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Abstract:  

Anterior cruciate ligament (ACL) injuries are a common cause of soft tissue injuries in young 

active individuals, leading to a significant risk of premature joint degeneration. Postoperative 

management of such injuries, in particular returning patients to athletic activities, is a challenge 

with immediate and long-term implications including the risk of subsequent injury. In this study, 

we present LigaNET, a multi-modal deep learning pipeline that predicts the risk of subsequent 

ACL injury following surgical treatment. Postoperative MRIs (n=1,762) obtained longitudinally 

between 3 to 24 months after ACL surgery from a cohort of 159 patients along with 11 non-

imaging outcomes were used to train and test: 1) a 3D CNN to predict subsequent ACL injury 

from segmented ACLs, 2) a 3D CNN to predict injury from the whole MRI, 3) a logistic regression 

classifier predict injury from non-imaging data, and 4) a multi-modal pipeline by fusing the 

predictions of each classifier. The CNN using the segmented ACL achieved an accuracy of 77.6% 

and AUROC of 0.84, which was significantly better than the CNN using the whole knee MRI 

(accuracy: 66.6%, AUROC: 0.70; P<.001) and the non-imaging classifier (accuracy: 70.1%, 

AUROC: 0.75; P=.039). The fusion of all three classifiers resulted in highest classification 

performance (accuracy: 80.6%, AUROC: 0.89), which was significantly better than each 

individual classifier (P<.001). The developed multi-modal approach had similar performance in 

predicting the risk of subsequent ACL injury from any of the imaging sequences (P>.10). Our 

results demonstrate that a deep learning approach can achieve high performance in identifying 

patients at high risk of subsequent ACL injury after surgery and may be used in clinical decision 

making to improve postoperative management (e.g., safe return to sports) of ACL injured patients. 
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Introduction 

Traumatic injuries of joint connective tissues (e.g., ligament tears) are among the most common 

musculoskeletal conditions in adolescents and adults participating in physically demanding 

activities such as sports and military operations (1). A ruptured anterior cruciate ligament (ACL) 

is one of the most common and devastating connective tissue injuries, primarily affecting young, 

active individuals such as athletes and soldiers (2-4). The current standard of care for the treatment 

of an ACL injury is ACL reconstruction in which the injured ligament is replaced by a graft of 

tendon harvested from the patient or a donor. ACL reconstruction has shown promising results in 

restoring the gross stability of a symptomatic ACL-deficient knee; however, it is also associated 

with high rate of secondary injuries, particularly in the adolescent population (5, 6). A young 

patient who returns to sport within 1 year is 15 times more likely to suffer a second ACL injury 

than a healthy control with no history of a knee injury (7). This injury risk remains elevated in the 

first two years of returning to activity, when a patient with ACL injury is approximately 6 times 

more likely to sustain a second injury than an uninjured counterpart (8). These reinjuries can lead 

to accelerated knee arthrosis, and ultimately, reduced activity and early disability (9-11). All of 

these may in turn impose a significant burden to society, financially as well as socially (12, 13). 

These statistics highlight the need to optimize postoperative care and return-to-sports guidance. 

Development of an effective patient-specific post-operative care plan and establishing 

when it is safe to return to sport following an ACL surgery is one of the most challenging 

decisions that may be made by a sports medicine team. There has been a recent growth in research 

identifying return-to-sports criteria with the aim to reduce the risk of a second ACL injuries (14, 

15). The current tools for clinical decision making include a battery of clinical examination tests 

(e.g., range of motion, muscle strength), knee functional assessments (e.g., hop testing, balance 
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testing), and patient reported outcomes (e.g., questionnaires). Despite promises in lowering the 

risk of graft injuries (14, 15), and the ability to assess overall knee function and neuromuscular 

performance, the current tools fail to directly evaluate the healing ACL graft properties (16, 17). 

Moreover, these measures are often influenced by factors unrelated to the ACL structure. For 

example, physical examinations of the knee (e.g., the Lachman and pivot shift tests) can be 

influenced by the injury or hypertrophy of secondary stabilizers of the knee (18, 19), as well as 

age (20), sex (20), and bony anatomy (21), and are prone to observer bias. Functional testing can 

be influenced by the quality of the rehabilitation program, patient compliance, and/or fear of 

reinjury (22, 23). Likewise, patient-reported outcomes after ACL surgery have been shown to be 

influenced by self-esteem levels (24), body mass index (25), and smoking (25). The relatively 

low sensitivity and specificity of the current approaches to track the status of healing ACL also 

pose serious challenges in assessment of the efficacy of the new surgical techniques and to guide 

their post-operative care, considering the significant lack of clinical data on these recently 

developed techniques (15).  

 

Alternatively, magnetic resonance imaging (MRI) offers a non-invasive approach to 

directly assess the structural integrity of the healing ACL following surgery (16, 17). MRI has 

been previously used in preclinical (26-34) and clinical (35-48) studies evaluating postoperative 

changes in healing ACL after surgery. MRI-based signal intensity and T2* relaxation times are 

among the most used quantitative MRI parameters to evaluate healing ACL properties (16, 17). 

