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Abstract

Lassa fever (Lf) is a viral haemorrhagic disease endemic to West Africa and is caused by
the Lassa mammarenavirus. The rodent Mastomys natalensis serves as the primary
reservoir and its ecology and behaviour have been linked to the distinct spatial and
temporal patterns in the incidence of Lf. Nigeria has experienced an unprecedented
epidemic that lasted from January until April of 2018, which has been followed by
subsequent epidemics of Lf in the same period every year since. While previous research
has modelled the case seasonality within Nigeria, this did not capture the seasonal
variation in the reproduction of the zoonotic reservoir and its effect on case numbers.
To this end, we introduce an approximate Bayesian computation scheme to fit our
model to the case data from 2018–2020 supplied by the NCDC. In this study we used a
periodically forced seasonal nonautonomous system of ordinary differential equations as
a vector model to demonstrate that the population dynamics of the rodent reservoir
may be responsible for the spikes in the number of observed cases in humans. The
results show that in December through to March, spillover from the zoonotic reservoir
drastically increases and spreads the virus to the people of Nigeria. Therefore to
effectively combat Lf, attention and efforts should be concentrated during this period.

Author summary

Lassa fever is a viral disease prevalent in West Africa, with Mastomys natalensis serving
as the primary reservoir. In Nigeria, annual outbreaks occur from December to March.
Using a novel model and data from 2018-2020, we demonstrate that the population
dynamics of the reservoir contribute to spikes in human cases. Specifically, spillover
transmission increases drastically during this period, highlighting the need for
concentrated efforts and interventions. Understanding the seasonal dynamics of the
reservoir is crucial for effective Lassa fever control and prevention strategies in Nigeria.

Introduction 1

Lassa fever (Lf) is a viral zoonotic disease, caused by the Lassa mammarenavirus 2

(LASV), that is endemic to West African countries such as Nigeria, Sierra Leone and 3

Guinea [1, 2]. Lf has a natural reservoir in the rodent Mastomys natalensis in which the 4

virus persists and crossover events to humans occur [3, 4, 5]. The disease, which was 5

first described after two nurses contracted the disease in a hospital in Jos, Nigeria, in 6
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1969, has since been identified as a significant risk to health in West Africa with 7

300, 000–500, 000 cases per year resulting in approximately 5, 000 deaths annually [3, 6]. 8

Those infected with LASF typically experience acute symptoms of headaches, sore 9

throat, muscle pain, vomiting and diarrhoea, and in severe cases bleeding from the 10

mouth, nose, vagina or gastrointestinal tract [1]. The risk that Lf poses to public health 11

will only increase without widespread intervention and a viable vaccine as growth in 12

inter-border traffic and international travel increases the likelihood of introducing the 13

virus to other regions within and outside of the African continent [7, 8]. 14

In recent years, Nigeria has experienced epidemics with peak incidence occurring 15

between December and April in the years since 2017, just after the rainy season ends in 16

October. Both the number of cases and the exposure rate of Lf increases in certain 17

periods of the year and have been correlated with rainfall patterns [9, 10, 11]. This may 18

be because the reproduction of Mastomys is greatest just after the rainy season, which 19

results in an increase in the size of the rat population and in the spread of LASV from 20

infected to susceptible rats[12, 13, 14, 15]. The ecological dynamics of M. natalensis are 21

relevant to Lf in humans because the majority of infections (80%) are suspected to be 22

spillover events as opposed to human-to-human transmissions [16]. The importance of 23

rat contact with humans is illustrated by data reported by Tobin et al. (2015) for Edo 24

state, Nigeria, which recorded 32.4%(385/1189) of the confirmed national cases of Lf in 25

2020; 96.1% houses had found the multimammate rat within them in the past 6 months 26

and 58.2% of the resident were seropositive (i.e. tested positive for Lf-specific antibodies) 27

[17]. Hence the relationship between the presence and behaviour of M. natalensis and 28

the prevalence of Lf is critical to understanding and predicting future outbreaks. 29

Mathematical modelling studies of Lf are rare compared with other diseases, despite 30

the inclusion of Lf in the World Health Organization’s Blueprint list of diseases to be 31

prioritized for research and development [18]. Published models for recent outbreaks in 32

Nigeria can incorporate the population dynamics of the disease reservoir and highlight 33

areas and periods of the year at high risk of transmission [19, 20, 21]. Akhmetzhanov et 34

al. (2019) used suspected case data and a rodent model to inform a time-dependent 35

exposure rate of Lf to susceptible people in Nigeria, but did not include explicit 36

modelling of human infection dynamics [9]. To date, the mechanistic models describing 37

