients or contralateral tissues 136 

obtained from cancer patients. FASTQ sequences files were obtained from SRA using 137 

sratoolkit.94 These sequences were processed using QIIME2 DADA2 denoise-paired and 138 

reads truncated using the same parameters (trim_left_f = 30, trim_left_r = 30, trunc_q = 15). 139 

Sequences from different studies were merged before bacterial Operational Taxonomic Units 140 

(OTU) classification using QIIME2 and SILVA reference database (version silva-138-99-nb-141 

classifier).95 142 

 143 

Raw microbial reads were filtered, central log-ratio (CLR) transformed and batch-adjusted 144 

using Phyloseq and MixOmics as described previously.96-98 Microbiome datasets are 145 

inherently compositional, hence, CLR transformation addresses generates scale-invariant 146 

values which allows datasets to remain unaffected by variations in library sizes among 147 

samples.99 Briefly, low abundance of OTUs were filtered through proportional counts of all 148 

samples (< 1%) and minimum counts per sample (< 10). Bacterial OTUs were agglomerated 149 

at the genus level before transforming into CLR for their compositional nature.96, 98 The CLR-150 

abundance was used for subsequent statistical and discriminant analysis. A total of 903 SRA 151 

samples from 11 projects were downloaded (Table 1).  152 

 153 

 154 

 155 

 156 
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 157 

Table 1: Study accession and sample size post-filtering 158 
 159 

 160 

 161 

 162 

 163 

 164 

 165 

 166 

 167 

2.3 Discriminant analysis of 16S rRNA dataset  168 

To discriminate the microbial signature between sample types, we employed both 169 

multivariate and univariate discriminant analysis. For β-diversity analysis, CLR-abundance of 170 

all genera were ordinated using Euclidean distance and plotted on a principal component 171 

analysis (PCA) using mixOmics R package. β-diversity for each sample were calculated as 172 

distance to centroid for each tissue groups using betadisper (vegan v2.6-4). Group and 173 

pairwise permutest (vegan v2.6-4, permutations = 9999) was performed to determine if 174 

dispersions differed between sample types, while group and pairwise permutational 175 

multivariate analysis of variance (PERMANOVA) was performed using adonis2 (vegan v2.6-176 

4, method = “euclidean”, permutation = 9999) and pairwise.adonis2 (pairwiseAdonis, method 177 

= “euclidean”, permutation = 9999) to determine statistical differences in β-diversity between 178 

groups. Other statistical test such as Analysis of similarities (ANOSIM) (vegan v2.6-4, 179 

distance = “euclidean”, permutation = 9999) and Fifty-fifty multivariate analysis of variance 180 

(FFMANOVA) (nSim = 9999) were also applied as supplementary to distinguish between 181 

sample types.100, 101 182 

Accession number Sample size Primers 

Cancer Cancer-
adjacent 

Non-cancer 

PRJNA412445 16 0 0 V4 -V5 
PRJNA555458 0 0 4 V3 -V4 
PRJNA596113 102 53 0 V3 -V4 
PRJNA597251 19 20 0 V3 -V4 
PRJNA666746 50 50 0 V3 -V4 
PRJNA666891 7 0 10 V4 
PRJNA685226 13 13 0 V3 -V4 
PRJNA699728 37 0 201 V4 
PRJNA803155 40 0 0 V4 -V5 
PRJNA822685 75 79 0 V3 -V4 
PRJNA866676 37 36 41 V3 -V4 
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Multivariate sparse partial linear discriminant analysis (sPLS-DA) was applied on batch-183 

adjusted dataset to identify discriminating genera within each sample type.96 The Area Under 184 

Curve (AUC) of the Receiver Operating Characteristics (ROC) curve was calculated using 185 

mixOmics in Rstudio.96, 98 The AUC value served as a quantification of the discriminatory 186 

potential between sample types. A higher AUC value, closer to 1, signified a test approaching 187 

perfection in its ability to distinguish between the samples. Heatmap of all representative 188 

bacteria in each sPLS-DA was presented with sample type clustered according to Euclidean 189 

distance and Ward’s linkage.  190 

 191 

Univariate Kruskal-Wallis test with Bonferroni multiple comparisons test was also performed 192 

to determine microbial genera differences between sample types using microbiomeMarker in 193 

RStudio v3.3.0, followed by a post-hoc Wilcoxon test (Mann-Whitney test) with Bonferroni-194 

Dunn multiple comparison test to determine differences between groups (cancer– cancer-195 

adjacent, cancer – non-cancer, non-cancer – cancer-adjacent). Additionally, Wilcoxon 196 

matched-pairs signed rank test with Bonferroni-Dunn multiple comparison test was also 197 

performed on paired cancer and cancer-adjacent samples. 198 

 199 

2.4 Functional profiling analysis of 16S rRNA datasets in different sample types 200 

To predict the microbial functions of genera detected from 16S rRNA sequencing between 201 

each tissue sample type, Phylogenetic Investigation of Communities by Reconstruction of 202 

Unobserved States 2 (PICRUST2) from QIIME2 was applied on raw 16S rRNA reads using 203 

MetaCyc database.102, 103 Functional abundance was processed and analysed similarly as 204 

described for raw microbial reads. Univariate Kruskal-Wallis test and post-hoc Wilcoxon test 205 

was performed as previously described to compare differences between groups.   206 

 207 
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2.5 Reanalysis of tissue microbiome data from TCMA  208 

Decontaminated microbial read count derived from The Cancer Genome Atlas (TCGA) 209 

HNSC whole genome sequences were obtained from TCMA repository.1 Data from a total of 210 