Our group, among others, have shown signal intensity is associated with graft mechanical and 

histological properties after ACL reconstruction, in rabbit, porcine and sheep knees (26-34, 49-

51). We have also shown that T2* relaxation time is associated with the tensile structural 
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properties of the surgically treated porcine knees (27-30, 33). Following ACL surgery, both signal 

intensity and T2* relaxation time have been shown to decrease over time, indicating that the 

healing ACL is becoming more organized and stronger with time (27, 39, 43, 52). These previous 

studies have used regional or overall signal intensity values or T2* relaxation times to predict the 

ACL structural properties and outcomes of surgery. However, the methods used do not capture 

the complex 3-dimentional distribution of the ACL signal intensity or T2* relaxation time, which 

change following surgery. Computational deep learning approaches are well suited for this type 

of application as they are capable of identifying layers of features and complex patterns (53, 54). 

Such tools have recently been used in several musculoskeletal studies including cartilage lesion 

detection (55, 56), knee osteoarthritis prediction (57, 58), knee injury classification (59), and 

ligament automatic segmentation from MRI (60, 61).  

 

 In this work, we present LigaNET, a new multi-modal deep learning algorithm to predict the 

risk of subsequent ACL injury following surgical treatment based on a combination of imaging 

and non-imaging predictors. We hypothesized that a multi-modal deep learning algorithm that uses 

both imaging features and non-imaging data, would more accurately predict the risk of subsequent 

ACL surgery than its counterparts based on either imaging features or non-imaging data. LigaNET 

differs conceptually from previous MRI-based techniques as it uses detailed features of knee MRI 

(e.g., signal intensity distribution) at multiple levels, to predict the risk of subsequent injury, 

instead of solely focusing on average ACL signal intensity or T2* relaxation values. A 

Convolutional Neural Network (CNN) within LigaNET was first trained and validated to extract 

structural features of intact ACLs, surgically treated ACLs, and ACL grafts from MRI. We then 

used this feature extractor to develop and validate two additional 3D CNN classifiers to predict 
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risk of subsequent ACL injury using either isolated segmented ACLs and ACL grafts from MR or 

whole-knee MR images. Finally, we used various combinations of imaging (i.e., isolated MRI-

segmented ACL and whole-knee MRI) and non-imaging clinical predictors to train and validate 

LigaNET as an integrated multimodal classification algorithm to predict the subsequent ACL 

injury risk.  

 

We systematically assessed the performance of LigaNET and alternative models using data 

from a series of FDA-approved clinical trials of ACL surgical treatments (ACLR: ACL 

reconstruction, and BEAR: Bridge-Enhanced ACL Restoration). Model performance was assessed 

and compared based on overall accuracy, sensitivity, and specificity, along with areas under the 

receiver operating characteristic (AUROC) and precision-recall curves (AUPRC). We also used 

occlusion maps to better understand the features that the model used to assign the classifications. 

The occlusion maps as well as standard performance metrics (i.e., accuracy, AUROC and AUPRC) 

were used to assess if the MRI sequence had a major effect on models’ ability to predict the risk 

of ACL injury. All endpoints were selected prior to data collection. The study was approved by 

the Boston Children’s Hospital Institutional Review Board, and all methods were carried out in 

accordance with the approved study protocol. 

 

Materials and Methods 

Study Design 

The goal of this study was to develop and conduct a proof-of-concept evaluation of a multi-modal 

deep learning pipeline to predict the risk of subsequent ACL injury based on a combination of 

imaging and non-imaging predictors. We first trained and validated a CNN feature extractor to 
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study structural features of intact ACLs, surgically treated ACLs and ACL grafts from MRI. We 

then used this feature extractor to develop and validate two additional 3D CNN classifiers to 

predict risk of subsequent ACL injury using either isolated segmented ACLs and ACL grafts from 

MR or whole-knee MR images. Ultimately, we tested various combinations of imaging (i.e., 

isolated MRI-segmented ACL and whole-knee MRI) and non-imaging clinical predictors to train 

and validate a multi-modal pipeline that can predict the subsequent ACL injury risk.  Model 

performance was assessed and compared based on overall accuracy, sensitivity, and specificity, 

along with areas under the receiver operating characteristic (AUROC) and precision-recall curves 

(AUPRC). We finally used occlusion maps to better understand the features that the model used 

to assign the classifications. The occlusion maps as well as standard performance metrics (i.e., 

accuracy, AUROC and AUPRC) were used to assess if the MRI sequence had a major effect on 

models’ ability to predict the risk of ACL injury. All endpoints were selected prior to data 

collection. The study was approved by the Boston Children’s Hospital Institutional Review Board, 

and all methods were carried out in accordance with the approved study protocol.  