Lf epidemics in Nigeria lacked the focus on time-dependent parameters relating to the 38

rodent population dynamics to explain the relationship between those dynamics and the 39

seasonality of outbreaks. 40

In this study, we developed an epidemiological model to describe the temporal 41

dynamics of Lf within Nigeria in both human hosts and rodent vectors incorporating 42

seasonal variations in rodent population dynamics. The model was then fitted to 43

confirmed case data from the Nigerian Centre for Disease Control (NCDC) at the 44

national scale in Nigeria using Approximate Bayesian Computation (ABC). This 45

approach allowed us to demonstrate how the annual fluctuations of the rodent 46

population translated into the seasonal outbreaks of Lf cases in human hosts. 47

We believe that providing an epidemiological model of the dynamics of Lf in humans 48

and the rodent reservoir within Nigeria as a whole that fits to confirmed cases supports 49

the hypothesis that the fluctuations of the rodent population strongly influence the 50

cases observed. In order to inform future public health efforts, it is important to better 51

understand the role of the disease reservoir in the spatio-temporal profile of infections. 52

Materials and methods 53

The weekly situation reports on Lf produced by the NCDC provided a stream of publicly 54

available data that were discussed in regular direct communications with NCDC 55

representatives. The data used in this study was the set of dated Lf cases collected by 56
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the NCDC’s surveillance network for Lf between 7th January 2018 until 12th July 2020, 57

which covers the 2018, 2019 and 2020 epidemics [22]. Lf cases were categorised as either 58

suspected, confirmed and probable. Confirmed cases were those which had a positive 59

result for IgM antibody, PCR or virus isolation. Suspected cases were any individual 60

experiencing symptoms such as fever, sore throat, vomiting, diarrhoea. Additionally 61

they also met one of the following criteria: if they had a history of contact with either 1) 62

excreta or urine of rodents, 2) with a probable or confirmed Lf case recently, or 3) any 63

person with inexplicable bleeding/haemorrhagia. Due to the uncertainty that would 64

result from use of unconfirmed data we used only confirmed cases. 65

Model 66

In order to describe the confirmed Lf cases in Nigeria, we constructed a vector-host 67

model in which the dynamics of the rodent M. natalensis are modelled explicitly in 68

addition to the dynamics of human transmission and disease progression (Fig 1 and 69

equations 1–3). 70

The human population was split into susceptible, exposed, asymptomatic or infected, 71

and recovered (Sh, Eh, Ah, Ih, Rh). The infection pathway for humans was described in 72

the model as follows: Susceptible people acquire infections from the pool of all 73

infectious individuals. This is at a rate of λh. Contact with an infectious host, whether 74

it is a human or vector rodent, transmits the disease to the susceptible individual and 75

then they become exposed. Exposed humans become infectious after a period of 1/ν 76

days, and thus exposed individuals will leave the compartment at a rate of ν. Those 77

who were exposed to the virus will then become Asymptomatic with a probability of p 78

and Infected with a probability of 1− p. Infected humans are assumed to experience 79

more severe symptoms and be recorded as cases in data; they also experience an 80

infection induced mortality rate µhI
. Infected individuals are assumed to be detectable. 81

Infected individuals will recover with an average recovery period of 1/γh days. 82

All humans are assumed to have an average life expectancy of 1/µh days regardless 83

of their compartment. That is, the number of individuals in each compartment decrease 84

at a rate of µh per capita. Humans are assumed to have a constant birth rate, Bh, and 85

newborns are assumed to be fully susceptible to Lf. 86

The vector population of rodents was split into susceptible, infected, and recovered 87

(Sr, Ir, Rr). Rats are born susceptible at a time-dependent per capita rate of B(t). The 88

rat infections follow a more simple pathway than that found in humans: Susceptible 89

rats come into contact with infected rats, whereby the disease is transmitted to the 90

susceptible individual. This occurs at a rate of λr. The infected rats do not experience 91

increased mortality and thus the rats have a constant mortality rate of µr. Infectious 92

individuals will recover with an average recovery period of 1/γr. 93

M. natalensis has repeatedly been observed to have seasonal breeding habits over
different areas of Africa [12, 13, 14]. Therefore the recruitment rate per capita of the
rats B(t) was chosen as

B(t) = k exp

{
−s cos

((
π

(
t

365
− ϕ

)))2
}

(1)

where k is the magnitude of the function; s is a shape parameter denoting how long 94

the period of low reproduction rates lasts for, a smaller s meaning a close to constant 95

recruitment rate over the year whereas a larger s would equate to a long low period 96

then a sharper change to a high period; and ϕ is the point in the year where the 97

reproduction of the rats is at its minimum. k and s are of positive value, and ϕ is 98

between 0 and 1. Once parameters s and the natural mortality rate of the rats, µr, have 99

been fixed, k may be scaled to keep the reservoir population constant, year-on-year [23]. 100
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A population whose yearly dynamics are similar is a better representation of a species 101

that is endemic to the environment and although fluctuations will happen, the data to 102

accurately model the population does not exist. 103

The rate at which susceptibles become infected, otherwise known as the force of 104

infection, is denoted by λh and λr for humans and rats respectively. In humans, this is 105

defined as a linear combination of the possible contact routes with LASV carriers. To 106

represent the difference in transmissibility of Lf in rats and humans, the contact rates 107