177 cancer (TCGA annotation: primary tumour) and 22 cancer-adjacent (TCGA annotation: 211 

solid tumour normal) tissues were obtained from TCMA repository (n = 22 paired cancer and 212 

cancer-adjacent samples). Similar to 16S rRNA pre-processing, read counts were 213 

agglomerated to the genus before CLR transformation as described in 2.2. As samples were 214 

already pre-processed in the TCMA dataset, no further filtering or batch adjustment was 215 

required. Microbiome statistical analysis were performed similarly as 16S sequencing 216 

datasets. Metadata were obtained from cBioPortal for Cancer Genomics.104 217 

 218 

2.6 Microbiome correlation analysis with tumour microenvironment and survival 219 

analysis 220 

The TME immune subtype and 29 functional gene expression signatures (FGES) scores were 221 

previously described by Bagaev et al. (2021) using transcriptomics datasets from TCGA.105 222 

The 29 FGES represents the major functional components and immune, stromal, and other 223 

cellular populations of the tumour.105 Pearson’s correlation test was applied to determine the 224 

correlation between FGES scores and selected bacteria genera. The four TME immune 225 

subtypes were – Desert (D), Fibrotic (F), Immune-enriched (IE), Immune-enriched/Fibrotic 226 

(IE/F) (Described in Supplementary Table 2).105 Specifically, tissues with IE and IE/F 227 

phenotype contains high T-cell infiltration, while D and F phenotypes have low T-cell 228 

infiltration (Supplementary Table 2).105 Using a cut-off of high (top 35th percentile) and low 229 

(bottom 35th percentile) CLR-abundance, the proportion of each patient within the four TME 230 

subtypes were determined, and survival analysis was performed. Since there were 153 231 

TCGA-HNSC samples with both FGES/TME subtypes and microbiome datasets, these 232 
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samples were used for subsequent correlation and survival analysis. Chi-squared (χ2) test was 233 

performed in Prism9 to determine association between high/low bacterial genera CLR-234 

abundance and proportion of patients within each tumour subtype. 235 

 236 

 237 

 238 

2.7 Statistical analysis 239 

For comparisons made between all unpaired tissue groups, Kruskal-Wallis test with 240 

Bonferroni’s multiple comparison was used for comparisons made between all tissue groups 241 

unless stated otherwise. Post hoc Wilcoxon matched pairs signed rank test with Bonferroni’s 242 

multiple comparison was used to compare differences between unpaired tissue samples. For 243 

all paired cancer and cancer-adjacent samples, Wilcoxon matched-pairs signed rank test was 244 

performed. Univariate and multivariate Cox proportional hazard model was performed using 245 

survminer in Rstudio v3.3.0. Statistical analysis was performed using RStudio v3.3.0 and 246 

Prism9. 247 

  248 
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3 Results 249 

3.1 Multivariate analysis identifies homogenous microbial abundance and functions between 250 

cancer and cancer-adjacent samples, contrasting to non-cancer samples. 251 

The 16S rRNA amplicon datasets were obtained for 903 head and neck tissue types (396 252 

cancer, 251 cancer-adjacent, and 256 non-cancer) from 11 studies.37, 38, 41-45, 87-89 Following 253 

sample processing and aggregation of 16S data at the genus level, a total of 177 distinct 254 

bacterial genera were identified. Differences in the microbiota and β-diversity between tissue 255 

types were assessed using PCA and PERMANOVA test (Figure 2A-2B). The β-diversity 256 

index was calculated for cancer (14.6 ± 5.7) and cancer-adjacent (15.0 ± 5.5) tissues, 257 

revealing similar levels of β-diversity. In contrast, non-cancer tissues (8.61 ± 5.3) exhibited 258 

lower β-diversity (PERMANOVA – Overall R2 = 0.006, p < 0.0001) (Figure 2B). Post-hoc 259 

pairwise test identified significant differences in β-diversity between cancer and non-cancer 260 

(R2 = 0.003, p = 0.002), cancer and cancer-adjacent (R2 = 0.005, p < 0.001), and non-cancer 261 

and cancer-adjacent samples (R2 = 0.007, p < 0.001) (Figure 2B). These findings were 262 

consistent with additional multivariate and univariate statistical analysis, ANOSIM (R = 263 

0.027, p = 0.002) and FFMANOVA (p < 0.0001) (Supplementary Table 3).  264 

 265 

Multivariate sparse partial least squares discriminant analysis (sPLS-DA) identified 116 266 

representative bacterial genera in sPLS-DA component 1 and 2 which were discriminant 267 

between tissue types (Figure 2C-E). The AUC values were computed for different sample 268 

comparisons: cancer versus others (AUC = 0.74, p < 0.05), non-cancer versus others (AUC = 269 

0.91, p < 0.05), and cancer-adjacent versus others (AUC = 0.84, p < 0.05). These results 270 

demonstrate that sPLS-DA components 1 and 2 (Figure 2D) can effectively differentiate 271 

between tissue types. Lastly, majority of cancer and cancer-adjacent samples clustered 272 
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together and were distinct from non-cancer samples, as determined by Euclidean distance 273 

metric (Figure 2E). 274 

 275 
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Figure 2: Multivariate discriminant analysis (sPLS-DA and PERMANOVA) of tissue 276 

16S rRNA microbiota to discriminant between cancer, cancer-adjacent and non-cancer 277 

tissues. (A) Principal coordinates analysis (PCA) plot of tissue CLR-abundance microbiota 278 

based on Euclidean distance. (B) Dispersion of β-diversity (top-right panel) for each sample 279 

type, with error bar representing 95% confidence interval. PERMANOVA test was 280 

performed with bacterial genera as variable for sample types. (C) sPLS-DA sample plot of 281 

