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Abstract 42 

Dengue is expanding globally, but how dengue emergence is shaped locally by interactions 43 

between climatic and socio-environmental factors is not well understood. Here, we investigate 44 

the drivers of dengue incidence and emergence in Vietnam, through analyzing 23-years of 45 

monthly district-level case data spanning a period of significant socioeconomic change (1998-46 

2020). We show that urban infrastructure factors (sanitation, water supply and long-term urban 47 

growth) predict local spatial patterns of dengue incidence, while human mobility is a more 48 

influential driver in subtropical northern regions than the endemic south. Temperature is the 49 

dominant factor shaping dengue’s geographical distribution and dynamics, and using long-term 50 

reanalysis temperature data we show that recent warming (since 1950) has generally expanded 51 

transmission risk throughout Vietnam, and most strongly in current dengue emergence hotspots 52 

(e.g. southern central regions and Ha Noi). In contrast, effects of hydrometeorology are complex, 53 

multi-scalar and dependent on local context: risk increases under both short-term precipitation 54 

excess and long-term drought, but improvements in water supply largely mitigate drought-55 

associated risks except under extreme conditions. Our findings challenge the assumption that 56 

dengue is an urban disease, instead suggesting that incidence peaks in transitional landscapes 57 

with intermediate infrastructure provision, and provide evidence that interactions between recent 58 

climate change and mobility have contributed to dengue’s ongoing expansion throughout 59 

Vietnam. 60 

Introduction 61 

Socio-environmental and climatic changes are reshaping the dynamics and distributions of 62 

infectious diseases worldwide, with urgent consequences for public health1–3. In recent decades 63 

these impacts have been especially pronounced for Aedes mosquito-borne arboviral infections 64 

(e.g. dengue, chikungunya and Zika), whose vectors are specialised for life in the emerging 65 

urbanised landscapes of the 21st century4. Dengue is an acute febrile illness caused by any one 66 

of four major dengue virus (DENV) serotypes and is principally transmitted by Ae. aegypti, a 67 

human-specialist that breeds using water-related features of built environments (e.g. water 68 

containers in homes, gutters, drains and sewerage systems)5,6. The burden of dengue is rapidly 69 

growing, with incidence doubling each decade since 19907, cases reported from more than 125 70 

countries8, and extremely widespread outbreaks increasing in frequency5. The disease is also 71 

expanding geographically into more remote regions9,10, and to higher latitudes11,12 and altitudes13 72 

at the margins of its historical range. These emergence trends are broadly thought to be driven 73 

by increasing human mobility14,15, expansion of anthropogenic and semi-urbanised landscapes10 74 

and changing climatic suitability16, and have complicated the historical perception of dengue as 75 

mainly a disease of major tropical cities17. Cities are important regional foci of dengue burden 76 

and DENV diversity in endemic areas, with human host densities typically high enough to support 77 

sustained transmission18–20. However, more local patterns of transmission are often highly 78 

variable, and shaped by both built environment characteristics that influence vector populations 79 

and behaviour21 (e.g. housing quality, drainage, heat islands), and human movement patterns 80 

that drive viral dispersal between locations22,23. Together these processes produce 81 

heterogeneous patterns of disease21, for example between neighbourhoods24 or between major 82 

metropoles and smaller cities14. Yet it remains unclear which socio-environmental features are 83 
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most influential in driving this local variability in dengue risk across wide geographical areas. 84 

Importantly, it is also unclear how recent and ongoing climatic and socio-environmental changes 85 

– such as warming, urbanisation and mobility growth in many endemic countries – may be 86 

interacting to reshape the disease’s distribution.  87 

Dengue is commonly associated with urban habitats25, which provide both high densities of 88 

Aedes breeding habitat and amenable microclimates6,26. Urban growth is often cited as a key 89 

driver, but the extent to which this influences dengue transmission probably depends on the 90 

timescale and characteristics of the urbanisation process. For example, expansion of built 91 

environments in the short-term may create many temporary open mosquito breeding habitats 92 

during the construction phase, and informal settlements (where infrastructure and services 93 

provision lag behind growth) may be more likely to increase risk compared to longer-term 94 

planned urban development. The link between dengue risk and water supply and sanitation 95 

infrastructure remains poorly understood, but these may be important factors determining 96 

spatial heterogeneity in transmission. Access to the piped water network should reduce 97 

households’ need to store water in containers, and in household-level studies piped water access 98 

is often (but not always) associated with lower dengue risk27–29. Improvements in sanitation 99 

systems might similarly reduce risk by reducing the density of water storage containers; 100 

however, if not well-maintained, drains and septic tanks can be productive mosquito breeding 101 

sites30. Alternatively, human mobility patterns – which drive viral dispersal at multiple scales – 102 

might be the dominant spatial driver of dengue. Well-connected hubs in international transport 103 

networks (e.g. metropoles or regional capitals) often experience high rates of long-range DENV 104 

strain importation, seeding transmission chains that spread among closely-linked areas via local 105 

traffic (e.g. commuter flows)15,20,31. Higher mobility might therefore be particularly important to 106 

maintenance of dengue transmission in areas where epidemic fade-outs are more likely32, such 107 

as with lower population densities or seasonally-transient climatic suitability. 108 

Climate has strong impacts on biophysical suitability for vector populations and dengue 109 

transmission. Air and water temperature affect numerous biological processes in mosquitoes 110 

that regulate population dynamics and vector competence (e.g. growth, survival, reproductive 111 

rate, extrinsic incubation period), which combined predict a nonlinear relationship between 112 

temperature and transmission intensity26. Temperature variability can underpin dengue outbreak 113 

seasonality31 and transmission season length33, and future warming temperatures are projected 114 

to significantly expand dengue transmission suitability worldwide34. However, there remains little 115 

evidence for how warming to date may have shaped recent dengue distribution and expansion 116 

trends. Precipitation patterns drive the creation and flushing of vector breeding sites35, but their 117 

relationship to dengue transmission may often be nonlinear, delayed, and determined by how 118 

seasonality and extremes interact with local socio-environmental factors. For example, in Brazil 119 

and Barbados dengue risk sharply increases several months after periods of drought36, 120 

particularly in urban areas with unreliable water supply37, suggesting a mediating role of water 121 

storage behaviour in response to rainfall shortages. These recent studies imply that local dengue 122 

responses to climatic drivers might differ markedly between neighbouring areas with different 123 

socioeconomic characteristics21,38. Further understanding such cross-scale interactions might 124 

improve the predictability of spatial outbreak dynamics in response to large-scale 125 

hydrometeorological phenomena such as droughts. 126 
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In this study, we investigate these interacting effects of climatic and socio-environmental drivers 127 

on dengue incidence and emergence in Vietnam, by analysing 23 years (1998-2020) of monthly 128 

district-level (2nd administrative level) case surveillance data. Dengue is a major public health 129 

issue in Vietnam, which typically records among the highest incidence rates in Southeast Asia39, 130 

although with wide variation in transmission intensity across the country’s broad latitudinal and 131 

altitudinal range40. The south has a tropical monsoon climate and experiences fairly stable, 132 

seasonal endemic dynamics40,41. In the subtropical north, winter temperatures are too cool to 133 

support transmission42–44 so dengue occurs in sporadic outbreaks during warmer months (often 134 

seeded by DENV reintroductions from the south42). In recent decades, Vietnam has undergone a 135 

major economic transformation from low-income towards middle-income, and has seen rapid 136 

development of major and regional cities, sharply rising population mobility via road and air 137 