βrh and βhh are separated. Explicitly, these parameters are the rate of successful 108

transmissions from rats to humans per infected rat and humans to humans per infected 109

human respectively. In addition, we have assumed a density dependent contact rate 110

between susceptible humans and the pool of infectious individuals, which means that 111

contacts will occur at an invariable rate irrespective of the size of the human population. 112

With the transmission rates between compartments defined, the susceptible 113

compartments experience a force of infection from the infectious agents. The total force 114

of infection per susceptible is therefore the sum linear combination of the number of 115

infectious agents that can infect that susceptible host multiplied by the appropriate 116

transmission rate. Therefore the force of infection per individual human and rat, 117

respectively denoted λh and λr, are as follows: 118

λh =
βrhIr + βhh (Ah + Ih)

Nh

λr =
βrrIr
Nr

(2)

dSr

dt
= B(t)Nr − λrSr − µrSr

dIr
dt

=
βrrSrIr
Nr

− (γr + µr)Ir

dRr

dt
= γrIr − µrRr

dSh

dt
= BhNh − λhSh − µhSh

dEh

dt
= (βrhIr + βhh(Ah + Ih))

Sh

Nh
− (ν + µh)Eh

dAh

dt
= pνEh − µhAh

dIh
dt

= (1− p)νEh − (γh + µhI
+ µh)Ih

dRh

dt
= γhIh − µhRh

(3)

Fig 1. Model flowchart of the transmission and population dynamics of the
system of equations 3. Blue solid arrows denote recruitment. Black solid arrows
denote progression of the disease. Red dashed arrows denote disease transmission.
Purple solid arrows denote mortalities. Parameters are detailed in full in table 1 where
λh and λr are defined in equations 2 (i) and (ii) respectively, and B(t) is defined in
equation 1.
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Basic reproduction numbers 119

The basic reproduction ratio, R0, is the expected number of secondary infections caused 120

by a single infectious agent in an otherwise susceptible population. Over time, the 121

conditions which the infectious agent inhabit change and thus we also calculate the 122

effective reproduction rate, which shows the expected number of secondary infections 123

from one infectious agent in the population (which may have other infectious agents) at 124

a specified time t. 125

Based on the next generation method for deriving the reproductive ratio, R0, from 126

Diekmann et al (1990) and the particular method used in van den Driessche and 127

Watmough’s work (2002) we produce the effective reproductions rates between species 128

in equation set 4 with derivations in S1 appendix (Section 1.2) [24, 25]. 129

Rrr(t) =
βrr

(γr + µr)

Sr

Nr
(4)

Rrh(t) =
βrh

(γr + µr)

Sh

Nh
(5)

Rhh(t) =

(
pνβhh

(ν + µh) (µh + γh)
+

(1− p) νβhh
(ν + µh) (µhI

+ µh + γh)

)
Sh

Nh
(6)

Parameter Selection 130

In table 1 we show the choices for the model parameters that are described in this 131

subsection. 132

Outbreak events within Nigeria have a seasonal pattern, thus each epidemic should 133

not be analysed in isolation as this would neglect the effect of seasonal dynamics. 134

Therefore the data fitting takes place over a longer time period and the population 135

dynamics of the people of Nigeria should be taken into account. The natural death rate 136

of humans µh is estimated to be 1
54×365 day−1 since 54 years was the average life 137

expectancy to 2 significant figures for Nigerians given by the World Bank for 2018. The 138

human birth rate Bh was approximated as 1.2× 10−4day−1. Nigeria has experienced 139

close to exponential growth rate in recent years and if it is assumed that the population 140

growth of Nigeria has been stable over this time period then we may assume that 141

dN
dt = (Bh − µh)Nh, where Bh and µh are constant. Therefore N(t) = N(0)e(Bh−µh)t. 142

We then obtain Bh = µh + 1
T log N(T )

N(0) . The growth of Nigeria from 2015 to 2019 was 143

181.1 million to 201.0 million to 4 significant figures which gives the growth rate of 144

Nigeria to be 7.14× 10−5 per capita per day hence giving Bh = µh + 7.14× 10−5 [26]. 145

The incubation period was assumed to be 14 days. There is a wide range for the 146

incubation period and is reported to be around 2 days to 3 weeks. For simplification 147

this assumption was made to be approximately 14 days and thus ν = 1/14. The rate of 148

recovery for humans γh was 0.1 day−1. Ranges for the time to recover are broad, 149

between 2 and 21 days, so similarly to ν a value of 0.1 was assumed. We assume that 150

the probability of becoming asymptomatic p = 0.8 [1]. 151

The infection induced mortality rate µhI = 0.195γ = 0.0195 day−1. The proportion 152

of those that have died, retrospectively, during the outbreak period considered is 153