 

Participants and Inclusion/Exclusion Criteria 

The comprehensive data sets from three IRB and FDA approved clinical trials of ACL surgery 

(BEAR I: n=20, NCT02292004 (62); BEAR II: n=100, NCT02664545 (63); BEAR III: n=39; 

NCT03348995(45)) were used. The cohort included 69 males and 90 females with an average age 

of 19.8 ± 5.2 years (range: 14 – 36). All patients granted their written informed consent prior to 

participating. All patients presented with a complete ACL tear, were less than 45 days from injury, 

had closed physes, and had at least 50% of the length of the ACL attached to the tibia (as 

determined from a pre-operative MR image). From 159 patients, 114 were treated bridge-enhanced 
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ACL repair (BEAR) and 45 were treated with ACL reconstruction (ACLR) using hamstrings 

(n=43) or bone-patellar tendon-bone (n=2) autografts. Patients were excluded from enrollment if 

they had a history of prior ipsilateral knee surgery, history of prior knee infection, or had risk 

factors that could adversely affect ligament healing (nicotine/tobacco use, corticosteroids in the 

past six months, chemotherapy, diabetes, inflammatory arthritis). Patients were also excluded if 

they had a displaced bucket handle tear of the medial meniscus requiring repair. All other meniscal 

injuries were included. Patients were also excluded if they had a full thickness chondral injury, a 

grade III MCL injury, a concurrent complete patellar dislocation, or an operative posterolateral 

corner injury. Detailed descriptions of the trials have been previously reported (62, 63). The 

patients were recruited between 2015 to 2019. Details of surgical techniques and postoperative 

cares are included in the Supplementary Materials.  Patient’s identifiable information was handled 

according to approved IRB protocol.  

 

Imaging Data 

Patients underwent MR imaging of the knee at multiple time points between 3 to 24 months after 

ACL surgery. A single 3T scanner (Tim Trio, Siemens, Erlangan, Germany) and a 15-channel 

knee coil was used to scan the surgically treated and contralateral ACL-intact knees of each subject 

using common clinical sequences including Proton Density-weighted (PD-SPACE), T2-weighted 

Turbo Spin-Echo (T2-TSE) and Proton Density-weighted Turbo Spin-Echo (PD-TSE) along with 

a 3D Constructive Interference in Steady State (CISS) sequence (Table 1).   
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Table 1. MR imaging acquisition parameters and distribution. 

Sequence 

Name 

Acquisition Parameters 

Number of 

Available MRI Sets 

CISS 

Sagittal Plane; TR/TE=14/7 msec, FA=35, 16cm FOV, 

80x512x512 (slice x frequency x phase) 

677 

PD SPACE 

Sagittal Plane, TR/TE = 1000/49 msec, 16 cm FOV, 0.5 

mm slice thickness and 320 x 320 (phase x frequency) 

matrix 

405 

PD-TSE 

Coronal Plane, TR/TE = 1900/27 msec, 14 cm FOV, 3 mm 

slice thickness and 384 x 384 (phase x frequency) matrix 

307 

T2-FS 

Axial Plane: TR/TE = 4300/83 msec, 16 cm FOV, 1 mm 

slice/gap, 256 x 256 matrix 

373 

 

The surgically treated ligaments and the contralateral native ACLs were manually segmented using 

image processing software (Mimics (v17.0; Materialize, Belgium)). The segmentation was done 

by an experienced investigator (AMK) with a high intra-rater reliability (ICC>0.9 for segmenting 

intact and surgically treated ACL) (60, 61). MR images were resampled to the isotropic voxel size 

(0.5mm x 0.5mm x 0.5mm), and then resized to 320 x 320 x 264 voxels. The manually segmented 

ACL masks were center-cropped into a size of 128 x 128 x 64 (Supplementary Fig S1). Each MRI 

was augmented (i.e., Gaussian noise, Gaussian blur, 3D rotation, and 3D translation) to increase 

the sample size and variability, and to generate a balanced distribution of all ACL types. The 
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combination of raw and augmented MRI segmentations was then randomly divided into training 

and testing sets (Table 2). This split was stratified by subject to ensure that the subjects from the 

testing set were completely unseen to the model, and the model would not be evaluated by subjects 

from the training set.  
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Table 2. Distribution of subjects and imaging data between classes, and test and training sets.  

  

 

Raw Data Sample 

Distribution 

 Augmented Data Sample 

Distribution 

   Train Test Total  Train Test Total 

Number of Subjects 131 28 159  131 28 159 
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Native 196 58 

254 

(14%) 

 

1568 464 2032 (33%) 

BEAR 813 182 

994 

(56%) 

 

1624 364 1988 (33%) 

ACLR 438 76 

514 

(30%) 

 

1752 304 2056 (34%) 

Total 

1446 

(82%) 

316 

(18%) 

1762 

 4944 

(81%) 

1132 

(19%) 

6076 

A
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 Intact 1141 268 

1409 

(80%) 

 

2282 536 2818 (49%) 

Injured 292 61 

353 

(20%) 

 

2336 549 2885 (51%) 

Total 

1433 

(81%) 

329 

(19%) 

1762 

 4618 

(81%) 

1085 

(19%) 

5073 
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Non-Imaging Predictors 