(from ~3 million to ~53 million air passengers carried between 2000-201945), and expansion of 138 

access to hygienic water supply and sanitation infrastructure to much of the population46. During 139 

the same period the country has also experienced warming temperatures and more frequent 140 

extreme weather events such as heatwaves and drought, and is considered particularly 141 

vulnerable to health impacts of climate change47. Currently there is still little empirical evidence 142 

for how interactions between such rapid socioeconomic and climatic changes may impact the 143 

distribution and burden of dengue, making Vietnam an ideal historical setting to ask this 144 

question. We used Bayesian hierarchical models and block cross-validation experiments to infer 145 

relationships between socio-environmental and climatic covariates and dengue risk (Table 1), 146 

and explore their effects on spatiotemporal patterns of incidence. We aimed to answer two main 147 

questions. Firstly, what are the most influential spatial and temporal drivers of dengue incidence 148 

across Vietnam, and how might these have contributed to recent dengue trends? Secondly, how 149 

does local urban infrastructure affect the relationship between hydrometeorological dynamics 150 

and dengue incidence? 151 

Results 152 

Surveillance data show a recent expansion of dengue incidence across much of Vietnam 153 

Vietnam is administratively divided into 58 provinces and 5 major urban municipalities including 154 

its two main economic centres, Ha Noi and Ho Chi Minh City (Figure 1). Since 1999 the country 155 

has maintained a national dengue passive surveillance system, with monthly reported case 156 

counts recorded at district-level (administrative level-2) (Methods, Supp. Figure 1). Dengue 157 

incidence typically peaks between June and November (Supp. Figure 1), so our analyses defined 158 

transmission years as running from May to April. The surveillance dataset included 174,936 159 

monthly case counts totalling 2,038,380 dengue cases identified via passive surveillance (either 160 

clinically suspected or laboratory confirmed), from 667 districts between May 1998 and April 161 

2021 (Methods). The highest country-wide counts were in 2019 (294,707) and 2018 (170,600), 162 

and the lowest in 2014 (34,258) and 2002 (35,386). Surveillance data show regional differences 163 

in transmission settings, with the south experiencing endemic dynamics, and the north sporadic 164 

outbreaks mainly restricted to Ha Noi and the Red River Delta (Figure 1a, Supp. Figure 1). Large 165 

synchronous outbreaks occurred nationally in 1998, 2010, 2017 (mainly in the north) and 2019 166 

(mainly central and south) (Supp. Figure 1). We mapped directional trends in dengue incidence at 167 

district-level by estimating the slopes of annual log incidence using linear regression (Figure 1b). 168 

This shows strong evidence (p<0.01) of upward trends throughout the southern central regions 169 
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(South Central Coast, Central Highlands; up to a 45% year-on-year increase in some districts), 170 

Red River Delta, and parts of the Southeast (Figure 1b). The pronounced geographical pattern 171 

and absence of obvious step changes in case numbers suggest that these trends are unlikely to 172 

be solely driven by specific changes in surveillance or diagnostic practices, and therefore are 173 

likely to reflect a true expansion. 174 

National and regional trends in urbanization, infrastructure, mobility and climate 175 

We derived district-level covariates to represent key hypothesized drivers, from census sources, 176 

remote sensing data48, human mobility models and climate reanalysis (ERA5-Land temperature 177 

and bias-corrected ERA5 precipitation49,50; Table 1, Methods, Supp. Text 1). These included: 178 

annual population density; socio-environmental features (built-up land extent, short-term and 179 

long-term urban expansion rates, improved water access, hygienic toilet access, per-capita road 180 

travel rates, mobility flux predicted from naïve gravity and radiation models); annual temperature 181 

metrics to represent thermal constraints on dengue persistence (mean and minimum); and 182 

monthly means of air temperature (Tmin, Tmean and Tmax), precipitation, and multi-scalar drought 183 

indicators (Standardized Precipitation Evapotranspiration Index, SPEI51, in 1-, 6-, and 12-month 184 

time windows) at lags of 0 to 6 months. SPEI measures accumulated hydrological surplus or 185 

deficit relative to the long-term historical average for the same period of the year52,53. Its multi-186 

scalar nature enables measurement of hydrometeorological dynamics at timescales ranging 187 

from transient (affecting surface water) to long-term (affecting reservoir and groundwater 188 

levels), and thus different potential causal influences on dengue transmission (Table 1). 189 

Covariates and hypothesized relationships are summarized in Table 1, with data sources and 190 

processing described in Methods and Supp. Text 1. 191 

The study period saw nationwide upward trends in urbanization, mobility and infrastructure 192 

improvement, although with regional variation (Figure 2, Supp. Figure 2). Urban extent and urban 193 

growth, population density, mobility, and improved water and sanitation access are generally 194 

highest in the regions containing Vietnam’s largest economic centres, Southeast (Ho Chi Minh 195 

City) and Red River Delta (Ha Noi). Per-capita road traffic rates (reported annually at province-196 

level54) increased rapidly nationwide between 1998 and 2019 – ranging from 4.5-fold growth in 197 

the Mekong River Delta and Northwest to 14-fold in the Red River Delta – and declined in 2020 198 

reflecting COVID-19 associated movement restrictions. Census estimates also showed a 199 

nationwide expansion in the proportion of households reporting access to improved water 200 

supply (piped or borehole-derived water) and hygienic toilet facilities (indoor/outdoor flush toilet; 201 

this rose sharply from 2009-2019). Temperature becomes cooler and more seasonally variable 202 

along the south-to-north gradient, while precipitation is generally highest and most variable in the 203 

central regions (Figure 2, Supp. Figures 2-4). Hydrometeorological extremes at short timescales 204 

(SPEI-1) are relatively variable among neighbouring districts (i.e. at small spatial scales), 205 

whereas at longer timescales (SPEI-6) they tend to be more spatially synchronised at the 206 

regional level (Supp. Figure 3).  207 

Urban infrastructure, temperature and hydrometeorology are important spatial and seasonal 208 

drivers of dengue incidence 209 

We fitted Bayesian spatiotemporal regression models to the surveillance dataset, with monthly 210 

case counts modelled using a negative binomial likelihood (Methods). Seasonality was 211 
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represented with a province-specific temporally-correlated effect of calendar month (‘seasonal 212 

random effect’). Unexplained spatiotemporal variation, for example due to immunity and DENV 213 

serotype dynamics or changing surveillance sensitivity, was accounted for with dengue year-214 

specific district-level spatially-structured and unstructured effects55 (‘district-level random 215 

effects’). A random effects-only (‘baseline’) model captured declines in dengue relative risk (RR) 216 

and greater seasonal variability with increasing latitude (Supp. Figure 5). We then tested whether 217 

socio-environmental covariates (specified as either linear, logarithmic or nonlinear terms) and 218 

monthly climate variables (at lags from 0 to 6 months) improved model adequacy metrics and 219 

reduced unexplained variation in district-level random effects, compared to the baseline 220 

(Methods, Supp. Figure 6). There were greater improvements from including gravity rather than 221 

radiation model-based mobility flux; long-term urban expansion (in the preceding 10-year 222 

window) rather than short-term (3-year window); SPEI metrics rather than precipitation; and Tmean 223 

of the coolest month rather than other annual temperature metrics (Supp. Figures 6-7).  224 

We developed a full multivariate model (Figure 3, Methods) including fixed effects of Tmean 225 

coolest month, built-up land cover, 10-year urban expansion rate (log), gravity flux (log) and road 226 

travel per inhabitant (log), and nonlinear effects of hygienic toilet access, improved water access 227 

and monthly Tmean (1-month lag), SPEI-1 (1-month lag) and SPEI-6 (5-month lag). The full model 228 

substantially improved all information criteria (Supp. Table 2-3). Structured predictive 229 

experiments can provide insights into the generality of drivers, through identifying variables that 230 

improve predictive accuracy in unobserved locations and times56,57. To estimate the individual 231 

predictive influence of each covariate, we used 5-fold cross-validation to estimate model 232 

prediction error (out of sample mean absolute error, MAEOOS) under 3 block holdout designs, in 233 

turn excluding one covariate at a time from the full model (Methods, Supp. Figure 8). We defined 234 

a variable’s ‘predictive influence’ as the change in MAEOOS when it is excluded (Figure 4). We 235 

measured covariates’ influence on predicting spatial heterogeneity in incidence using ‘spatial’ 236 

and ‘spatiotemporal’ block designs (5-fold blocked by district and district-year respectively), and 237 

on predicting temporal dynamics using ‘seasonal’ block design (5-fold by district-quarter; 238 

monthly climate variables only) (Supp. Figure 8). The full model significantly reduced prediction 239 

error compared to the baseline under all block designs (Figure 4, Supp. Figure 9). 240 