16S rRNA tissue microbiota. Ellipse displays 95% confidence interval for each sample group. 282 

The batch-adjusted normalized abundance of tissue microbiota from 16S amplicon 283 

sequencing was compared between cancer, cancer-adjacent and non-cancer tissue samples. 284 

sPLS-DA identified 116 bacterial genera on component 1 and 2. (D) ROC curve and AUC 285 

values determined from sPLS-DA analysis was used to access discriminatory potential of 286 

sPLS-DA component 1 and 2. (E) Heatmap representing 86 bacterial genera after sPLS-DA 287 

discriminant analysis. Each column and row represent a unique sample and bacterial genera 288 

respectively, with OTUs clustered based on Euclidean distance and Ward linkage method. 289 

 290 
3.2 Univariate analysis identifies differences in microbial abundance and functions 291 

between sample types. 292 

Next, unpaired univariate analysis was applied to determine the differences between tissue 293 

types. Out of the 177 bacterial genera, 33 were identified as significantly different among 294 

tissue types using Kruskal-Wallis test (Padjust < 0.05) (Supplementary Table 4). Notably, 18 of 295 

these were also identified as representative bacterial genera in sPLS-DA discriminant 296 

analysis (Supplementary Table 4). These 33 genera are denoted as bacterial genera of interest 297 

(Supplementary Table 4). The top 20 differentially abundant genera, based on the effect size 298 

(η2), are presented in Figure 3. Post-hoc unpaired Wilcoxon test with Bonferroni-Dunn’s 299 

multiple comparison test was performed on these genera to determine the mean differences in 300 

the central log ratio transform (CLR) abundance between tissue types (Figure 3A, 301 
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Supplementary Table 5). Since most published studies compared cancer to non-cancer, or 302 

cancer to cancer-adjacent tissues, we performed post-hoc test for these comparisons (Figure 303 

3B). We identified 27 out of 33 genera as significantly different (Padjust (#) < 0.05) between 304 

cancer and non-cancer tissues (Figure 3A-3B, Supplementary Table 5). Non-cancer tissues 305 

contained more Fretibacterium (CLR-abundance diff. = 1.42, SE = 0.12), Stenotrophomonas 306 

(CLR-abundance diff. = 0.80, SE = 0.12) and Tannerella (CLR-abundance diff. = 0.71, SE = 307 

0.10), while cancer tissue had a greater CLR-abundance of Neisseria (CLR-abundance diff. = 308 

2.32, SE = 0.15), Capnocytophaga (CLR-abundance diff. = 2.02, SE = 0.15), and 309 

Streptococcus (CLR-abundance diff. = 1.98, SE = 0.19) (Figure 3A-3B). Capnocytophaga 310 

abundance in cancer tissues was consistent to previous findings46, 57, 85, while contradicting 311 

findings were identified for the abundance for Streptococcus38, 41, 52, 57, 85 and 312 

Fusobacterium38, 41, 42, 52, 57, 58.  313 

 314 

For cancer and cancer-adjacent tissue, 13 out of 33 bacterial genera were significantly 315 

different (post-hoc unpaired Wilcoxon test Padjust (*) < 0.05) (Figure 3A and 3C, 316 

Supplementary Table 5). Similar to many studies, Fusobacterium (CLR-abundance diff. = 317 

1.11, SE = 0.20) displayed significantly higher CLR-abundance in cancer tissue than cancer-318 

adjacent tissue, while Rothia (CLR-abundance diff. = 0.92, SE = 0.18), Stenotrophomonas 319 

(CLR-abundance diff. = 1.33, SE = 0.15) and Serratia (CLR-abundance diff. = 0.70, SE = 320 

0.12) had higher CLR-abundances in cancer-adjacent tissue than cancer tissue (Figure 3A).36, 321 

37, 43, 45, 52, 55, 58, 59. Additionally, we found that Prevotella was elevated in cancer tissue as 322 

compared to cancer-adjacent tissues.43, 45, 52, 55, 58 Unlike previous studies, we did not observe 323 

any significant differences in Streptococcus abundance between cancer and cancer-adjacent 324 

tissues.36, 37, 45, 51, 52, 55, 59 325 

 326 
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Lastly, 28 of the 33 top bacterial genera were significantly different (post-hoc unpaired 327 

Wilcoxon test Padjust < 0.05) when comparing non-cancer to cancer-adjacent tissue samples 328 

(Figure 3A, Supplementary Table 5). Genera Neisseria (CLR-abundance diff. = 2.83, SE = 329 

0.19), Rothia (CLR-abundance diff. = 1.95, SE = 0.16) and Streptococcus (CLR-abundance 330 

diff. = 1.95, SE = 0.16) were higher in CLR-abundance in cancer-adjacent, while 331 

Fusobacterium (CLR-abundance diff. = 1.80, SE = 0.18) and Prevotella (CLR-abundance 332 

diff. = 1.28, SE = 0.20 were greater in CLR-abundance in non-cancer tissue (Figure 3A).  333 

 334 

To provide functional insights to microbial abundance between cancer tissues and other tissue 335 

types, we applied Picrust2 to predict possible differences in MetaCyc pathway functional 336 

CLR-abundance.102 After filtering low abundant functional pathways, we identified a total of 337 

365 MetaCyc pathways. Using Kruskal-Wallis test, 162 MetaCyc pathways were identified 338 

as significantly different among sample types (Padjust < 0.05) (Supplementary Table 5). Post-339 

hoc analysis identified 129/162 and 7/162 pathways that were significantly different between 340 

cancer – non-cancer, and cancer – cancer-adjacent tissues comparisons respectively 341 