In addition to the MR images, we also collected 11 non-imaging demographics and clinical 

outcome measures including, age, sex, meniscus injury, time to return to sports (days), in addition 

to common clinical outcomes often studied in the context of ACL injury and recovery including 

patient reported outcomes (i.e. IKDC score) and functional assessments focused on knee laxity, 

muscle strength and single legged hop performance and knee range of motion (Supplementary 

Materials). The choice of these predictors was based on their clinical relevance and availability of 

data for all the corresponding MRIs. The collected non-imaging clinical data for each patient visit 

were represented with a vector of 11 elements. Hence, each MR image has a corresponding vector 

of clinical data. To address missing data points, we used imputation, which aims at inferring 

plausible values for the missing predictors (64). Based on preliminary cross-validation 

experiments, we chose a median-based imputation approach, which showed to result in higher 

classification accuracy compared to other imputers such as mean, constant value, and K nearest 

neighbors. The non-imaging clinical data were then normalized by removing the mean and scaling 

to unit variance, separately for each of the 11 variables. The non-imaging training dataset was up-

sampled using SVM-SMOTE algorithm (65) to increase the sample size and to balance the data 

distribution over different classes.  

 

Ligament type classifier and feature extractor 

To learn detailed features of the ACL and their differences between native and surgically treated 

tissues, we built and trained a 3D CNN feature extractor to discriminate the type of ligament (i.e., 

native, BEAR and ACLR) from the isolated MRI-segmented ACLs (Fig 1). We chose isolated 

segmented ACL as the input instead of the whole-knee MRI since the feature extractor was 
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expected to focus on structural features of the ACL and not be distracted by other bold features of 

the surrounding tissue structures (e.g., bone tunnels in surgically treated ACLs). We built the CNN 

feature extractor based on a 3D Inception-ResNet architecture (66). It includes 9 Inception-ResNet 

blocks consisting of 3D convolutional layers. The CNN takes segmented ACL masks of size 128 

x 128 x 64 voxels as input. The Inception-ResNet modules include multiple convolutional layers 

and residual connections that add the output of the convolutional layers to the input to ease the 

training of deep neural networks and increase the richness of the learned representations. Because 

of the large number of convolutional operations, 3D Inception-ResNet modules have a very large 

memory footprint, especially for large 3D images. To reduce the GPU memory requirements of 

our model, we used a series of 3D convolutional layers followed by max-pooling prior to the 3D 

Inception-ResNet modules in our network design. By this design, we reduced the size of the input 

to the Inception-ResNet blocks through feature learning. The size of the final encoded 

representation was 32 x 32 x 16 x 256, which was then fed into a global average pooling layer to 

further reduce its size. The output of global averaging  passed through a softmax layer to obtain 

the conditional class probability estimates of the three classes of native, BEAR, and ACLR. The 

model was optimized to minimize the cross-entropy loss between the estimated and true class 

probability vectors. The optimization was performed using the Adam optimizer with a learning 

rate of 10-5.  

To assess the relative performance of the deep learning classier compared to human 

examiner, a randomly selected subset of 84 MRI-segmented ACLs from the testing set was 

reviewed by three experienced orthopedic surgeons involved in BEAR trials to independently 

identify the ACL type from ACL structure alone (Supplementary Fig S2). This was done through 

an online survey (Qualtrics XM, Qualtrics, Seattle, WA). All surgeons classified the same ACLs, 
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but the orders were randomized between the examiners. The performance metrics for all the three 

examiners are presented in. 

 

Fig 1. 3D CNN feature extractor to classify ligament type from isolated MRI-segmented 

ACLs. (A) The structure of the 3D feature extractor. (B) The structure of 3D Inception-ResNet 

block. ReLU: rectified linear unit; Conv3D: 3D convolutional layer; BatchNorm: batch 

normalization; MaxPooling: max pooling layer; GlobalAvgPooling: global average pooling layer; 

SoftMax: softmax layer.  

 

ACL injury classifier from the isolated ACL MRI-segmentations: The trained classifier 

described above was used as a base feature extractor in building a model for subsequent ACL 

injury risk prediction. This was done by adding several new layers on top of the feature extractor 

network (Fig 2), where the feature extractor structure is shown in Fig. 1A. These additional layers 

consist of a standard 3D convolutional layer followed by an additional Inception-ResNet block. 

The final part of this model is a softmax layer that outputs a binary probability vector for Intact 

versus Injured ACL classification. The predicted probability of the injured ACL class is identified 

as the injury risk score. The injury label was defined based on the ACL-related adverse events with 

MRI and non-imaging data preceding any ACL-related adverse event (e.g., instability, confirmed 
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ACL tear). To train this new model, the layers that were previously trained as part of the feature 

extractor network training were kept fixed. Only the new top layers were trained based on the 

binary labels of intact vs injured. Given the class imbalance between intact and injured classes, 

rather than using the cross-entropy loss (used in the feature extractor), in this step, we used the 

Tversky loss for training. This loss has been shown to be more effective for applications where the 

data samples with positive labels account for a small fraction of the available training data. 