The most influential local spatial drivers of dengue risk related to infrastructure and urban 241 

expansion, followed by temperature and SPEI-1 (Figure 4a-b). Increasing access to hygienic 242 

toilets had a positive marginal relationship with dengue risk (Figure 3c) with the highest 243 

predictive influence (Figure 4a-b). The effect of population access to improved water supply was 244 

nonlinear, with risk peaking at a low-to-intermediate level (around 25% of households) and 245 

declining thereafter (Figure 3d). Urbanization metrics had generally protective effects, with a 246 

strongly negative relationship between dengue risk and long-term urban expansion (in the 247 

preceding 10 years) with a high predictive influence (Figure 3b, Figure 4a-b), and a weaker 248 

negative effect of built-up land cover. Mobility metrics (per-capita road traffic rates and gravity 249 

flux) had positive relationships with dengue risk (Figure 3b) but little overall predictive influence 250 

(Figure 4). All inferred socio-environmental effects were robust to sensitivity analysis by census-251 

defined level of urbanization (Supp. Figure 10). 252 
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Overall, there was strong evidence that temperature is a dominant factor shaping both the broad 253 

geographical distribution and temporal dynamics of dengue incidence across Vietnam. Annual 254 

Tmean of the coolest month had a large positive effect on dengue risk and contributed 255 

significantly to spatial prediction (Figure 3a, Figure 4a-b), probably through impacting vector 256 

survival during the least thermally-suitable period of the year. Notably, including this covariate 257 

alone reduced unexplained variation in the district-level random effects by 50%, providing strong 258 

evidence that thermal constraints on year-round DENV transmission by mosquitoes are a key 259 

determinant of the geographical gradient of dengue across Vietnam (Supp. Figure 7). Monthly 260 

mean temperature (Tmean) had a nonlinear and delayed (1-month lag) effect, with relative risk 261 

increasing to a peak around 27°C and declining sharply at higher temperatures, consistent with 262 

expectations based on dengue’s thermal biology26. Monthly Tmean contributed significantly to 263 

spatial prediction (Figure 4a-b) and was the main predictor of temporal dynamics (Figure 4c). 264 

Hydrometeorological dynamics had delayed and nonlinear effects that depended on timescale: 265 

increases in relative risk were associated with transient excess wet conditions at short lead 266 

times (SPEI-1 1 month lag), and with long-term accumulated drought at longer lead times (SPEI-6 267 

5-month lag) (Figure 3f-g). SPEI-1 had a positive predictive influence on both spatial and 268 

temporal dengue dynamics (Figure 4). In contrast, SPEI-6 did not substantially contribute to 269 

spatial prediction (Figure 4a-b) despite improving temporal predictions (Figure 4c). It is possible 270 

that the regional synchrony of long-term drought (Supp. Figure 3) makes it less predictive of 271 

finer-scale spatial heterogeneity in dengue incidence, in the absence of information about local 272 

mediating socio-environmental features. 273 

The importance of human mobility is greater in northern Vietnam where dengue is emerging 274 

The importance of drivers might vary between endemic contexts (i.e. where dengue persists 275 

year-round) and emerging settings, where sustained transmission is constrained by factors such 276 

as remoteness or transient climatic suitability. We examined this by fitting separate models for 277 

Vietnam’s southern (Mekong River Delta, Southeast, South Central Coast and Central Highlands) 278 

and northern regions (North Central, Red River Delta, Northeast, Northwest), which broadly 279 

delineate areas of endemic and sporadic transmission (Figure 1, Supp. Figure 1, Supp. Figure 5). 280 

The inferred shape and directionality of socio-environmental effects were very similar between 281 

regions, albeit with generally larger fixed effects slope estimates in the north, reflecting the lower 282 

incidence of dengue compared to the national average (Supp. Figure 11). The major notable 283 

difference is that mobility variables (per-capita road traffic rates and gravity flux) have relatively 284 

much larger positive effects on dengue incidence in northern Vietnam than in the endemic south 285 

(Supp. Figure 11). The same regional differences are reflected in covariates’ relative predictive 286 

influence under block cross-validation: the top-ranked spatial predictors in the north are mobility 287 

and temperature variables, compared to infrastructure, temperature and urbanization in the 288 

south (Supp. Figure 12). 289 

Climate change is reshaping the geography of dengue transmission across Vietnam 290 

Ongoing climatic changes might be contributing to recent dengue emergence trends, particularly 291 

in the central and northern regions of Vietnam (Figure 1b). To investigate this, we tested for 292 

significant changes in monthly temperature-driven dengue risk between a historical reference 293 

period (1951-1970) and the present-day (2001-2020) using long-term ERA5-Land reanalysis 294 
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data58 (Methods). We used the inferred risk function for Tmean (Figure 3e) to predict monthly 295 

posterior marginal mean temperature-driven risk since 1950 (i.e. just the effect of temperature 296 

while holding all other variables constant), then used linear models to test for differences 297 

between reference and present day periods, comparing 20-year averages to account for natural 298 

climate system variability (Methods, Figure 5). Present-day projections of temperature-driven risk 299 

(Figure 5) reproduce the gradient of observed transmission, with high risk year-round in the 300 

south, and seasonally transient risk in the north that declines during winter months (January to 301 

April; Figure 5a).  302 

Increasing temperatures since the 1951-1970 reference period have driven expansion and 303 

redistribution of predicted dengue risk across much of Vietnam (Figure 5b-c, Supp. Figures 13-304 

14). Predicted risk increases are particularly pronounced in southern central regions, including 305 

during low-season months in the higher-altitude Central Highlands provinces (up to 56% 306 

increase), suggesting that climate change is expanding the suitable area for endemic 307 

transmission. Similarly, much of north Vietnam has experienced sharp rises in risk during 308 

summer months, including in more remote northern regions, and a lengthening of the 309 

transmission season in the Red River Delta including Ha Noi (Figure 5b-c). Notably, these 310 

hotspots of increasing temperature-driven risk are geographically concordant with the steepest 311 

upward dengue trends during the 1998-2020 period (Figure 1b) and with visual indications of a 312 

transition from sporadic outbreaks towards endemic transmission in southern central regions 313 

(Supp. Figure 1). Overall, these results suggest that recent warming has reduced thermal 314 

constraints on dengue transmission in much of Vietnam and probably contributed to recent 315 

northward and altitudinal shifts. Notably, however, there is also evidence of seasonal and spatial 316 

redistribution of transmission, with rising temperatures above dengue’s thermal optimum slightly 317 

reducing risk during the hottest months of the year in parts of the south (April-July) and north 318 

and coastal areas (July-August), compared to the historical reference period (Figure 4b-c, Supp. 319 

Figures 13-14). Far fewer climate observations are assimilated by ERA5 during earlier years (up 320 

to the late 1960s), which may impact the accuracy of reanalysis estimates58; as a sensitivity test 321 

we therefore repeated this analysis using a later reference period (1971-1990), which showed 322 

very similar overall results (Supp. Figure 15). 323 

The effects of hydrometeorology on dengue incidence are multi-scalar and modified by local 324 

infrastructure  325 

Theory and recent empirical evidence suggest that local socio-environmental context may be 326 

important in determining dengue’s response to precipitation and drought patterns35,37. We 327 

investigated the multi-scalar effects of hydrometeorological dynamics on dengue incidence, 328 

focusing on southern Vietnam where transmission occurs year-round (Methods). We found 329 

evidence of delayed and timescale-dependent relationships between hydrometeorology and 330 

dengue risk: the increase in risk driven by transient wet conditions (SPEI-1) peaks at a 1 to 2 331 

month delay and declines sharply beyond 2 months, whereas risk associated with long-timescale 332 

drought (SPEI-6) emerges gradually over a longer delay period (from 4 to 6 months) (Supp. 333 