196/1006. Therefore the case fatality rate (CFR) is 19.5% to 3 significant figures [22]. 154

To give a rate of mortality the CFR is multiplied by the recovery rate to approximate 155

the rate that individuals die from Lf before they recover[27]. 156

The initial number of infected humans Ih(0) is 2 since there were two recorded 157

confirmed cases in the week commencing 01/01/2018. Therefore Ah(0) = 8 to maintain 158

the ratio between asymptomatic and symptomatic infected persons to 1:4. Eh(0) is 5 159

times that of the number of cases reported the week after the data being used starts. 160
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Parameter Value/Prior Biological Description

Bh 1.2× 10−4day−1 Human birth rate
µh

1
54×365 day−1 Human natural mortality rate

ν 0.1 day−1 Reciprocal of incubation period
γh 0.1 day−1 Human recovery rate
p 0.8 Probability of an infectious human being asymptomatic
µhI

0.0195 day−1 Infection induced mortality in humans
γr 1/90 day−1 Recovery rate for rats
µr 1/500 day−1 Natural mortality rate for rats
βrr LogNormal(−1.03, 1) Rat-to-rat transmission rate
βrh LogNormal(−7.77, 0.5) Rat-to-human transmission rate
βhh LogNormal(−2.35, 0.5) Human-to-human transmission rate
ϕ Uniform(0, 1) Time of minimum reproduction for rats
s LogNormal(3, 1) Shape parameter for reproduction function for rats

Nh(0) 2× 108 Initial number of humans
Sh(0) 105 Initial number of susceptible humans
Eh(0) 30 Initial number of exposed humans
Ah(0) 8 Initial number of asymptomatic humans
Ih(0) 2 Initial number of infected humans
Nr(0) 106 Initial number of rats
Sr(0) Nr(0)/R

rr
0 Initial number of susceptible rats

Ih(0) Nr(0)
µr

βrr
(Rrr

0 − 1) Initial number of infected rats

Table 1. Fixed parameters and parameters to be estimated in the Lassa
fever model. The parameters of interest were inferred using algorithm 1 in section 2.4.

This is done to represent that those who show symptoms were likely exposed the week 161

before and that 20% of the exposed will go on to show symptoms. The initial total 162

number of people living in Nigeria was assumed to be 2× 108. The initial number of 163

susceptible Sh(0) is therefore the remaining number of humans, 2× 108. 164

The mortality rate of rats is assumed as µr = 1/500 per day since this value has 165

been previously used as the baseline value in previous works [20, 28]. γr = 1/90 per day 166

[29]. For the population size of the zoonotic reservoir we tested four initial values for 167

size, Nr(0) ∈ {1, 106, 5× 106, 2.5× 107}. The number of initially susceptible rats was 168

Sr(0) = Nr(0)/R
rr
0 . This is necessarily bounded by Nr(0) above and below by 0 since 169

betarr may be sampled such that Rrr
0 < 1. Ir(0), the total initial rat population, was 170

taken from an array of values to test for the impact on the system, 171

Ir(0) ∈ {Nr(0)
2 , Nr(0)

10 , Nr(0)
100 , µrNr(0)(R

rr0 − 1)/βrr}. The later value was chosen as it is 172

the endemic equilibrium of an SIR system with a recruitment/birth function equal to µr. 173

The remaining rats were assumed to be recovered. 174

The remaining parameters, ϕ, s, βrr, βrh and βhh will be estimated within the fitting 175

scheme in the following section. 176

Fitting and Data 177

Bayesian estimation techniques involve a suite of statistical inference methods based on 178

the idea that after specifying a prior assumption upon the parameters being 179

investigated, the prior is updated with the introduction of more information from the 180

observed data. Following Bayes’ theorem, the posterior distribution of parameters is 181

obtained by combining the prior beliefs (prior distribution) with the evidence of the 182

data which usually comes in the form of the likelihood function [30]. 183

In the absence of a likelihood function, which may arise because the function is 184
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intractable or computationally expensive, Approximate Bayesian Computation (ABC) is 185

a robust method that can be used. ABC can be summarised as a family of techniques 186

where parameters are sampled, in various different ways that are dependent on the 187

specific scheme, and then accepted or rejected if the simulated data given the 188

parameters are sufficiently close to the observed data [31]. ABC schemes are becoming 189

increasing popular due to their relative ease of use. 190

In this paper we use a modified Approximate Bayesian Computation Sequential 191

Monte Carlo scheme (ABC SMC) to fit our parameters (see Algorithm 1 for psuedocode 192

description of scheme used) since the scheme has been shown to be reliable and 193

converges faster than some of the more primitive schemes [32]. The ABC SMC schema 194

iterates a population of parameter particles over T generations with decreasing 195

tolerances, {εi}Ti=1, allowed between the data, y∗, and the data simulated from the 196

model with the particle θ, yθ. This converges to the desired approximate posterior 197

distribution as the distributions of the parameters are sequentially improved upon [33]. 198