(Supplementary Table 6).  342 

 343 

Cancer tissues, when compared to non-cancer tissues, were enriched in pathways involving 344 

the synthesis of ubiquinol, L-methionine, inosine-5’-phosphate and cysteine and metabolic 345 

pathways such as TCA cycle and pentose phosphate pathway, while non-cancer tissues were 346 

enriched in the degradation of L-lysine, L-glutamine, N-Acetylglucosamine (GlcNac), N-347 

acetylmannosamine (ManNac), and N-acetylneuraminate (Figure 3C). Cancer tissues were 348 

more similar to cancer-adjacent tissues, albeit enrichment was identified in pathways 349 

involving biosynthesis of ppGpp (guanosine pentaphosphate and tetraphosphate), cis-350 

vaccenate, L-asparatate, L-asparagine, cob(II)yrinate a,c-diamide and CMP-legionaminate, 351 
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and enrichment in pathways involving degradation of pyruvate and L-lysine, when compared 352 

to cancer-adjacent tissues (Figure 3C).  353 

 354 
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Figure 3. Comparison of bacterial CLR-abundance and functional prediction between 355 

sample types. (A) Top 20 bacterial genera (based on effect size) in CLR-normalized 356 

abundances between sample groups using Kruskal-Wallis test with Bonferroni’s multiple 357 

comparison. 33 out of 177 genera were identified as significantly different (Padjust < 0.05) 358 

using Kruskal-Wallis test. Post-hoc Wilcoxon test with Bonferroni-Dunn’s multiple 359 

comparison was performed to identify group-wise differences between Cancer – Non-cancer 360 

(#), Cancer – Cancer-adjacent (*), Non-cancer – Cancer-adjacent (^). Post-hoc unpaired 361 

Wilcoxon test with Bonferroni-Dunn’s multiple comparison for (B) bacterial genera and (C) 362 

functional CLR-abundance for Cancer – Non-cancer (Top panel), and Cancer – Cancer-363 

adjacent (Bottom panel).  364 

 365 

3.3 Paired cancer and cancer-adjacent tissues display similar bacterial abundance 366 

differences using multiple sequencing techniques. 367 

To understand microbial abundance differences between cancer tissue and cancer-adjacent 368 

tissue within the same patients, we performed Wilcoxon matched-pairs signed rank test to 369 

identify changes in microbial diversity and abundance within paired tissue samples in the 16S 370 

rRNA datasets. Similar to unpaired data analysis, no significant differences in microbial β-371 

diversity was identified between the patient’s paired cancer and cancer-adjacent tissues 372 

(Supplementary Figure 2).  373 

However, 76 bacterial genera were significantly different between paired tissue samples 374 

(Figure 4A, Supplementary Table 7). Bacterial genera with the greatest differences in CLR-375 

abundance were then identified by using a cut-off of > 0.4 and < -0.4 (Figure 3A). Using this 376 

cut-off, we found that Fusobacterium, Prevotella, Alloprevotella, Catonella, Selenomonas 377 

and Treponema were elevated in cancer tissue vs cancer-adjacent tissue, while 378 

Stenotrophomonas, Rothia, Granulicatella, Serratia, Anoxybacillus, Actinomyces and 379 
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Bacteroides were greater in cancer-adjacent tissue compared to cancer tissue (Figure 4A-4B). 380 

Similarly, nine of these bacteria were also found to be significantly different in unpaired 381 

tissue analysis (Supplementary Table 4 and 7). Contrary to published studies on unpaired 382 

samples, Streptococcus, an abundant oral commensal, was not significantly different in our 383 

paired sample analysis.36, 37, 45, 51, 52, 55, 59  384 

To validate this finding, we probed the publicly available TCMA dataset, a repository 385 

containing microbiota reads derived from WGS of tissue samples.1 Similar to the 16S rRNA 386 

dataset, we observed that cancer tissues from TCMA displayed significantly (p < 0.05) higher 387 

CLR-abundance for genera Fusobacterium, Selenomonas and Treponema, while Rothia and 388 

Actinomyces were elevated (p < 0.05) in cancer-adjacent tissues (Figure 4D). In the TCMA 389 

dataset, Anoxybacillus, Serratia, and Stenotrophomonas were not present due to pre-analysis 390 

filtering, while no significant differences in CLR-abundance were observed for Prevotella, 391 

Catonella, Alloprevotella, and Bacteroides (Figure 4C). Notably, similar trend in CLR-392 

abundance between cancer and cancer-adjacent samples was still observed for Prevotella, 393 

Catonella, and Alloprevotella in TCMA dataset. Overall, 16S rRNA and TCMA WGS 394 

dataset showed similar trend for most bacteria genera, regardless of sequencing techniques. 395 
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 396 

Figure 4: Comparison of tissue microbiota in paired cancer and cancer-adjacent tissue 397 

samples using different sequencing datasets. (A) Paired Wilcoxon matched-pairs signed 398 

rank test on paired 16S rRNA sequencing cancer and cancer-adjacent tissue samples. 76 399 

bacteria were significantly different in sample groups (p < 0.05) using paired Wilcoxon 400 

matched-pairs signed rank test and 13 bacteria genera were identified as top bacteria with 401 
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differential CLR-abundance (Diff. CLR-abundance > 0.4 or < -0.4). Blue and red dot points 402 

represent bacteria that were higher in abundance in cancer and cancer-adjacent tissues 403 

respectively. CLR-abundance of paired cancer and cancer-adjacent samples from (B) 16s 404 

rRNA sequencing and (C) TCMA WGS sequencing datasets. Wilcoxon matched pairs signed 405 

rank test was performed for both 16s rRNA (n = 287) and TCMA (n = 22) datasets. *p < 406 