Figure 16). This suggests that hydrometeorological phenomena at different timescales probably 334 

affect dengue risk via different causal pathways, one mainly biophysical (high rainfall leading to 335 

immediate proliferation of outdoor vector breeding sites) and the other behavioural (household 336 

water storage in response to perceived sustained shortages). 337 
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If the long-term drought effect is mainly mediated by water storage behaviour, we hypothesized 338 

that increasing population access to improved water supply (i.e. more reliable than rainwater59) 339 

would reduce the dengue risks associated with sustained drought but not with short-term excess 340 

(Methods). We also expected that, at this fine spatial scale, including an interaction with water 341 

supply would explain observed patterns better than an interaction with urbanisation (which was 342 

found to significantly modify drought effects in a recent coarser-scale study37). We tested this by 343 

stratifying the effects of either SPEI-1 (1-month lag) or SPEI-6 (5-month lag) by low (<25%), 344 

intermediate (25-75%) and high (>75%) levels of either water supply (proportion of households) 345 

or built-up land cover, within the full model retaining all other covariates (Methods). Consistent 346 

with our expectations, models including an interaction between SPEI-6 and water supply 347 

substantially improved model fit, whereas interactions with urban land and with SPEI-1 did not 348 

improve models (Supp. Figure 17-18). The interaction model showed a complex, nonlinear 349 

relationship between sustained drought, improved water supply and dengue risk (Figure 6a). 350 

Increasing access to improved water supply reduces the delayed dengue risk associated with 351 

near normal to moderately dry conditions (SPEI-6 between 0 and -1.5), but sharply increases the 352 

risk under moderate to extreme drought conditions (SPEI-6 < -1.5). In contrast, where improved 353 

water supply is low, increasingly dry conditions are associated with linear increases in risk 354 

except during rare periods of severe drought, when risk slightly declines (SPEI-6 <-2, 1.5% of 355 

observations). Long-term wet conditions (SPEI-6 > 0) are protective across all strata (Figure 5a). 356 

Notably, including this interaction substantially reduced prediction error under spatiotemporal 357 

and seasonal holdout designs compared to a non-interaction model (Supp. Figure 18), providing 358 

evidence that accounting for cross-scale climatic and socio-environmental interactions can help 359 

to predict spatial variation in dengue risk.  360 

To visualise how interactions between drought and improved water supply could produce spatial 361 

heterogeneity in dengue dynamics, we projected monthly SPEI-6 associated relative risk for an 362 

example time series from the Mekong River Delta (2002-2020), under scenarios of low, 363 

intermediate and high water supply (Figure 6b). Over two decades, SPEI-6 oscillates between 364 

periods of near normal to moderately dry and wet, with rarer extremes (droughts in 2003-4 and 365 

2016-17, excess in 2018-19; Figure 6b, top panel). Under low-to-intermediate improved water 366 

supply (<75% of households), dengue relative risk is closely linked to these oscillations, 367 

significantly increasing during regular dry periods. In contrast, when improved water supply is 368 

high (>75%) risk is effectively dampened during these lower amplitude dry periods, instead only 369 

increasing sharply during sporadic periods of severe drought (Figure 6b, bottom panel).  370 

Discussion 371 

Despite recognition of the growing threat of dengue under global change5, understanding of how 372 

key socio-environmental and climatic drivers shape both local patterns of transmission and 373 

broader emergence trends remains patchy. By analysing 23-years of dengue surveillance data 374 

across a gradient of transmission intensity in Vietnam, we found that urban infrastructure-related 375 

metrics (water supply, sanitation and long-term urban growth) are the most influential predictors 376 

of local heterogeneity in incidence (Figures 3-4). Notably, temperature is a key driver of the 377 

distribution and dynamics of dengue, and long-term reanalysis data indicates that recent climate 378 

change has already expanded temperature-driven dengue risk across Vietnam (Figure 5). In 379 
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contrast, effects of hydrometeorology depend on timescale and socioeconomic context, with 380 

drought effects mediated by access to improved water supply (Figure 6). These socio-381 

environmental findings complement existing household- and subregional-level evidence for 382 

dengue risk factors in Vietnam29,40,41,60, with the benefit that the dataset’s long-term nature, 383 

spatial granularity and national coverage allowed for inference across the full range of many 384 

hypothesized drivers – from rural to urban, remote to highly-connected, and tropical to cooler 385 

subtropical climates.  386 

Decomposing the roles of urbanization and infrastructure as spatial drivers of dengue 387 

incidence  388 

The coarser surveillance data commonly used in large-scale dengue analyses makes it difficult 389 

to disentangle the effects of local socio-environmental factors from closely correlated metrics 390 

such as population density. Our study at finer scale avoids this issue, and provides evidence that 391 

water and sanitation infrastructure are more important spatial determinants of dengue risk than 392 

availability of urban habitat per se. Increasing hygienic toilet access was the strongest positive 393 

predictor, which was unexpected as sanitation improvements are thought to decrease 394 

household-level risk. One non-mechanistic explanation is that this metric may index “urban-like” 395 

water-related infrastructure that provide amenable Aedes breeding habitat, such as storm drains, 396 

septic and water storage tanks (although this relationship was robust in a model fitted only to 397 

data from rural districts; Supp. Figure 10). Alternatively, increasing flush toilet access could itself 398 

drive population-level risk: indoor flush toilets in Vietnam are conventionally linked to septic 399 

tanks with storm drain overflows46, and outdoor latrines often contain stored water containers, 400 

both of which provide vector breeding sites30. Indeed, previous studies in Vietnam have identified 401 

outdoor latrine access41 and proximity to sewage discharge sites61 as significant household-level 402 

risk factors for DENV exposure; our results suggest these effects might be more general, and 403 

highlight the need for further research to understand the role of changing sanitation systems in 404 

dengue emergence. We also found evidence for protective effects of high improved water supply 405 

coverage in both south and north Vietnam, even though our metric was coarse (including both 406 

piped and groundwater-derived sources) due to limitations of census data (Figure 3, Supp. Figure 407 

2). This is consistent with evidence from Vietnam and elsewhere62,63 and is likely mediated by 408 

the ability and propensity to store water around homes when water supply is low or unreliable 409 

(see below). 410 

Notably, the negative effects of long-term urban expansion and built-up land suggest that – after 411 

accounting for mobility and infrastructure – dengue incidence declines in increasingly urbanized 412 

landscapes. This appears counterintuitive given that urban growth is typically considered a key 413 

dengue driver (although systematic reviews have not shown clear empirical consensus for this 414 

relationship6,25). However, our satellite-based metrics are probably better indicators of formally-415 

planned urban developments than of more informal or peripheral settlement expansion, which 416 

can be harder to detect from space64. Such developments may generally have better provision of 417 

water, sanitation and vector control services; as such, these results are consistent with our 418 

infrastructure findings in suggesting that socio-environmental characteristics are the key 419 

determinants of heterogeneity in risk across large areas.  Taken together, these results suggest 420 

that dengue incidence in Vietnam probably peaks in semi-urbanized or peri-urban areas – i.e. 421 

relatively well-connected localities with extensive landscape modification for essential 422 
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sanitation, water and drainage, but lacking higher-quality infrastructure and services that could 423 

otherwise reduce vector densities. Interestingly, this conclusion is supported by an earlier cohort 424 

and modelling study from Vietnam that suggested susceptibility to large dengue outbreaks is 425 

highest in areas with intermediate population densities and low piped water access62.  426 