 

Fig 2. ACL injury classifier from isolated ACL MRI segmentations. The structures of 

Feature Extractor and Inception-ResNet block are shown in Fig 1A and 1B, respectively. 

 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 27, 2023. ; https://doi.org/10.1101/2023.07.25.23293102doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.25.23293102
http://creativecommons.org/licenses/by/4.0/


ACL injury classifier from whole-knee MRI 

We also train a separate CNN model to exploit the features in the whole-knee MRI to predict 

subsequent ACL injury. This model takes a 3D knee MRI image as input and outputs an ACL 

injury risk score, which is the probability of the input image belonging to the injured ACL class. 

The architecture of this CNN model was identical to that of the feature extractor CNN described 

above. To adapt that architecture to this new setting, we modified the sizes of the input and output 

layers in order to accommodate the full knee MRI as input and output a two-class probability 

vector. Instead of training the CNN parameters from scratch, we initialized them with the feature 

extractor model weights and then fine-tuned the entire model for the new task using the Tversky 

loss function. For this classifier, the native ACLs were removed as they did not have any surgery 

related landmarks (e.g., bone tunnels) which is highly likely to be precepted by the CNN as a 

feature of ACL injury, and thus may lead to biased predictions. 

 

ACL injury classifier from non-imaging predictors 

We aimed to investigate if the integration of relevant non-imaging clinical data improves the risk 

prediction of subsequent ACL injury. To implement this pipeline, we first developed a non-

imaging-based classifier based on 11 demographics and clinical outcome measures that are 

commonly recorded during postoperative visits and have shown to be important factors related to 

ACL function and lower extremity biomechanics. Using a logistic regression classifier and an 11-

dimensional non-imaging input vector, we predict the probability of the Injured ACL class as the 

ACL injury risk score. The choice of logistic regression was based on its superior performance 

compared to other classifiers as shown in Supplementary Fig S3. The LBFGS optimizer 
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approximates the second derivative matrix updates with gradient evaluations during the back-

propagation optimization (67).  

 

Probability fusion in the multi-modal pipeline 

The final module in our proposed machine learning pipeline is a fusion module to integrate the 

ACL injury risks estimated by classifiers described above and output a final estimate of the risk of 

injury (Fig 3). We anticipate that the risk estimated by the fusion module would be more accurate 

than those estimated by each of the three modules independently, since the fusion module 

synergistically integrates the information extracted from multiple data. In order to investigate the 

importance of different sources of information in the risk estimation problem, we experimented 

with three different implementations of the fusion model: The first fusion implementation used 

only risk scores from isolated ACL MRI segmentation CNN and the non-imaging classifier. It 

ignores the risk estimated by Module B from the whole-knee MRI CNN. The second 

implementation uses only risk score from whole-knee MRI CNN and the non-imaging classifier. 

The third implementation uses the risk estimated by all three modules as input. The risk score 

distributions estimated based on different modalities were concatenated into a single matrix and 

then fed into the fusion model. The output of the model is a single estimated risk score for 

subsequent ACL injury merged from different data sources. The fusion models for different 

modality combinations were all performed by Logistic Regression classifier, using the same 

LBFGS algorithm minimizing the cross-entropy loss. The choice of Logistic Regression to fuse 

the risk scores is based on its performance compared to other approaches to distinguish between 

intact and injured cases (Supplementary Fig S4). 
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Fig 3. Multi-modal pipeline to predict the risk of subsequent ACL injury based on a 

combination of the imaging and non-imaging predictors. The model classifies the ACL to intact 

or injured by fusing the probability of injury (risk score) from isolated MRI-segmented ACL (A), 

whole-knee MRI (B) and non-imaging data (C) using a logistic regression classifier (D).  

 

Statistical Analysis 

Performance measures for the models and orthopedic surgeons included sensitivity, specificity, 

and accuracy. We also evaluated the trade-off between the true positive rates and the positive 

predictive values for all models using precision-recall curves. We assessed the model’s 

performance with the area under the receiver operating characteristic curve (AUROC) and the area 

under the precision-recall curve (AUPRC). To assess the variability in estimates, we provide 95% 

confidence intervals for sensitivity, specificity, accuracy, AUROC and AUPRC. DeLong test (68) 
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as used to compare the AUROC between different injury classifiers. Bonferroni posthoc was used 

to correct the p values from multiple comparisons. All statistical analyses were completed in the 

R environment for statistical computing. 

 

RESULTS 

Ligament type classifier and feature extractor 

The trained model achieved an ACL type classification accuracy of 93.2% (91.7% – 94.7%), area 

under the receiver operating characteristic curve (AUROC) of 0.99 (0.98 – 0.99), and area under 

the precision-recall curve (AUPRC) of 0.98 (0.97 – 0.99) on the testing set (Fig 4). The trained 

feature extractor was able to identify type of ACL with 94.6% sensitivity and 96.0% specificity. 