0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 407 

 408 

3.4 Tissue microbiota diversity correlates with cancer functional gene expression 409 

signatures.  410 

Since Fusobacterium, Selenomonas, Treponema, Actinomyces, and Rothia displayed 411 

significant differences between paired cancer and cancer-adjacent tissues, we performed 412 

correlation analyses to investigate the possible relationship between these genera and the 413 

tumour transcriptional profile and patient clinical features found in matched TCGA patients 414 

(n = 156).105 Here, TCGA transcriptomic data were classified into 29 functional gene 415 

expression signatures (FGES), which represent major functional components and 416 

characteristics of cancer cell populations.105 These 29 FGES can then be used to further 417 

classify cancers into four major immune subtypes (Desert, Fibrotic, Immune-enriched/non-418 

fibrotic, and Immune-enriched/fibrotic).105 We correlated the CLR-abundance of 419 

Fusobacterium, Selenomonas, Treponema, Actinomyces, and Rothia from TCGA-HNSC 420 

patients with their respective FGES scores and immune subtype. 421 

 422 

We first correlated CLR-abundance with the FGE signatures. The CLR-abundance of 423 

Fusobacterium correlated (r > 0.3, p < 0.0001) with FGES related to angiogenesis, 424 

neutrophils and granulocyte traffic (Figure 5A). Other FGES such as matrix remodelling, 425 

protumour cytokines, MDSC traffic, M1 signature, antitumour cytokine, MHCI and EMT 426 
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signatures also positively correlated (p < 0.05) to CLR-abundance of Fusobacterium (Figure 427 

5A). The CLR-abundance of Selenomonas showed a positive correlation (p < 0.05) to 428 

angiogenesis, neutrophil signature, granulocyte traffic and antitumour cytokines signatures, 429 

while negatively correlating (p < 0.05) to B cells (Figure 4A). Lastly, CLR-abundance of 430 

Treponema displayed a negative correlation (p < 0.05) to endothelium, T reg traffic, T reg, 431 

MHCII, Coactivation molecules, B cells, NK cells, Effector cells and T cells, while positively 432 

correlating to (p < 0.05) neutrophils and granulocyte traffic (Figure 5A).  433 

 434 

Next, we investigated how CLR-abundance correlated to tissue immune subtyping. Cancer 435 

tissues classified as immune deserts (D) and fibrotic (F) which lack immune cell enrichment 436 

correlated with higher Fusobacterium and Treponema CLR-abundance. On the other hand, 437 

cancer tissues that are immune-enriched / non-fibrotic (IE) or immune-enriched / fibrotic 438 

(IE/F) correlated with greater Rothia. No significant correlation in immune subtypes were 439 

observed for Selenomonas and Actinomyces (Figure 5B). To identify the differences in 440 

immune subtypes between high and low CLR-abundance of each bacterial genera, we further 441 

segregated patients based on the upper and lower 35% CLR-abundance quartiles. As 442 

expected, patients with IE and IE/F tumour subtypes showed significant association with low 443 

CLR-abundance of Fusobacterium (chi-square test, p = 0.04). While not reaching statistical 444 

significance, more patients with IE and IE/F tumour subtypes have low CLR-abundance of 445 

Selenomonas (chi-square test, p = 0.33) and Treponema (chi-square test, p = 0.11), opposite 446 

to high CLR-abundance for Rothia (Figure 5C). Conversely, patients with D and F subtypes 447 

had higher CLR-abundance of Fusobacterium, Selenomonas or Treponema (Figure 5C). 448 

Lastly, the proportion of patients in each immune subtype were similar in high and low CLR-449 

abundance Actinomyces groups. Taken together, these show that Fusobacterium, 450 
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Selenomonas or Treponema are associated with poor T-cell infiltration compared to Rothia 451 

which may have implications in selecting patients suitable for immunotherapy.  452 

 453 

Figure 5: Correlation analysis of Fusobacterium, Selenomonas, Treponema, Rothia 454 

and Actinomyces to the tumour transcriptional profiles. 455 

 (A) 29 functional gene expression (FGES) signature scores derived from Bagaev et al 456 

(2021) were used to correlated with CLR-abundance of genera Fusobacterium, 457 

Selenomonas, Treponema, Actinomyces, and Rothia, using Pearson’s correlation 458 

method. Asterisk (*) represents significant correlation (p < 0.05), and red and blue 459 
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scales represents positive and negative correlation respectively. (B) The CLR-460 

abundance of each bacterial genera within each tumour microenvironment immune 461 

subtype (D – Desert, F – Fibrotic, IE – Immune-enriched/Non-fibrotic, IE/F – Immune-462 

enriched/Fibrotic). Kruskal-Wallis test with uncorrected Dunn’s test was performed to 463 

compare CLR-abundance in all immune groups. *p < 0.05, **p < 0.01. (C) The 464 

proportion of patients in each tumour immune subtype with high and low CLR-465 

abundance in each bacterial genera. High and low bacteria CLR-abundance groups 466 

were determined by upper and lower 35% quartiles respectively. Chi-squared test was 467 

performed to determine association between high/low bacterial genera CLR-abundance 468 

and proportion of patients in each tumour subtype. 469 

 470 

3.5 Evaluation of microbiota abundance with clinical features and survival 471 

Univariate and multivariate Cox proportional hazard models were used to investigate the 472 

association between the intratumoral microbiota and clinical features. Univariate Cox 473 

proportional hazard model identified that current smokers (HR 2.235, 95% CI 1.146 – 4.359, 474 

p = 0.018), HPV-negative (HR 2.273, 95% CI 1.158 – 4.459, p = 0.017), and low CLR-475 

abundance of Fusobacterium (HR 0.8883, 95% CI 0.8183 – 0.9642, p = 0.005) were risk 476 

factors for reduced overall survival (Table 2). Further multivariate Cox proportional hazard 477 

models identified that HPV-negative (HR 2.853, 95% CI 1.1991 – 6.7882, p = 0.0178) and 478 

low CLR-abundance of Fusobacterium (Continuous: HR 0.8482, 95% CI 0.7758– 0.9273, p 479 