ABC SMC fits a model M with unknown model parameters θ to data. The standard 199

algorithm requires one to specify a decreasing sequence of thresholds ε1 ≥ ε2 ≥ · · · ≥ εT 200

for the T generations. When starting, t = 1, parameters are sampled from prior 201

distributions, π(θ). For each subsequent generation t = 2, · · · , T parameters will be 202

sampled from a perturbation kernel, qt(θ|θ(i)t−1), based on a sampled particle accepted in 203

generation t− 1. The model is then simulated with the sampled parameter particle and 204

using a chosen distance metric to compare the data and the simulated data, the 205

parameters are accepted if the error calculated is smaller than the given tolerance for 206

that generation, i.e. d(y∗, yθ) ≤ εt. 207

When implementing the SMC algorithm, instead of manually defining the sequence 208

ε1, ε2, · · · , εT , which is often done by manually calibrating the tolerances after some 209

initial test runs, we instead initialise our algorithm with an integer, K, and a proportion, 210

Q. If the desired number of parameter particles is N then we initialise by sampling KN 211

particles from the prior distributions and reject all the N particles with the smallest 212

errors. This serves as our first generation of sampling. For subsequent generations we 213

have set a desired quantile, Q, where the particle that is the Qth quantile has its error 214

between the data and model set as the tolerance for the next generation. That is, if the 215

set of parameter particles for generation g − 1 is {θg−1
i }Ni=1 and is ordered with respect 216

to d(y∗, yθ) then for generation g the tolerance εg = d(y∗, yθg−1
Q

). Furthermore the 217

perturbation kernel that we use is a multivariate Gaussian with variance equal to twice 218

that of the co-variance between the previous generation’s particles: 219

qt(θ|θ(i)t−1) = N (θ|θ(i)t−1,Σt−1), where i is sampled using the weightings generated. 220

Prior Distributions 221

For the parameters that we are unable to calculate, we fit with the scheme from section 222

2.4 specifically described as Algorithm 1. In this section we explain the choices for the 223

prior distributions from our prior knowledge on the model and disease epidemiology. 224

ϕ is sampled from a uniform distribution between 0 and 1 because this does not give
any preference to any period of the year over another. s is sampled from a Log-normal
distribution, Lognormal(µ, σ2), where µ = 3 and σ = 1 as this allows the parameter
samples to be varied and comparable to the range used in Peel et al (2014) [23]. βrr ∼
Lognormal (µ, σ2). Since the zoonotic system is assumed to be in endemic equilibrium,
Rrr

0 is assumed to be greater than 1. We therefore set µ so that the mode of the
distribution, m1 = exp

(
µ− σ2

)
where σ = 1, would equate to Rrr

0 = m1

µr+γr
= 10, with

a prior flexible enough to sample through parameter space for a variety of values.
Therefore µ = log(10(γr + µr)) + σ2 = −1.03 to 3 s.f. As our system is not at the point
of introduction of Lf, rather it is close to endemic equilibrium, the rate at which new
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Input: N , number of particles per generation

K, multiples of N for the initial sampling to determine the sequence of

tolerances εi

Q, Quantile between 0 and 1 to select the next tolerance from the

distribution of tolerances from the previous generation

π(θ), Prior distribution for the tested variables

qt(θ|θ(i)t−1), Method of perturbation to generate samples of particles for

generations t = 2, · · · , T
y0, Data and method of determining closeness to simulated data d(·, ·)
Model M(θ)

Output: {θTi }Ni=1, the accepted parameters from generation T

; // Run the first generation

for i = 1 to KN do

Generate θi from the prior p(θ) Generate data yθi from the model M(θi)

Calculate di = d(yθi , y∗)

end

Sort initial KN particles by their distance entries di;

Set {θ1i }Ni=1 to be the N best of the KN particles, (retroactively making

ε1 = dN )

; // Run subsequent generations

for t = 2 to T do

Calculate weights ω
(i)
1 ←− 1/N Set next tolerance with Q by letting

ε2 = dfloor(QN) while i =⩽ N do do
Draw θ∗ from among θt−1 with probabilities ωt−1 Generate θ from

qt(θ|θ(i)t−1) = N (θ∗,Σt−1) where Σt−1 is the covariance of the previous

generation of particles Generate yθ from the simulator d(yθ, y
∗) ≤ εt

θ
(i)
t ←− θ ω

(i)
t ←−

p(θ)

(ΣN
k=1ω

(k)
t−1calN(θ|θ(k)

t−1,t−1))

end

εt+1 = dfloor(QN) where floor(x) is the greatest integer less than x

end

Algorithm 1: Psuedocode of modified SMC ABC. This was used to fit the

model in section 2.1. Instead of using an arbitrary sequence of tolerances, the

tolerances are calculated from the errors produced in the previous generation. For the

first generation, the algorithm runs a multiple, K, of the number of desired particles,