The human examiners had a substantially inferior performance (accuracy: 0.45 – 0.48, AUROC: 

0.54 – 0.66, AUPRC:  0.25 – 0.60) compared to CNN feature extractor on all quantified 

performance metrics (Supplementary Fig S5).  
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Fig. 4.  Feature extractor performance in classifying ACL type from isolated MRI-segmented 

ACL. (A) Confusion matrix. (B) Receiver operating characteristic (ROC) curve. (C) Precision 

recall curve. BEAR: Bridge-Enhanced ACL Restoration, ACLR: ACL Reconstruction. 
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ACL injury classifier from the isolated ACL MRI-segmentations 

The trained ACL injury classifier achieved a classification accuracy of 77.6%, (75.2% – 80.1%), 

AUROC value of 0.84 (0.82 – 0.86), and AUPRC values of 0.84 (0.81 – 0.87) on the testing set 

(Fig 5A-C). The trained CNN was able to predict ACL injury with 75.3% sensitivity and 80.6% 

specificity.  
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Fig 5.  CNN classifier performance in predicting the subsequent ACL injury. (A) Confusion 

matrix, (B) receiver operating characteristic (ROC) curve, and (C) precision recall curve for CNN 

classifier that predicts the subsequent ACL injury based on isolated MRI-segmented ACLs. (D) 

Confusion matrix, (E) ROC curve, and (F) precision recall curve for CNN classifier that predicts 

the subsequent ACL injury based on whole-knee MRIs.  
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ACL injury classifier from whole-knee MRI 

The model resulted in classification accuracy of 66.6% (63.8% – 69.4%), AUROC value of 0.70 

(0.67 – 0.73) and AUPRC value of 0.68 (0.64 – 0.72) on independent testing set (Fig 5D-F). The 

trained CNN was able to predict ACL injury with 68.7% sensitivity and 65.4% specificity. The 

AUROC for the whole-knee MRI classifier was significantly smaller than the AUROC for isolated 

MRI-segmented ACL classifier (Adjusted P<0.001).  

 

ACL injury classifier from non-imaging predictors 

The model achieved a classification accuracy of 70.1% (67.4% – 72.8%), AUROC value of 0.75 

(0.72 – 0.78) and AUPRC value of 0.72 (0.69 – 0.76) on the testing set (Fig 6). The trained model 

was able to predict ACL injury with 69.0% sensitivity and 71.4% specificity. While the AUROC 

for the non-imaging classifier was not significantly different from the AUROC of the whole-knee 

MRI classifier (Adjusted P = 0.210), it was significantly lower than the AUROC of the isolated 

MRI-segmented ACL classifier using (Adjusted P = 0.039). 
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Fig 6.  Logistic regression model performance in predicting subsequent ACL injury from 

non-imaging predictors. (A) Confusion matrix. (B) Receiver operating characteristic (ROC) 

curve. (C) Precision recall curve.  
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Multi-modal pipeline to predict subsequent ACL injury 

In order to investigate the importance of different sources of information and to find the best multi-

modal pipeline structure to predict subsequent injury risk, we evaluated three different fusion 

strategies. In the first model, we fused the probability of injury risk obtained from the ACL 

segmentations CNN classifier with those from non-imaging classifier. This model yielded 

classification accuracy of 79.9% (77.5% – 82.3%), AUROC value of 0.88 (0.86 – 0.90) and 

AUPRC value of 0.88 (0.85 – 0.90) on the testing set (Fig 7A-C). The fusion of isolated MRI-

segmented ACL CNN and non-imaging classifiers was able to predict injury risk with 80.0% 

sensitivity and 80.4% specificity. This fusion of these two classifiers resulted in a higher AUROC 

compared to the AUROC of isolated MRI-segmented ACL classifier (Adjusted P<0.001) and 

AUROC of non-imaging classifier (Adjusted P<0.001). 

 

The second fusion strategy included the whole-knee MRI CNN and non-imaging classifiers 

which resulted in classification accuracy of 72.4% (69.7% – 75.1%), AUROC value of 0.77 (0.74 

– 0.80) and AUPRC value of 0.77 (0.74 – 0.81) on the testing set (Fig 7D-F). This model was able 

to predict subsequent injury risk with 72.4% sensitivity and 72.5% specificity. There were no 

differences in AUROC between this fused classifier, and individual whole-knee MRI and non-

imaging classifiers (Adjusted P>0.2 for all comparisons). However, the AUROC of this classifier 

was significantly lower than the AUROC of the classifier based on the fusion of the ACL 

segmentation and non-imaging clinical predictors (Adjusted P<0.001).  
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Fig 7.  Multi-modal classifier performance in predicting the subsequent ACL injury. (A) 

Confusion matrix, (B) receiver operating characteristic (ROC) curve, and (C) precision recall 

curve for multi-modal classifier that predicts the subsequent ACL injury based on isolated MRI-

segmented ACL and non-imaging predictors. (D) Confusion matrix, (E) ROC curve, and (F) 

precision recall curve for multi-modal classifier that predicts the subsequent ACL injury the risk 

of injury based on whole-knee MRI and non-imaging predictors. (G) Confusion matrix, (H) ROC 

curve, and (I) precision recall curve for multi-modal classifier that predicts the subsequent ACL 

injury based on isolated MRI-segmented ACL, whole-knee MRI and non-imaging predictors. 