Interacting effects of climatic and socio-environmental drivers on dengue dynamics 427 

We found strong evidence that temperature drives the spatial limits and temporal dynamics of 428 

dengue across Vietnam. The nonlinear effect of monthly Tmean, peaking around 27°C, is 429 

consistent with evidence from vector biology26 and modelling studies37. Notably, temperature of 430 

the coolest month of the year explained the gradient in transmission intensity across Vietnam 431 

(Supp. Figure 7), strongly suggesting that constraints on viral and mosquito persistence in cooler 432 

months are barriers to endemic establishment in the north. Indeed, phylogeographic studies 433 

have shown that transmission chains rarely persist over winter, and that yearly case surges in 434 

northern Vietnam (including Ha Noi) are mainly seeded by reintroductions from the south42. 435 

Consistent with this, we found markedly larger effect sizes and predictive influence of human 436 

mobility in the north, which may reflect the importance of higher connectivity in facilitating 437 

annual DENV reintroductions (Figure 5a). Smaller effects of mobility in the south might reflect 438 

that populations are sufficiently large, and the climate consistently suitable, to support sustained 439 

local transmission. More generally, these results suggest that highly-connected localities in 440 

climatically-marginal regions may be useful targets for early surveillance, as dengue expansion is 441 

likely to proceed via establishment in these areas before radiating outward65,66. Our analyses 442 

were constrained by imprecise mobility metrics (Table 1), and more detailed data sources (such 443 

as transport networks or mobile phone data) could provide further insights into these expansion 444 

dynamics14. 445 

There is a need to understand how climatic variability and extreme weather events interact with 446 

local socioeconomic contexts to drive outbreak dynamics, rather than considering climate 447 

hazards as independent drivers38,67. Our finding that hydrometeorological dynamics are 448 

significant, multi-scalar drivers of dengue risk in Vietnam (Figure 3) adds to an emerging 449 

evidence consensus for general effects of drought on dengue, as similar long-lag drought effects 450 

have also been observed in Latin America and the Caribbean36,37. Expanding on those studies, we 451 

found that high improved water supply coverage changes the functional shape of the dengue-452 

SPEI-6 relationship, buffering against risk during low amplitude dry periods and sharply 453 

increasing risk during severe drought (Figure 6). This is strongly indicative of a mediating role of 454 

water storage practices. During slightly dry periods, piped or borehole-derived water supply may 455 

decrease the need to store water in containers, and/or increase the frequency of stored water 456 

replacement, both of which reduce vector production rate68. In contrast, improved supply during 457 

drought may increase the availability and propensity to store water in containers, whereas 458 

households with lower access might switch to alternative sources such as bought water (as 459 

suggested by past research in the Mekong Delta59). Our water infrastructure metric did not 460 

include service reliability or sociocultural perceptions of water quality and reliability, all of which 461 

impact water usage and storage norms59,69, and the inference of extreme drought effects by 462 

nature relied upon a relatively small number of observations (Figure 6c). Nonetheless, including 463 

this interaction improved spatial and temporal predictive accuracy, particularly in the highest-464 

burden southern provinces (Supp. Figure 18). This has implications for spatial prioritization of 465 
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interventions (e.g. vector control) to localities where water storage is highest during dry or 466 

drought periods, as well as highlighting that developing accurate local-scale dengue forecasts 467 

will likely need to account for complex climate-socioeconomic interactions.  468 

The role of environmental change in driving long-term dengue emergence in Vietnam 469 

Reported dengue burden has grown in many regions of Vietnam over the last two decades, 470 

including northward expansion into central regions and the Red River Delta11 (Figure 1b). Our 471 

findings strongly suggest that recent socio-environmental and climatic changes have contributed 472 

to this emergence trend, although we caution that our approach does not attribute observed 473 

trends to changes in specific drivers. Notably, while most studies of dengue and climate change 474 

have focused on future scenario-based projection34,70, we instead used historical reanalysis data 475 

which suggests that climate change in recent decades has already expanded and redistributed 476 

transmission risk, likely facilitating dengue’s northward spread (Figure 5, Supp. Figure 15). In the 477 

north, the combined effects of a lengthening transmission season and rapid rises in mobility (up 478 

to 14-fold since 1998) have probably contributed substantially to the emergence of dengue as an 479 

annual problem in Ha Noi and the Red River Delta. Evidence of reductions in risk during the 480 

hottest months, however, suggest that future climate change will have complex effects on 481 

spatiotemporal patterns of dengue burden. Our approach stops short of attributing these effects 482 

to anthropogenic climate forcing, instead comparing present-day risk patterns to a reference 483 

period preceding the recent global temperature uptick; applying a formal detection and 484 

attribution framework will be an important next step towards quantifying the anthropogenic 485 

fingerprint on dengue burden71. 486 

Recent changes in infrastructure have probably had complex effects on the landscape of dengue, 487 

with transmission risk simultaneously increased via widespread expansion of sanitation systems 488 

and reduced via growth of cities and improvements in water supply. Indeed, rather than a simple 489 

positive dengue-urbanization relationship, localities most vulnerable to outbreaks are probably 490 

peri-urban and transitional landscapes with increasingly dense populations but relatively weak 491 

infrastructure and services. Our findings consequently support improvements in hygienic water 492 

supply infrastructure as a pillar of climate adaptation to increasing mosquito-borne arboviral 493 

risks, but also highlight potential limits to this adaptation. Climatic changes are stressing water 494 

security in much of Southeast Asia, including Vietnam which has recently experienced severe 495 

droughts and saltwater incursion, and regional drought risks are projected to increase in 496 

future72,73. Expanding access to improved water supply infrastructure may mitigate dengue risks 497 

during dry periods, but might be insufficient to reduce dengue risks during severe droughts 498 

without additional improvements to household water security. More broadly, our study shows the 499 

value of integrating explanatory (hypothesis-driven) and predictive methods to understand the 500 

interacting effects of climate and socioeconomic factors on emerging diseases. 501 

 502 

 503 

 504 

 505 
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Materials & Methods 506 

Dengue surveillance data 507 

Since 1998 Vietnam has maintained a dedicated national dengue passive surveillance system. 508 

Data on monthly dengue case counts from May 1998 to April 2021 at administrative level 2 509 

(“districts”) were collected and collated at the Pasteur Institute Ho Chi Minh City (Southeast and 510 

Mekong River Delta provinces), Pasteur Institute Nha Trang (Central coastal provinces), Tay 511 

Nguyen Institute of Hygiene and Epidemiology (Central Highlands provinces) and National 512 

Institute of Hygiene and Epidemiology in Ha Noi (Northern provinces), with time-series beginning 513 

between 1998 and 2002 depending on the region (Supp. Figure 1). Case counts were based on 514 

passive surveillance using the national dengue case definition, and include both laboratory-515 

confirmed and suspected cases. Other infections, particularly arboviruses, could be 516 

misdiagnosed as suspected dengue cases; however, reported case numbers and seroprevalence 517 

estimates for chikungunya and Zika in Vietnam have been relatively low74,75, so this would be 518 

unlikely to substantially impact inference. Currently there are 713 districts in Vietnam, although a 519 

substantial number of these were established through redrawing of administrative boundaries 520 

since 1998; to ensure geographical comparability throughout the study period, we combined 521 

dengue case counts for 46 districts to match their 1998 boundaries, creating a final dataset of 522 

174,936 monthly case counts from 667 districts (Figure 1a, Supp. Figure 1). Case counts were 523 

assigned to a dengue transmission year (from April to May) for modelling. 524 

Socio-environmental and climatic covariates 525 

We developed spatially- and temporally-explicit covariates to represent hypothesized drivers of 526 

dengue transmission and spread (Table 1). Covariates are visualised in Supp. Figures 2-3, and 527 

data sources and processing are summarized below (for full description see Supp. Table 1 and 528 