N , and then accepts the best N .
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infections are acquired by humans from rats will be proportional to Nr and so to factor
this in we set the Log-normal prior distribution for βrh to have a mode m2 to be such
that Rrh

0 = m2

µr+γr
= 10A

Nr(0)
where A = 2, 500. Thus the prior distribution has

µ = log(10(γr + µr)) + σ2 + log(A/Nr(0)) = −7.77 to 3 s.f. Since human-to-human
transmissions are unlikely outside of nosocomial settings, we set σ = 0.5 and βhh ∼
Lognormal(µ, σ2) so that the mode m3 when equated to βhh and inserted into Rhh

0

would give Rhh
0 = 1. Therefore µ = log(ψ) + σ2 = −2.35 to 3 s.f. where

1

ψ
=

pν

(ν + µh) (µh + γh)
+

(1− p) ν
(ν + µh) (µhI

+ µh + γh)
(7)

As previously stated, the data used here are taken directly from our communications 225

with the NCDC. The data points used are laboratory confirmed cases aggregated by 226

week from the 12th of December 2018 until the 4th of April 2020. 227

Implementation 228

The fitting algorithm and all models were implemented in MATLAB, with the models 229

using the ODE45 solver for numerical integration of the ODEs. 230

The algorithm ran for T = 15 generations with each generation consisting of 2500 231

parameter particles. For the first generation K = 10 multiples of 2500 particles were ran 232

and then the 1/K quantile with the least error was accepted. Subsequent tolerances for 233

each generation were set with the quantile Q = 1/6, where errors from the previous 234

generation would generate the next tolerance value. 235

Results 236

We applied an ABC fitting scheme (Algorithm 1) to the model detailed in Materials and 237

methods (Fig 1 and eq. 3) to the confirmed Lassa fever cases in Nigeria. Notably, our 238

fitted model successfully replicated the observed seasonal trends in the data, as 239

demonstrated in Figure 2. The posterior distributions of parameters and vector 240

dynamics (Fig 3 and 4, respectively) reveal the seasonal nature of the epidemics and 241

how the population dynamics of the primary reservoir, M. natalensis, affect the number 242

of observed cases in Nigeria. 243

Model Evaluation 244

Fig 2. The epidemiological model captured 3 consecutive Lf epidemics in
Nigeria. The simulated cases compared with the observed data. In orange is the entire
range of values Ih takes in the final generation at each time point; the median value in
blue. Confirmed case data for Nigeria are in black. The model replicates the sharp
increase in case incidences occurring at the start of the year for 3 years.

The model fit resulted in a final generation whose simulations of the number of 245

symptom-presenting humans, Ih, can be seen in Fig 2. The entire range of values that 246

Ih takes in the final generation at each time point is in light orange and the median 247

value in blue. Overlaid in black is the confirmed case data for Nigeria. This shows that 248

the model can replicate the year-on-year trend and that the seasonal epidemics in 249

Nigeria can be explained by the vector population dynamics. 250

The number of infected rats increases drastically in December when the pool of 251

available susceptibles grows, thereby increasing the spillover rate to humans (Fig 4). As 252

the number of rats in contact with humans decreases over the year due to natural 253
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Fig 3. The marginal posterior distributions of the final set of accepted
particles from fitting. Figure 3 top left the shape parameter of the rodent
recruitment function, s. Figure 3 top right the rodent-to-rodent transmission rate βrr.
Figure 3 mid left the human-to-human transmission rate βhh. Figure 3 mid right the
rodent-to-human transmission rate βrh. Figure 3 bottom left the date of minimum rat
reproduction ϕ.

mortality and recovery the number of spillover events decreases. This process starts 254

again just before the next epidemic and continues cyclically. 255

Marginal Posterior Parameter distributions 256

The recruitment rate of the vector M. natalensis is determined by the shape parameter, 257

s fig 3 top left, and the date of the minimum rate, ϕ fig 3 bottom left, is focused and 258

seasonal. Since the posterior of s has increased its median substantially (6.08× 102), 259

this results in a large ratio between the reproduction rate’s lowest and highest value and 260

thus the rat population experiences an influx of susceptible rats at ϕ+6 months in early 261

December. The distribution for ϕ is concentrated around a median of the 7th of June 262

with a 90% credible interval of the 4th – 11th of June (see S1 appendix table 2 for 263

unconverted values). This is observed in the rodent dynamics in fig 4 where the number 264

of susceptible rats increases rapidly. 265

The time-varying reproduction rate for rat-to-rat transmission crosses the threshold 266

of Rrr
t ≥ 1 in early December (fig 5 (a)) and causes the number of infectious rats to 267

increase similarly. This then spills over to humans and causes the spike in incidence 268

data that is observed in Nigeria between January and March. 269

The transmission parameters, fig 3 top right and middle, are such that human 270

infections are predominantly the result of a spillover event from the zoonotic reservoir. 271