= 0.0003; Low: HR 2.579, 95% CI 1.3687 – 4.860, p = 0.0034) were independent hazards for 480 

overall survival, but not current smokers (Table 2). 481 

 482 

 483 

 484 
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Table 2: Univariate and multivariable Cox proportional hazard models for overall survival 485 
   Univariate Multivariable 
  n HR (95% CI) p-value HR (95% CI) p-value 

Age (years) 
< 65 
≥ 65 

106 
47 

 
0.9832 (0.594 – 1.626) 

 
0.947 

  

Sex 
Female 
Male 

41 
112 

 
0.868 (0.525 – 1.436) 

 
0.581 

  

Staging 

I 
II 
III 
IV 

4 
30 
31 
87 

 
2.331 (0.302 – 17.97) 
2.275 (0.2950 – 17.54) 
3.275 (0.4492 – 23.87) 

 
0.417 
0.430 
0.242 

  

HPV status 
Positive 
Negative 

37 
107 

 
2.273 (1.158 – 4.459) 

 
0.017* 

 
2.853 (1.1991 – 6.7882) 

 
0.0178* 

Smoking 
Non-smoker 

Current 
Previous 

37 
43 
71 

 
2.235 (1.146 – 4.359) 
1.488 (0.7804 – 2.838) 

 
0.018* 
0.227 

 
1.3788 (0.5383 – 3.5317) 
0.7821 (0.3130 – 1.9545) 

 
0.50329 
0.59894 

Fusobacterium 

Continuous 
 

High 
Low 

153 
 

53 
53 

0.8883 (0.8183 - 0.9642) 
 
 

2.0592 (1.17 – 3.625) 

0.005** 
 
 

0.0123* 

0.8482 (0.7758– 0.9273) 
 
 

2.579 (1.3687 – 4.860) 

0.0003** 
 
 

0.0034* 

Selenomonas 

Continuous 
 

High  
Low 

 
 

53 
52 

0.9712 (0.8714 –1.082) 
 
 

1.205 (0.7094 – 2.048) 

0.597 
 
 

0.49 

  

Treponema 

Continuous 
 

High  
Low 

153 
 

53 
53 

0.9467 (0.8768 – 0.719) 
 
 

1.432 (0.8092 – 2.535) 

0.162 
 
 

0.217 

  

Rothia 

Continuous 
 

High 
Low 

153 
 

54 
54 

1.029 (0.8936 – 1.184) 
 
 

0.6552 (0.3585 – 1.198) 

0.694 
 
 

0.17 

  

Actinomyces 

Continuous 
 

High  
Low 

153 
 

53 
52 

0.9652 (0.8512 – 1.094) 
 
 

1.006 (0.5679 – 1.783) 

0.58 
 
 

0.983 

  

  486 
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4 Discussion: 487 

Several studies have investigated the microbial signature in HNSC using different sequencing 488 

approaches and sample types, such as tissues, swabs, and oral fluids. However, these studies 489 

have reported inconsistent findings regarding the presence of specific bacterial genera. 490 

Consequently, a consensus microbial signature for head and neck tissues has yet to be 491 

established. In this study, we aimed to address this gap by conducting a meta-analysis of 11 492 

studies and presenting a consensus tissue microbiota signature for head and neck tissues. We 493 

analyzed 16S rRNA sequencing datasets from 903 tissue samples, including 396 cancer 494 

tissues, 251 cancer-adjacent tissues, and 256 non-cancer tissues. Our analysis revealed 495 

significant differences in the abundance of 33 bacterial genera among the various tissue 496 

types. Specifically, we observed that cancer tissues and cancer-adjacent tissues exhibited 497 

greater similarity to each other compared to non-cancer tissues. These findings suggest 498 

distinct microbial profiles in cancer and cancer-adjacent tissues compared to non-cancer 499 

tissues. Non-cancer tissues exhibited the lowest differences in β-diversity and contained 500 

elevated levels of bacterial genera such as Tannerella, Fretibacterium, Stenotrophomonas, 501 

Fusobacterium, and Prevotella (Figure 6A). While cancer and cancer-adjacent tissues 502 

displayed similar microbiota based on β-diversity indexes, further analysis using paired and 503 

unpaired univariate methods enabled differentiation of these tissues at the genera level 504 

(Figure 6B). Importantly, these abundance signatures were validated using additional data 505 

from TCMA. Matching TCMA samples with transcriptomic data derived from TCGA) and 506 

clinical features provided insights into the contributions of individual genera in HNSC. 507 

Notably, we found that a high abundance of Fusobacterium was associated with better overall 508 

survival in HNSC patients Overall, our study contributes to the establishment of a consensus 509 

tissue microbiota signature for HNSC, shedding light on the distinct microbial profiles in 510 

different tissue types and their potential implications for clinical outcomes. 511 
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 512 