 

The fusion of all three classifiers resulted in highest classification accuracy (80.6% (78.2% – 

83.0%)), AUROC value (0.89 (0.87 – 0.91)) and AUPRC value (0.89 (0.86 – 0.92)) and was able 
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to predict subsequent injury risk with 77.2% sensitivity and 85.6% specificity (Fig. 7G-I). This 

multi-modal classifier had a higher AUROC compared to each individual classifier and the 

classifier based on the fusion of the whole-knee MRI with non-imaging predictors (Adjusted 

P<0.001 for all comparisons). There was no significant difference in AUROC of this multi-modal 

classifier and the classifier based on the fusion of the ACL segmentation and non-imaging clinical 

predictors (Adjusted P=0.801).  

 

Visualization of ACL features and injury biomarkers 

To visualize the MRI features contributing to model’s prediction subsequent ACL injury risk, 

occlusion maps (54) were generated for true positive cases identified by the isolated MRI- 

segmented ACL CNN classifier. A representative set of these images from the central slice of the 

ACL are shown in Fig 8. As seen in these examples, the hot zone of the map, indicating the most 

important features contributing to model classification decision of injury, is consistently within 

the distal half of the ACL. This pattern is even consistent across different MRI sequences of the 

same subjects, highlighting the model’s ability to evaluate injury risk from ACL patterns 

independent of MRI sequence. This is further supported by minimal differences in classifiers’ 

performance using each individual MRI sequence (Fig 9). There were no significant differences 

in the AUROC of the subsequent ACL injury risk classifiers utilizing different MRI sequences 

(Adjusted P>0.1 for all comparisons).  
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Fig 8. Representative central slice view of the occlusion maps superimposed on their 

corresponding MRI slice. The maps were generated for all the true positive test cases (knees with 

subsequent ACL injury). Each column includes the representative maps from true positive cases 

of each MRI sequence. Each row shows the occlusion maps for the same knee under different MRI 

sequences. The occlusion maps are generated based on the isolated MRI-segmented ACL CNN 

classifier to identify ACL features contributing to correct decision by the classifier. The color map 

corresponds to the relative positive contribution of the pixel in classifiers ability to make a correct 

assignment. The red color corresponds to highest positive contribution. The heatmap is generated 

on a scale of 0 (dark blue) to 255 (dark red). For better visibility, we only showed the top 50% of 

the heatmap (127 – 255). CISS: constructive interference in steady state, PD: proton density, TSE: 

turbo spin echo, FS: fat suppression.  
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Fig 9. Classifiers’ performance metrics for each independent tested MRI sequence. 

Performance metrics in predicted risk of subsequent ACL injury for (A-C) CNN based on isolated 

MRI-segmented ACL, (D-F) CNN based on whole-knee MRI, and (G-I) Multi-modal model using 

isolated MRI-segmented ACL, whole-knee MRI and non-imaging clinical predictors. The values 

are presented as mean and the error bars represent the 95% CI. For all metrics, the confidence 

intervals are overlapping, indicating no significant differences between sequences. CISS: 

constructive interference in steady state, PD: proton density, TSE: turbo spin echo, FS: fat 

suppression, AUROC: area under the receiver operating characteristic curve, AUPRC: area under 

the precision-recall curve.  
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DISCUSSION  

Our results demonstrate that a deep learning approach can achieve high performance in identifying 

patients at high risk of subsequent ACL injury after ACL surgery. The data suggest that the deep 

learning pipeline has a superior performance in extracting ACL features required to differentiate 

between native ACLs, restored ACLs (BEAR) and reconstructed grafts (ACLR) compared to 

experienced clinicians. Results also show that building and applying the model to isolated MRI-

segmented ACLs are better predictors of a subsequent ACL surgery than whole-knee MRIs and 

non-imaging clinical predictors; however, even better performance can be achieved by using a 

combination of isolated MRI-segmented ACLs, whole-knee MRI and non-imaging clinical 

predictors. Finally, our findings indicate that the proposed deep learning pipeline can classify the 

injured ACLs relatively independent of MRI sequence and have the capability to identify new 

imaging biomarkers to predict the risk of subsequent ACL injury following surgical treatment.  

Qualitative assessment of knee MRI has been routinely used to confirm ACL or graft injury 

based on tissue appearance, including signal distribution and physical organization. Over the past 

two decades, several groups, including ours, have worked on developing quantitative MRI 

sequences and analysis techniques to systematically track healing ACL. These include 

measurements of signal intensity and T2* relaxometry to predict ACL structural properties in 

preclinical models (26-34) and to assess ACL remodeling after surgery in human patients(35-48). 