Despite rat-to-human transmission, βrh, low estimation as seen in S1 appendix table 2 272

with the expected number of secondary human infections per infected rat in a 273

completely susceptible population, Rrr
0 , having a median of 4.70× 10−3, the number of 274

infected rats during December through to May is sufficient to cause a significant 275

number of infections in humans. Moreover, the proportion of humans infected by rats is 276

estimated to be 97.42% – 99.72% (90% credible interval) with a median of 98.51%. 277

Biological Implications 278

In our study, we explicitly modelled the vector dynamics allowing us to investigate 279

biological implications. The seasonal recruitment of the natural reservoir as seen in Fig 280

4 is a crucial aspect of the disease dynamics and serves as a key driver of the 281

transmission cycle. We can infer from these results that M. natalensis recruitment, 282

which may be an combination of birth and migration, influence the occurrence of 283

spillover events to humans in Nigeria, with rat-to-rat infection peaking just before the 284

epidemics observed in Nigeria (Figs 5 (a) and 5 (b)). This emphasizes the importance of 285

understanding the ecological and reproductive dynamics of the reservoir species, as it 286

directly impacts the risk of disease transmission to human populations. 287

Sensitivity Analysis 288

We conducted a sensitivity analysis (see S1 appendix 3.1) to assess the impact of 289

varying the assumed population size of the zoonotic reservoir on the predicted number 290

of reported cases. We conducted the test with populations of sizes 106, 5× 106 and 291

2.5× 107 where each was tested with 1/2, 1/20 and 1/100 of the population as being 292
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Fig 4. Underlying vector dynamics reveal high-risk period of spill-over
transmission for Nigerians. The figure showcases the evolution of M. natalensis
compartments throughout the observed period, simulated using the parameters derived
from the final generation of accepted values. The median value is represented by the
dashed line, while the colored area illustrates the range. Susceptible rats are depicted in
red, infected rats in green, and recovered rats in blue. Notably, the recruitment of
susceptible rats progressively rises, providing impetus for the growth of infected rats,
reaching its peak in late December. Consequently, this surge in infected rats leads to
spillover infections in humans.

Fig 5. The range and median of the effective reproduction rate for rat-to-rat
transmission Rrr(t) and when the threshold for Rrr(t) ≥ 1 is met. In Fig 5 (a)
Rrr(t), median dashed-line and range in coloured block, exhibits a sharp increase
towards the end of the year, foreshadowing the subsequent outbreaks in the following
months. To maintain clarity, the data is limited to the years 2019 and 2020, as no
complete earlier records are available. Figure 5 (b) showcases a box diagram illustrating
the time of year when Rrr(t) exceeds the threshold of 1, denoting high transmission.
The bottom panel of Fig 5 (b) captures the onset of the high transmission period, while
the upper panel displays its conclusion. The intermediate phase witnesses a rapid shift
in reservoir dynamics, leading to an escalation in the number of infected vectors

initially infected. We also tested with the original assumption of 293

Ir(0) = Nr(0)
µr

βrr
(Rrr

0 − 1). We used the unaltered SMC algorithm with the tolerances 294

set to be those calculated in the original run as seen in S1 appendix Table 1. 295

The results showed that the size of the zoonotic reservoir can be balanced by the 296

transmission rate βrh and it changes with the inverse change of the population (S1 297

appendix Fig 1 and 2). I.e. 5 times more total rats meant that the posterior distribution 298

of βrh was approximately a fifth of the original result as seen in 3 middle right. 299

The initial number of infected rats changed the beginning of the simulated case data 300

but the fitted model was still able to capture the peaks of the epidemics in 2019 and 301

2020. The different initialisations of the case scenarios showed that the model was not 302

flexible enough to fit to both the later epidemics and the first, smaller epidemic. This 303

prevented case scenarios with 1/2 of their initial rat population being infected from 304

completing more than 5 generations and scenarios with Ir(0) = Nr(0)/100 from 305

completing more than 9 of the 11 generations. 306

We also completed a fit where we let Nr(0) = 1 and included the number of initial 307

infected rats as a parameter to be fitted. Thus the zoonotic reservoir was represented in 308

proportions of the population. The resulting fit (S1 appendix Fig 3 and 4) was still able 309

to capture the seasonality of the data for Nigeria and the initial number of rats was 310

estimated to be a median of 9.80% of the population (6.79–12.97%, 90% CI). 311

Discussion 312

Nigeria has experienced substantial Lf epidemics in recent years. The drivers of these 313

epidemics have not, however, been previously explored in detail using a mechanistic 314

model. The role of the rat reservoir in the seasonality of Lf cases is therefore not well 315

understood. To that end, we developed and fitted a mechanistic model to national data 316

of Lf epidemics in Nigeria from 2018 to 2020. This included previously over-looked 317

rodent population dynamics for which the possibility of seasonal reproduction was 318

investigated. We found that the model qualitatively replicated the weekly confirmed 319

case data, showing that the seasonal peak in cases can be attributed to the population 320
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and epidemiological dynamics of the zoonotic rodent reservoir. 321