Supp. Text 1). Raster data extraction and processing was conducted using ‘sf’, ‘raster’ and 529 

‘exactextractr’ in R 4.0.376–78.  We accessed population data (total and density) from census-530 

based data, urbanization metrics (built-up land extent, and expansion rate in preceding 3- and 10-531 

year windows) from satellite data48, and infrastructure metrics (% households with access to 532 

hygienic toilet, and % piped or borehole-derived water) from the Vietnam Population and Housing 533 

Census (2009 and 2019, interpolated and projected to annual values). We accessed province-534 

level annual road travel rates (km per inhabitant reported by the Vietnam General Statistics 535 

Office) as a measure of observed levels of population movement. In the absence of detailed 536 

mobility data such as mobile phone records, we used parameter-free gravity and radiation 537 

models to predict annual district-level relative connectivity (predicted mean population flux), 538 

based on population data and pairwise travel times between all pairs of districts15,79. 539 

Monthly temperature indicators (monthly mean Tmean, Tmin and Tmax) were derived from ERA5-540 

Land reanalysis data49,80,81. Since broad climatic suitability gradients could confound 541 

relationships with other variables, we also calculated three annual temperature indicators to 542 

represent more fundamental constraints on dengue persistence (annual mean Tmean, annual 543 

mean Tmin, Tmean of the coolest month). Monthly precipitation indicators were derived from bias-544 

adjusted ERA5 data (WFDE5; Supp. Figure 3-4). In addition to precipitation, we used the R 545 

package ‘spei’51 to estimate multi-scalar drought indicators (Standardised Precipitation 546 

Evapotranspiration Index; SPEI) from 40 year timeseries of monthly WFDE5 precipitation and 547 
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ERA5-Land potential evapotranspiration in each district (reference period 1981-2020). SPEI 548 

incorporates effects of both precipitation and evapotranspiration on water availability52,53, with 549 

values above and below 0 indicating, respectively, surface water excess or deficit relative to the 550 

long-term historical average in a given seasonal time window (for example, a 6-month SPEI for 551 

Jan-Jun 2018 would compare to Jan-Jun in all other years). SPEI values denote the relative 552 

magnitude of this deviation, from near-normal to moderate (absolute values from 0 to 1), from 553 

moderate to severe (absolute values 1 to 2), to extreme wet/dry conditions (absolute values >2). 554 

We estimated monthly SPEI within 1-month, 6-month and 12-month windows to capture varying 555 

timescales of drought (SPEI-1 as short-timescale; SPEI-6 and SPEI-12 as long-timescale). 556 

Climatic covariates were derived at lags of 0 to 6 months prior to the focal month to account for 557 

delayed effects (Supp. Text 1). 558 

Statistical model development  559 

To infer relationships between covariates and dengue incidence we fitted spatiotemporal models 560 

in a Bayesian framework (integrated nested Laplace approximation, in INLA 21.7.10.182,83). 561 

Monthly dengue case counts 𝑌,௧ (n=174,936) were modelled as a negative binomial process to 562 

account for overdispersion: 563 

𝑌,௧  ~ 𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚(𝜇,௧ , 𝑛) 564 

where 𝑛 is the size (overdispersion) parameter and 𝜇,௧ is the expected mean number of cases 565 

for district i during month t, modelled as a log link function of the following general linear 566 

predictor: 567 

log൫𝜇,௧൯ = 𝛼 + 𝑃,௧ + 𝜌(),௧ +  𝑢,௬(௧) + 𝑣,௬(௧)   568 

Here, 𝛼 is the intercept and 𝑃,௧  is log population included as an offset. 𝜌(),௧ is a province-569 

specific effect of calendar month to account for geographic variability in dengue seasonality 570 

(districts i are nested within 63 provinces r), specified as a cyclic first-order random walk to 571 

capture dependency between successive months. To account for unexplained variation in 572 

spatiotemporal patterns of dengue across Vietnam (due to unmeasured factors such as 573 

population immunity), 𝑢,௬(௧) and 𝑣,௬(௧) are dengue year-specific (23 years, y) spatially-structured 574 

(conditional autoregressive; 𝑢) and unstructured (i.i.d; 𝑣) district-level random effects, jointly 575 

specified as a Besag-York-Mollie model55. 576 

We fitted the above random effects-only model as a baseline (Supp. Figure 5), and conducted 577 

model selection to develop a multivariate model including population, climate, urbanisation, 578 

infrastructure and mobility covariates (Table 1). We compared models using within-sample 579 

information criteria: Watanabe-Akaike Information Criterion (WAIC), Deviance Information 580 

Criterion (DIC) and cross-validated logarithmic score (log-score; calculated from the pointwise 581 

conditional predictive ordinate, an approximation of leave-one-out cross-validation). Comparing 582 

variation explained between different models using metrics such as pseudo-R2 was not 583 

particularly informative, as the district-level random effects (𝑢,௬(௧) + 𝑣,௬(௧))  are at the same 584 

annual resolution as most covariates (Table 1), and thus tend to compensate for excluded 585 

variables. We instead calculated measures of unexplained random effects variation (mean 586 

absolute error in district-level or seasonal effects), which indicates how much these effects 587 

attenuate towards zero when covariates are included. We first selected each covariate’s best-588 
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fitting type (either Tmean, Tmin or Tmax for monthly temperature; either SPEI-6 or SPEI-12 for long-589 

timescale drought; gravity or radiation; 3- or 10-year urban expansion), functional form (linear, 590 

logarithmic or nonlinear, the latter specified as a second-order random walk) and lag (climate 591 

variables only) by adding each individually to the baseline model and comparing WAIC (Supp. 592 

Figure 6). Covariates considered for inclusion in a full multivariate model were: fixed effects of 593 

Tmean coolest month, log population density, log gravity flux, log road traffic per inhabitant, built-594 

up land, log 10-year urban expansion rate, and nonlinear effects of hygienic toilet access, piped 595 

water access, Tmean 1-month lag, SPEI-1 1-month lag and SPEI-6 5-month lag.  596 

Owing to the dataset’s large size and the expectation of confounding relationships among 597 

covariates, it was both undesirable and computationally unfeasible to conduct a programmatic 598 

covariate selection process. Instead we conducted a more limited model comparison procedure 599 

to develop a final multivariate model. To do this, we first excluded covariates with evidence of 600 

substantial multicollinearity when tested using variance inflation factors (log population density 601 

and log gravity flux were highly collinear, and the former was excluded because gravity flux 602 

improved models more during individual covariate analysis; Supp Figure 6). We then fitted a 603 

multivariate model including all 10 remaining covariates and compared this to 10 separate 604 

models each holding out 1 covariate at a time. Covariates whose inclusion did not improve 605 

model fit according to at least 2 of the 3 within-sample metrics (WAIC, DIC and log-score) were 606 

excluded. All covariates improved the model by this majority rule criterion, and were retained. 607 

We examined residuals and conducted posterior predictive checks to check the model met 608 

distributional assumptions. We also conducted a sensitivity analysis based on degree of 609 

urbanisation because, despite relatively low collinearity overall (Supp. Figure 2), many large cities 610 

cluster with relatively high values for many key covariates. Since this could affect parameter 611 

estimates, we tested sensitivity by sequentially re-fitting the model holding out all observations in 612 

areas with >90%, >70% or >50% of population residing in urban areas as defined from census 613 

data (i.e. fitting the model to data from increasingly rural settings). To examine whether socio-614 

environmental effects differ substantially between endemic and emerging dengue transmission 615 

settings, we also separately fitted the final multivariate model to data from southern Vietnam 616 

(Mekong River Delta, Southeast, South Central Coast and Central Highlands) and northern 617 