Recent studies have shown that deep learning-based analysis of knee MRIs can accurately classify 

type of soft tissue injury (i.e. ACL or meniscus tears)(59) and has been extensively used to assess 

knee osteoarthritis risk and progression (58, 69-71). These promising studies encouraged us to 

leverage the power of deep learning to improve upon previous ACL MRI studies to address a 

pressing unmet need in predicting the risk of subsequent ACL injury following surgical treatment. 
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In contrast to prior deep learning studies which use whole-knee MRI as the input to the 

network, here we started by training a feature extractor using isolated MRI-segmented ACL to 

focus on the tissue of interest. The feature extractor was able to identify ACL type (i.e., native, 

BEAR, ACLR) with an accuracy almost double that achieved by experienced human examiners. 

Using this feature extractor, we trained a classifier CNN which predicted the risk of subsequent 

ACL injury after surgery with superior accuracy, sensitivity and specificity compared to CNN 

classifiers based on whole-knee MRI or non-imaging clinical predictors. While the non-imaging 

classifier also had a higher accuracy, sensitivity, and specificity than the whole-knee MRI 

classifier, it had a less stable precision-recall curve when classifying injured cases. Interestingly, 

CNN classifiers based on the isolated MRI-segmented ACL or whole-knee MRI had higher rates 

of false positives than false negative, whereas the non-imaging CNN classifier resulted in lower 

false positives than false negatives. The fusion of MRI (i.e., isolated MRI-segmented ACL or 

whole knee) classifier predictions with non-imaging classifier predictions improved the model 

accuracy, sensitivity, and specificity by up to 7%, but most importantly, reduced the false positive 

rates in both classifiers. Additionally, fused models had more robust precision-recall curves than 

the non-imaging classifier. Ultimately, the multi-modal classifier, which leveraged the inputs from 

all three sources, achieved the highest performance in predicting subsequent ACL injury risk. 

While the multi-modal classifier had substantially better performance compared to whole-knee 

MRI classifier or non-imaging classifier (up to 10% improvement in performance metrics), it also 

had slightly better accuracy, sensitivity, and specificity compared to isolated MRI-segmented ACL 

classifier (<5% improvements). In addition, the multi-modal classifier resulted in ~25% reduction 

in false positive rate compared to isolated MRI-segmented ACL classifier. These observations 

suggest that while a CNN classifier based on only the isolated MRI-segmented ACL could predict 
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the risk of subsequent ACL injury, addition of non-ACL features (i.e., whole-knee MRI and non-

imaging clinical data) improved the prediction specificity in particular with regards to false 

positives. The similarities in model performance and occlusion maps between the sequences are 

also very reassuring and suggest that such a deep learning pipeline can predict the risk of 

subsequent ACL injury based on a range of MRI sequences. This is an important advantage as a 

major shortcoming of current quantitative MRI assessments is their strong dependency on 

sequence and acquisition parameters, which limit their generalizability and clinical translation. 

The current proof-of-concept study suggests that the proposed platform may be able to address 

some of those shortcomings, although future multisite studies with data from different MRI 

magnets are required.  

This study has limitations. Our training and test data are from a single site and single magnet, 

which limits the generalizability of our findings. Unfortunately, there are very few studies with 

postoperative ACL MRIs, long-term follow-up assessments, and adequate sample size to develop 

this model. However, data from the BEAR trials provided a range of relevant outcomes along with 

longitudinal postoperative MR images in large cohort of ACL injured patients to construct the 

models. The lack of similar datasets with available postoperative MRIs and follow up limited our 

ability to further evaluate our pipelines generalizability and prohibited us from external validation. 

This is primarily because the available literature and quantitative MRI techniques to assess healing 

ACL have not yet had an impact clinical care. As a result, postoperative MRI in ACL surgeries 

are not routinely performed. The findings reported in current study support the utility of 

postoperative MRI to predict the risk of subsequent ACL injury after surgery. We hope these 

results encourage more investigators to consider postoperative MRI in large scale ACL cohorts. 

Another limitation is the inclusion of different surgical treatments (BEAR and ACLR), which may 
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have negatively influenced the model’s performance. Future studies with larger numbers of 

patients across each treatment will enable us to optimize the model performance based on treatment 

strategy. We have taken every possible measure (e.g., randomization, blinding, quality control) to 

minimize the bias and errors related to these limitations. Altogether, these findings should be 

considered as proof-of-concept, they highlight the potential of this computational deep learning 

approach in impacting the clinical care, which requires further research, improvement and 

validation. 

Recent advances in deep learning along with improved understanding of the imaging markers 

and their links to tissue healing have paved the way for the development of advanced deep learning 

platforms to transform the clinical care of patients with traumatic joint injuries, such ACL tears. 

The work presented here is an example of how a multi-modal deep learning pipeline can be used 

to predict the risk of subsequent ligament injury following surgical treatment. The current study 

justifies further development of such a platform with a more robust, generalized, and validated 

performance. Upon successful development and translation, such an approach could be used to 

assist clinical care teams to better manage the postoperative care of patients with ACL injuries and 

has the potential to be transferred to evaluate other soft tissue disorders in a more data-driven and 

personalized manner.  
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