By fitting our model to case data from the outbreaks in Nigeria, we inferred that the 322

recruitment rate of Mastomys rats in contact with at-risk Nigerians was highly seasonal, 323

which lead to rapid and substantial shifts in the proportion of the reservoir that were 324

susceptible to and infected with Lf. We found that there was a pulse increase of new 325

susceptible rats in December of each year that quickly become infected by 326

LASV-carrying rodents surviving the previous epidemic. These infected rats then 327

spread the infection to human inhabitants in shared rural environments. This finding 328

corroborates the results of Coetzee (1965) and Coetzee (1975) that showed a marked 329

increase in Mastomys breeding during the rainy season [14, 15]. This drove the increase 330

in observed cases in humans with over 95% transmission events being spillover events 331

from the zoonotic reservoir. This proportion was larger than that seen in other studies, 332

such as Iacono et al (2015), which may reflect the omission of within hospital 333

interactions and the increased risk of transmission in hospitals without appropriate 334

infection control precautions [16]. 335

In our sensitivity analysis, we adjusted the size of the vector population and the 336

initial proportion of infected rodents. The total size of the vector population could be 337

factored into the rat-to-human transmission parameter by a proportionate rescaling (see 338

S1 appendix Fig 2(a)-(c) and 4 mid right) and the initial proportion of infected rats 339

altered the simulated number of cases in a predictable manner. Altering initial values 340

for infected rats predictably changed the trajectory of the simulated number of observed 341

cases for the first year (see S1 appendix Fig 1 and 3) however simulation of data for 342

subsequent years was unaffected. 343

Our estimates for the basic reproduction number—the expected number of 344

secondary infections from a primary infection in a fully susceptible population—of Lf in 345

rats were well above that which one would consider to be an extremely infective disease, 346

e.g. measles being an order of magnitude lower [34]. This corresponded to the sharp 347

increase in rat reproduction rates in December, when Nigeria typically experiences its 348

dry season. This is in conflict with other studies that have demonstrated a strong 349

correlation between Mastomys reproduction and rainfall with a delay of 1–3 months 350

after the rainy season [12]. It is important to note that the model’s representation of rat 351

dynamics, particularly the recruitment function, may not capture the true complexity of 352

the population dynamics. Using a recruitment function instead of a true birth function 353

allows for a simplified life cycle of Mastomys by omitting a nesting/juvenile stage. 354

Therefore dynamics that occur before recruitment and contact with humans may be 355

missed, and could explain why the basic reproduction number for rats is higher than 356

expected because potential susceptible individuals are excluded from transmission. 357

Incorporation of fine-scale space or further refinement of the rat population 358

dynamics into the model—such as including time-dependent rat-to-rat transmission 359

rates which may represent a hypothetical change in behaviour and proximity to 360

humans—could improve both the model’s realism and enhance our understanding of rat 361

dynamics during different climate seasons. For example, these developments may 362

explicitly consider increased rat populations near homes in the dry season and higher 363

LASV prevalence in Mastomys during the rainy season [11, 35]. Additionally, a 364

metapopulation model would better capture spatial variations between different 365

administrative areas, improving the representation of disease dynamics. To enhance 366

comprehensiveness, future studies should incorporate hospitalization and treatment 367

options specific to human cases, offering insights into healthcare worker risks and 368

transmission reduction strategies. These enhancements would advance understanding of 369

the disease and improve applicability of the model, thereby helping guide better 370

strategies for Lf control and prevention in Nigeria. 371
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Conclusion 372

Our model captured the dynamics of weekly confirmed Lf cases over multiple epidemics 373

in Nigeria. Our approach demonstrated that the population of M. natalensis 374

experienced annual Lf outbreaks due to seasonal recruitment rates resulting in an influx 375

of new susceptible rats to fuel the spread of the disease. It is not yet clear what 376

proportion of this recruitment is due to seasonal reproduction or migration to rural 377

homes in the dry season. The high number of infected vectors causes a spillover of 378

infection, resulting in annual epidemics between late December and early April. There 379

are only relatively low levels of human-to-human transmission, which supports the 380

notion that the zoonotic reservoir of M. natalensis is the primary driver in the 381

epidemiology of Lf. Therefore, we conjecture that the single most effective measure of 382

controlling the epidemics would be to reduce human contact with the zoonotic reservoir, 383

either by increased food security and hygiene, or with more effective trapping and 384

culling of rats. 385

Supporting information 386

S1 Appendix. Appendix containing mathematical analysis and sensitivity 387

analysis. 388
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