Vietnam (North Central, Red River Delta, Northeast and Northwest). 618 

Measuring covariate predictive influence through block cross-validation tests 619 

Inference can be strengthened through combining explanatory and predictive approaches, for 620 

example by using structured predictive tests to challenge the ability of hypothesis-led 621 

explanatory models to predict unseen observations56,57 (i.e. testing the generalisability of inferred 622 

relationships). For strongly spatially-dependent phenomena such as disease incidence, block 623 

cross-validation designs –which hold out data in spatially- or temporally-structured blocks – are 624 

more appropriate than fully randomised approaches84, and can provide insights into how 625 

different variables contribute to predicting different dimensions of a phenomenon (Supp. Figure 626 

8). To estimate the influence of individual covariates on predicting spatial and temporal 627 

variability in dengue incidence, we conducted block cross-validation experiments to estimate 628 

out-of-sample (OOS) prediction error for the baseline model, full model, and 10 models each 629 

excluding a single covariate from the full model. In each run, the dataset was 5-fold partitioned 630 
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(observations were randomly allocated to folds following a given block holdout design, as 631 

described below) and OOS predictions were generated for each model using 80%-20% train-test 632 

splits (i.e. across 5 submodels). Prediction error (difference between observed and predicted 633 

cases) was summarised as mean absolute error (MAEOOS), across all observations, at district-634 

level and, to examine differences between regions, across all observations within either southern 635 

or northern Vietnam (Supp. Figure 11-12)  636 

This procedure was repeated 10 times each for 3 block holdout designs84 to account for 637 

variation associated with random allocation of folds (Supp. Figure 8a-b). Spatial: 5-fold of 638 

complete districts, i.e. predicting full dengue incidence time series in completely unobserved 639 

areas. Spatiotemporal: 5-fold of district-year combinations, i.e. predicting completely unobserved 640 

years in partially observed locations. Seasonal: 5-fold of quarterly (3-month) blocks per-district, 641 

i.e. predicting unobserved intra-annual epidemic dynamics. Under spatial and spatiotemporal 642 

holdout designs, the expected magnitude of dengue incidence in unobserved locations and years 643 

is inferred from nearby observed locations, via the spatially-structured effects 𝑢,௬(௧) (Supp. 644 

Figure 8c). These designs therefore test the contribution of covariates to predicting spatial 645 

heterogeneity in dengue incidence dynamics among nearby locations (i.e. differences from the 646 

expected similarity to neighbouring districts). Under the seasonal block design, the random 647 

effects contain information about the expected magnitude of cases in unobserved blocks, 648 

inferred from other observations in the same district and year (Supp. Figure 8d). This design 649 

therefore tests the contribution of monthly climatic variability to predicting departures from this 650 

seasonal expectation (Supp. Figure 8d).  651 

Examining the recent impacts of climate change using historical temperature data 652 

To examine the possible contribution of recent climate change to dengue expansion patterns 653 

nationally, we used the inferred risk function of monthly temperature (Tmean 1-month lag; Figure 654 

3e) to project monthly posterior mean temperature-driven dengue risk since 1950 for all districts, 655 

using long-term Tmean data from ERA5-Land reanalysis. To do this, we used the fitted risk 656 

function to predict the monthly marginal effect of Tmean  on dengue incidence (i.e. while holding 657 

all other variables constant) for each month across the full historical time-series. To visualise 658 

present-day risk dynamics in space and time, we then summarised and mapped 20-year means 659 

of monthly district-level risk for the period 2001-2020. To test for effects of climate change, we 660 

compared 20-year average risk between a historical reference period (1951-1970) and the 661 

present-day period, per-district and month, using linear models with time period as a categorical 662 

covariate. The use of 20-year averages was to account for natural climate system variability. The 663 

historical reference period was based on the earliest available ERA5-Land data, and while not 664 

reflective of the pre-industrial baseline, precedes the sharp acceleration of global temperatures 665 

that has occurred since around 1970. Climate reanalysis is based on assimilating observational 666 

data with climate models to provide a detailed and accurate reconstruction of historical climate 667 

dynamics, and its accuracy relies upon observational data. The number of observations 668 

assimilated by ERA5 increases tenfold between 1950 and 1970, and this lower data coverage 669 

might reduce accuracy in earlier years58; we therefore also tested the sensitivity of results to 670 

defining a later reference period (1971-1990) when coverage is much higher. 671 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 1, 2023. ; https://doi.org/10.1101/2023.07.25.23293110doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.25.23293110
http://creativecommons.org/licenses/by-nc/4.0/


17 
 

Examining multi-scalar effects of drought, and interactions with infrastructure, in southern 672 

Vietnam 673 

We extended the full model to investigate the effects of interactions between extreme 674 

wetness/drought and local infrastructure on dengue incidence, over multiple timescales and 675 

delays (from 0 to 6 months), focusing on endemic southern Vietnam. We examined the 676 

relationship between SPEI and dengue incidence, and improvements in model fit, for all lags and 677 

timescales of SPEI (SPEI-1 and SPEI-6 at 0 to 6 months delay), by including each metric 678 

individually in the full model containing all covariates except SPEI. To test the hypothesis that the 679 

effects of drought on dengue are mediated by water supply, we tested whether models were 680 

improved by stratifying the best-fitting short-timescale (SPEI-1 1-month) and long-timescale 681 

(SPEI-6 5-month) drought indicator by either level of improved water access or urbanization 682 

(grouped as low, intermediate, or high, defined as <25%, 25-75% or >75% respectively). We 683 

expected that stratification of the SPEI-6 effect by water supply would improve models more 684 

than stratifying SPEI-1, and that stratifying by water supply would improve models more than 685 

stratifying by urbanization (Results). We used information criteria as described above (WAIC, DIC 686 

and log-score) to evaluate whether including each interaction improved model fit compared to 687 

the full (non-interaction) model. For each model we also tested whether interactions reduced 688 

OOS prediction error under spatiotemporal and seasonal cross-validation, as described above. 689 

Data and code availability 690 

The data and code pipeline used for this study are available at: 691 

https://github.com/rorygibb/dengue_vietnam_ms. To demonstrate pipeline functionality the 692 

repository contains dengue data for a subset of Vietnamese provinces. The full dengue 693 

incidence data underlying these results are available from: Phan Trong Lan, General Department 694 

of Preventive Medicine, MOH, email: phantronglan@gmail.com 695 
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Figures and Tables 714 

Figure 1: Geographical distribution and trends in dengue incidence at district-level in Vietnam. 715 

(A) Mean annual dengue incidence rates across all dengue years (May to April) within each 5-6 716 

year time period between 1998 – 2020 (cases per 100,000 persons, log+1 transformed for 717 

visualization purposes) for districts with dengue time series available (n=667). (B) Estimated 718 

slopes of annual dengue incidence rates between 1998 and 2020 (% change per year) for 719 

districts with strong evidence (p<0.01) of increasing (red) or decreasing (blue) trends, with 720 

Vietnam’s 5 major urban municipalities labelled. The latitudinal gradient in seasonal dynamics is 721 

shown in Supp. Figure 1. 722 
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Figure 2: Socio-environmental change and climatic variability in Vietnam from 1998 to 2020. 742 

Sub-plots show annual socio-environmental and climatic covariate data (Table 1), aggregated 743 

from district- to region-level for visualization (region denoted by line and map fill colour; 744 

population density, gravity flux, temperature and precipitation are summarized as the mean 745 

across all districts). For census-based metrics (population, infrastructure, and gravity models) 746 

annual estimates were obtained via district-level interpolation or back/forward projection from 747 

observed years, which are shown as dotted lines (Methods, Supp. Text 1). For all other metrics, 748 

data were available for all years. Urbanization, population density and mobility are highest in the 749 

subregions with the two largest municipalities: Ha Noi (Red River Delta) and Ho Chi Minh City 750 