Figure 6: Summary of bacteria genera within cancer, cancer-adjacent and non-cancer 513 

tissue samples. (A) Elevated microbiota within non-cancer tissues compared to cancer and 514 

cancer-adjacent tissues. (B) Elevated bacteria genera between cancer and cancer-adjacent 515 

tissues.  516 

 517 

Both multivariate and univariate discriminant analyses was able to differentiate different 518 

tissue sample types based on microbial abundance. As previously reported, cancer and 519 

cancer-adjacent tissues were more similar in microbial diversity when compared to non-520 

cancer tissues.36-38, 42, 43, 45, 49, 51, 52, 55, 57-59, 85 At the genus level, both paired and unpaired 521 

abundance analysis of cancer and cancer-adjacent tissues showed consistent enrichment for 522 

Fusobacterium and Rothia in cancer tissues.36, 37, 45, 52, 55, 58, 59 In contrast, Prevotella was 523 

enriched within cancer tissues compared to cancer-adjacent tissues, and no differences were 524 

observed for Streptococcus.36-38, 41, 43, 45, 51, 52, 55, 57-59, 85  525 
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 526 

Previous studies have reported conflicting result where Fusobacterium was more in cancer 527 

tissues as compared to non-cancer and cancer-adjacent tissues.38, 42, 52, 57, 58 However, we 528 

found that Fusobacterium was most abundant in non-cancer tissues. Fusobacterium is an 529 

abundant commensal bacteria found largely in the oral cavity (buccal, hard palate, gingiva, 530 

tonsils, tongue) and saliva of healthy individuals, suggesting a potential role within the 531 

healthy oral microbiota.106-108 In vitro experiments in HNSC cell lines showed that 532 

Fusobacterium nucleatum infection promotes cancer cell invasion, proliferation, autophagy, 533 

and PD-L1 expression.109-113 It is unknown whether there are strain and species level 534 

differences found in Fusobacterium isolated in cancer and non-cancer tissues to explain such 535 

seemingly contradictory findings. Additionally, non-cancer tissue from cancer patients may 536 

also have different tissue microbiota profiles from healthy donor tissues which is currently 537 

unavailable for this study. Also, most of the experiments showing an oncogenic role for F. 538 

nucleatum were carried out in vitro and thus did not consider a potential mitigating role of the 539 

immune system. Moreover, the abundance of F. nucleatum both in absolute terms and 540 

relative to other bacteria present in the tumour microbiota might influence the oncogenic 541 

potential of F. nucleatum. Further experiments are required to evaluate the role of 542 

Fusobacterium in HNSC. 543 

 544 

We observed that Streptococcus, another highly abundant oral commensal genera106-108, was 545 

increased specifically in cancer and cancer-adjacent tissue when compared to non-cancer 546 

tissues. However, there was no significant difference in Streptococcus abundance between 547 

cancer and cancer-adjacent tissues. Within the oral cavity, certain pathogenic Streptococcus 548 

species, like S. mutans, can contribute to periodontitis by acidifying the environment.114 In 549 

oral cancer, S. mutans has been shown to promote tumour proliferation and invasion, 550 
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potentially through upregulation of IL-6 in infected cells115. On the other hand, Streptococcus 551 

species from the mitis (S. oralis, S parasanguinis, S.mitis) and sanguinis (S. sanguinis, S. 552 

gordonii) groups, can break down lactic acid or pyruvate into hydrogen peroxide, thereby 553 

antagonising pathogenic species such as S. mutans.114 In oral cancer, S. mitis, S. salivarius, S. 554 

anginosus were found to display anti-tumour effects, including reducing cancer cell viability 555 

and promoting CD8+ cytotoxic T cell responses116-120. These findings indicate that the 556 

abundance of specific Streptococcus species may contribute to pathogenesis, disease severity, 557 

or exert anti-tumour effects. It is important to note that these studies underscore the 558 

limitations of identifying microbiota at the genus level using short-read 16S rRNA 559 

sequencing. To address these limitations, recent advances in sequencing technologies such as 560 

long-read 16S rRNA amplicon sequencing (e.g., PacBio, Nanopore) or shotgun 561 

metagenomics can be employed to reveal species- or strain-specific diversity within the 562 

microbiota.121-123 Such advancements can provide a more comprehensive understanding of 563 

the specific species and strains that play a role in oral cancer pathogenesis and anti-tumour 564 

effects. 565 

 566 

To compare the metabolic potential of different head and neck tissue types, a functional 567 

prediction analysis was performed using PICRUSt2 on the 16S rRNA sequencing data. The 568 

analysis revealed an enrichment of several amino acids and metabolites, including L-569 

aspartate, L-asparagine, acetate, butanoate, and lactate, in cancer tissues compared to non-570 

cancer and cancer-adjacent tissues. L-aspartate and L-asparagine, as substrates for nucleotide 571 

biosynthesis and regulators of amino acid homeostasis and anabolic metabolism, have been 572 

reported to promote tumour proliferation.124-126 Butanoate, acetate, and lactate can serve as 573 

energy sources for cells by converting into acetyl-CoA, which can then be utilized in the 574 

tricarboxylic acid (TCA) cycle to produce ATP.127-130 The role of butanoate in tumorigenesis 575 
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depends on the specific tumour and the TME, as it can exhibit tumour-promoting or 576 

suppressive properties. 31, 131-133 Lactate, a well-studied metabolite produced by both cancer 577 

cells and bacteria, can modulate the TME by inactivating natural killer cells, promoting 578 

polarisation of M2-like tumour-associated macrophages, and stimulating the growth of T-579 

regulatory cells.134 Collectively, these findings suggest that bacteria infiltrating HNSC tissues 580 

possess functional capacities that may promote cancer progression. Further validation studies 581 

are warranted to better understand the role of these metabolic pathways in HNSC and the 582 

contribution of bacteria in shaping the TME. 583 

 584 

We further explored the relationship between the abundance of the five cancer-associated 585 

bacterial genera, Fusobacterium, Selenomonas, Treponema, Actinomyces, and Rothia, and the 586 