(Southeast).  751 
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Figure 3: Effects of socio-environmental and climatic drivers on district-level dengue incidence. 766 

Sub-panels show posterior marginal linear fixed effects (A-B) and nonlinear effects (C-G) from 767 

the full fitted model of district-level dengue incidence (n=667 districts, 174,936 observations; 768 

Methods). Linear fixed effects are shown as risk ratios for scaled or log-transformed covariates 769 

(i.e. proportion change in risk for a 1 unit change in covariate), with points and error bars 770 

showing posterior marginal mean and 95% credible interval. Nonlinear marginal effects 771 

(specified as second-order random walks; Methods) are shown on the relative risk scale, with 772 

lines and ribbons showing posterior mean and 95% credible interval. Point or ribbon colour 773 

denotes broad covariate class: either socio-environmental (green) or climatic (blue).  774 
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Figure 4: Influence of individual socio-environmental and climatic factors on spatiotemporal 789 

and seasonal predictions of dengue incidence. Influence of individual covariates on out-of-790 

sample mean absolute error (MAE) was evaluated using 5-fold cross validation under 3 block 791 

holdout designs: spatial (entire districts), spatiotemporal (district-year combinations) and 792 

seasonal (quarterly blocks within each district) (Methods, Supp. Figure 8). Candidate models 793 

excluding one covariate at a time from the full model are shown on the y axis, with the baseline 794 

(random effects-only) model for comparison. Individual points show change in MAE relative to 795 

the full model (dashed line), across 10 repeats account for variability due to random reallocation 796 

of cross-validation folds. Point colour denotes broad covariate class: socio-environmental 797 

(green), climatic (blue) or baseline model (grey). Black points and error bars summarise the 798 

mean and 95% confidence interval across all 10 repeats. Values above zero indicate an increase 799 

in prediction error relative to the full model when a covariate is excluded (i.e. positive influence 800 

on prediction accuracy), and vice versa.  801 
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Figure 5: Recent climate change has expanded and redistributed dengue transmission risk 819 

across Vietnam. The full model was used to predict monthly marginal temperature-driven risk 820 

since 1950 using ERA5-Land reanalysis data (i.e. holding all other variables constant). Top maps 821 

(A) show present-day monthly 20-year means of dengue relative risk (2001-2020), with darker 822 

colours denoting increased risk. Bottom maps (B) show the monthly percentage difference in 20-823 

year average dengue risk between historical reference (1951-1970)  and present-day (red 824 

shading denotes increasing risk and blue decreasing risk). Only statistically significant 825 

differences (p<0.05) are shown, with non-significant differences shaded white. Graphs (C) show 826 

long-term changes in seasonal risk by dengue month (May to April) for 5 example cities with high 827 

dengue burden (Ha Noi in north; Buon Ma Thuot in the central highlands; Nha Trang on the south 828 

central coast; and Ho Chi Minh and Can Tho in the south). Fine lines show individual years, and 829 

points and error-bars show monthly 20-year mean and standard error, with lines coloured by time 830 

period (green for reference period; purple for present-day). The supplementary material shows 831 

more district examples (Supp. Figure 13) as well as changes in temperature patterns for these 5 832 

localities (Supp. Figure 14). Results were very similar when defining a later reference period 833 

(1971-1990; Supp. Figure 15). 834 

 835 

 836 

 837 

 838 

 839 

 840 

 841 

 842 

 843 

 844 

 845 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 1, 2023. ; https://doi.org/10.1101/2023.07.25.23293110doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.25.23293110
http://creativecommons.org/licenses/by-nc/4.0/


23 
 

Figure 6: Improved water supply modifies the effect of long-term drought (SPEI-6) on dengue 846 

incidence in southern Vietnam. The fitted interaction between SPEI-6 (5-month lag) and piped or 847 

drilled well water access is shown in A (low=<25% of households; medium=25–75%, high=>75%), 848 

with lines and shaded area showing posterior marginal mean and 95% credible interval. 849 

Histogram shows the distribution of observations across the 3 strata (bar height is cumulative 850 

across 3 strata). Visualisation of the marginal effect of SPEI-6 on relative risk is shown in B, for 851 

an example time series of SPEI-6 from the Mekong River Delta region (top row; Dong Thap 852 

province), under scenarios of low, intermediate and high improved water access (bottom row). 853 

Accounting for this interaction reduces predictive error under both spatiotemporal and seasonal 854 

cross validation (Supp. Figure 16-17). 855 
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Table 1: Climatic and socio-environmental covariates as hypothesized drivers of dengue 871 

incidence. The table lists covariates used in models, their broad class, data sources, and 872 

rationale for testing. A fuller description of covariate sources, original data resolution and 873 

processing are provided in Supp. Table 1, Methods and Supp. Text 1. Acronym definitions: ERA5-874 

Land (ECMWF Reanalysis v5 over land), WFDE5 (bias-adjusted ERA5 reanalysis precipitation 875 

data with reference to GPCC and CPC station data), VGSO (Vietnam General Statistics Office). 876 

Covariate Type Source Rationale  

Annual temperature 
(mean and coolest 
month) 

Climate 
(temperature) 

ERA5-Land49  Geographical limits on dengue virus 
persistence and transmission by 
mosquitoes34. Warmer annual temperatures 
are expected to facilitate year-round 
transmission.   

Monthly temperature Climate 
(temperature) 

ERA5-Land49 Impacts spatial and seasonal biophysical 
suitability for DENV transmission26. 
Relationship may be nonlinear and depend on 
time delay. 

Precipitation Climate 
(hydrometeorology) 

WFDE5 v2.1.50 Impacts seasonal creation and flushing of 
Aedes breeding sites. Relationship may be 
nonlinear and depend on time delay. 

Standardised 
Precipitation 
Evapotranspiration Index 
(SPEI) in 1-month, 6-
month and 12-month 
windows 

Climate 
(hydrometeorology) 

Derived from 
WFDE5 using 
‘spei’ package52 

Measures deviations from historical average 
hydrometeorological conditions for reference 
period 1981-2020 (i.e. excess or deficit), from 
short- to long timescales, so may be more 
sensitive to local context than simple 
precipitation. Relationship may be nonlinear 
and depend on time delay36. 

Built-up land Urbanisation ESA-CCI land 
cover (annual) 

More built-up land is expected to increase 
availability of highly suitable Aedes habitat.  

Urban expansion rate (3-
year and 10-year 
window) 

Urbanisation Landsat urban 
dynamics48 
(annual) 

Short-term (i.e. construction phase) and rapid 
or informal longer-term expansion of built 
environment may increase availability of 
suitable Aedes habitat. 

Hygienic toilet access 
(indoor/outdoor flush 
toilet) 

Infrastructure Vietnam census 
2009 and 2019 
(interpolated to 
annual values) 

Improved sanitation systems may reduce 
density of standing water for vector breeding 
sites, and therefore reduce transmission. 

Improved water access 
(piped or drilled well 
water) 

Infrastructure Vietnam census 
2009 and 2019 
(interpolated to 
annual values) 

Higher access may reduce propensity to store 
water around homes, reducing vector 
breeding sites and thus transmission. 

Population density Population Gridded 
Population of 
the World 2000 
and Vietnam 
census 2009 
and 2019 
(interpolated to 
annual values) 

Higher population density is expected to lead 
to increasing contact rates and potential for 
long-term persistence of transmission chains, 
so may increase incidence. 

Road traffic per 
inhabitant 

Mobility VGSO (annual, 
province-level) 

Higher rates of within-province population 
movements are expected to increase local 
dengue spread. 

Potential population 
fluxes  
(mean gravity and 
radiation flux) 

Mobility Gravity and 
radiation 
models (applied 
to annual 
population) 

Model-based proxy for relative attractiveness 
of districts for population movement (e.g. 
commuting). Higher movement rates are 
expected to increase rates of influence 
dengue introduction and spread. 
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