TME phenotype and clinical outcomes. Fusobacterium was associated with a lack of T-cell 587 

immune infiltration in HNSC, similar to colorectal and oesophageal cancers.21, 135-137 588 

Furthermore, Fusobacterium can chemoattract neutrophils via release of SCFA and can also 589 

modulate neutrophils and endothelial cell functions in vitro.138-142 Interestingly, we observed 590 

that patients with low levels of Fusobacterium within the tumour tissue had shorter overall 591 

survival, consistent to previous reports in HNSC.45, 60, 143 In contrast, opposite findings have 592 

been reported for colorectal, gastric and oesophageal cancers, suggesting that Fusobacterium 593 

may have a different role in HNSC.144-147 We also found that Treponema correlated with an 594 

lack of immune infiltration in HNSC. Although the effect of Treponema infiltration in HNSC 595 

is still unknown, these bacteria have been associated with an upregulation of immune 596 

suppressive cells and can suppress innate immune responses.148-150 In our analysis, Rothia 597 

was found to correlate with an immune-enriched TME. Limited information is available 598 

regarding the role of Rothia in cancer; however, Rothia dentocariosa has been shown to 599 

induce Toll-like receptor 2 (TLR-2) mediated TNF-alpha inflammatory response in human 600 
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embryonic kidney cells and THP-1 monocytes.151 Selenomonas and Actinomyces did not 601 

significantly correlate with TME subtypes in our analysis. However, Selenomonas sputigena 602 

infected gingival epithelial cells can promote neutrophil and monocyte recruitment.152 603 

Actinomyces has been associated with young-onset colorectal cancers, showing a preferential 604 

localisation with cancer-associated fibroblasts in the TME.153 These findings underscore the 605 

importance of validating and understanding the underlying mechanisms through which these 606 

bacteria can modulate the tumour microenvironment in HNSC. 607 

 608 

This study represents the first comprehensive comparison of 16S rRNA (V3-V5) microbial 609 

sequencing across multiple studies to identify consensus HNSC-associated microbiota 610 

signatures in cancer, cancer-adjacent and non-cancer tissues. To ensure consistency, a 611 

uniform bioinformatics approach was employed. However, it is important to acknowledge the 612 

inherent limitations of this study. Variations in sample collection, preparation, and 613 

sequencing among different laboratories introduce batch effects that could contribute to the 614 

inconsistencies observed across different reports. To mitigate these effects, we applied 615 

PLSDA-batch adjustment to the pooled datasets.91 Conventional short-read 16S rRNA 616 

sequencing provides information only up to the genus level, which restricts the ability to 617 

identify specific bacterial species or strains that may be relevant to disease outcomes.121 618 

Overcoming this limitation would require advanced sequencing technologies such as long-619 

read 16S rRNA amplicon sequencing or shotgun metagenomics to reveal species- or strain-620 

level diversity within the microbiota. Furthermore, the availability of complete clinical 621 

metadata in published datasets reporting 16S rRNA sequencing is limited, restricting our 622 

ability to make comprehensive clinical associations. Therefore, our clinical associations were 623 

primarily based on TCMA/TCGA datasets. Despite these limitations, this study confirms 624 

distinct differences in the microbiota composition among cancer, cancer-adjacent and non-625 
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cancer HNSC tissue samples. The strength of our study lies in the meta-analysis of a 626 

substantial number of samples, totalling 903. Additionally, our analysis indicates that a high 627 

load of Fusobacterium within HNSC tissues may be associated with a favourable survival 628 

outcome. The correlation analysis of the microbiota with functional predictions, functional 629 

gene enrichment signature, and immune subtyping of the tumour and TME provides novel 630 

avenues for further exploration.  631 

 632 

In conclusion, our study establishes a consensus microbial signature for head and neck 633 

tissues, shedding light on the distinct microbial profiles present in head and neck cancer 634 

(HNSC). These findings have the potential to serve as targets for future treatment approaches 635 

in HNSC. Nevertheless, it is crucial to acknowledge the limitations identified in our study 636 

and recognize the need for further research to address these limitations. Additional 637 

investigations are required to gain a deeper understanding of the functional implications of 638 

the identified microbiota differences in HNSC. By addressing these gaps, we can advance our 639 

knowledge and pave the way for more effective therapeutic interventions in HNSC. 640 
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Supplementary Figures 1124 
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 1128 

Figure S1: CLR-normalized abundances for remaining 13 bacteria between sample groups using unpaired 1129 

Kruskal-Wallis test with Bonferroni’s multiple comparison. Post-hoc Wilcoxon test with Bonferroni-Dunn’s 1130 

multiple comparison was performed to identify group-wise differences between Cancer – Non-cancer (#), 1131 

Cancer – Cancer-adjacent (*), Non-cancer – Cancer-adjacent (^). 1132 

 1133 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 27, 2023. ; https://doi.org/10.1101/2023.07.25.23293137doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.25.23293137
http://creativecommons.org/licenses/by-nc-nd/4.0/


 1134 

Figure S2: Beta-diversity between paired cancer and cancer-adjacent tissue samples. Paired Wilcoxon test was 1135 

performed on Euclidean distance between each samples. No significant differences between cancer and cancer-1136 

adjacent tissue samples.  1137 
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