Multimorbidity and blood pressure control: a cross-sectional analysis among 67,385 adults with hypertension in Canada

Short title: Multimorbidity and blood pressure control in primary care
Tu N Nguyen ${ }^{1,2}$, Sumeet Kalia ${ }^{2}$, Peter Hanlon ${ }^{3}$, Bhautesh D Jani ${ }^{3}$, Barbara I Nicholl ${ }^{3}$, Chelsea D.
Christie 2, Babak Aliarzadeh ${ }^{2}$, Rahim Moineddin ${ }^{2}$, Christopher Harrison ${ }^{4}$, Clara Chow ${ }^{1}$, Martin
Fortin 5, Frances S Mair ${ }^{3}$, Michelle Greiver ${ }^{2,6}$
${ }^{1}$ Westmead Applied Research Centre, Sydney Medical School, Faculty of Medicine and Health,
University of Sydney, Sydney, New South Wales, Australia.
${ }^{2}$ Department of Family and Community Medicine, Temerty Faculty of Medicine, University of
Toronto, Toronto, ON, Canada
${ }^{3}$ General Practice and Primary Care, School of Health and Wellbeing, University of Glasgow, UK
${ }^{4}$ Menzies Centre for Health Policy and Economics, School of Public Health, Faculty of Medicine and
Health, University of Sydney, Sydney, New South Wales, Australia
Canada
${ }^{5}$ Department of family medicine and emergency medicine, Université de Sherbrooke, Saguenay, QC,
${ }^{6}$ Department of Family and Community Medicine, North York General Hospital, Toronto, ON,
Cana Canada

Tu N Nguyen ${ }^{1,2}$, Sumeet Kalia ${ }^{2}$, Peter Hanlon ${ }^{3}$, Bhautesh D Jani ${ }^{3}$, Barbara I Nicholl ${ }^{3}$, Chelsea D. Christie ${ }^{2}$, Babak Aliarzadeh ${ }^{2}$, Rahim Moineddin ${ }^{2}$, Christopher Harrison ${ }^{4}$, Clara Chow ${ }^{1}$, Martin Fortin ${ }^{5}$, Frances S Mair ${ }^{3}$, Michelle Greiver ${ }^{2,6}$

${ }^{1}$ Westmead Applied Research Centre, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.
${ }^{2}$ Department of Family and Community Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
${ }^{3}$ General Practice and Primary Care, School of Health and Wellbeing, University of Glasgow, UK
${ }^{4}$ Menzies Centre for Health Policy and Economics, School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
${ }^{5}$ Department of family medicine and emergency medicine, Université de Sherbrooke, Saguenay, QC, Canada
${ }^{6}$ Department of Family and Community Medicine, North York General Hospital, Toronto, ON,

Abstract

Background. There has been conflicting evidence on the association between multimorbidity and blood pressure (BP) control. This study aimed to investigate this associations in people with hypertension attending primary care in Canada, and to assess whether individual long-term conditions are associated with BP control.

Methods. A cross-sectional study in people with hypertension attending primary care in Toronto between January 012017 and December 31 2019. Uncontrolled BP was defined as systolic BP ≥ 140 mmHg or diastolic $\mathrm{BP} \geq 90 \mathrm{mmHg}$. A list of 11 a priori selected chronic conditions was used to define multimorbidity. Multimorbidity was defined as having ≥ 1 long-term condition in addition to hypertension. Logistic regression models were used to estimate the association between multimorbidity (or individual long-term conditions) with uncontrolled BP.

Results. A total of 67,385 patients with hypertension were included. They had a mean age of 70, 53.1% were female, 80.6% had multimorbidity, and 35.7% had uncontrolled BP. Patients with multimorbidity had lower odds of uncontrolled BP than those without multimorbidity (adjusted OR $0.72,95 \%$ CI $0.68-0.76$). Among the long-term conditions, diabetes (aOR $0.73,95 \% \mathrm{CI} 0.70-0.77$), heart failure (aOR 0.81, 95\%CI 0.73-0.91), ischemic heart disease (aOR 0.74, 95\%CI 0.69-0.79), schizophrenia (aOR $0.79,95 \%$ CI $0.65-0.97$), depression/anxiety (aOR 0.91, 95\%CI 0.86-0.95), dementia (aOR 0.87, 95\%CI 0.80-0.95), and osteoarthritis (aOR $0.89,95 \% \mathrm{CI} 0.85-0.93$) were associated with a lower likelihood of uncontrolled BP.

Conclusion. We found that multimorbidity was associated with better BP control. Several conditions were associated with better control, including diabetes, heart failure, ischemic heart disease, schizophrenia, depression/anxiety, dementia, and osteoarthritis.

Keywords: hypertension, high blood pressure, blood pressure control, multimorbidity, primary care

Introduction

Hypertension is a risk factor for cardiovascular disease and other chronic health conditions. The prevalence of hypertension increases with age, with a prevalence of only 27% in people younger than 60 years, but 74% in people aged 80 and older. ${ }^{1}$ Globally, blood pressure (BP) control is still suboptimal, with control rates of only approximately 20% for people with hypertension. ${ }^{2}$ Poor control of hypertension can increase the risk of heart failure, coronary heart disease, peripheral artery disease, renal failure, stroke and dementia, and therefore, increase the risk of developing multimorbidity in people with hypertension. ${ }^{3}$ Multimorbidity, defined as having two or more chronic conditions, has become a primary healthcare concern. ${ }^{4,5}$

Two out of three people with hypertension have additional long-term condition. ${ }^{6}$ A systematic review of 45 studies conducted from 2007 to 2017 showed that the overall prevalence of multimorbidity was 66.1% (when multimorbidity was defined as having ≥ 2 chronic conditions), and 44.2% (when multimorbidity was defined as having ≥ 3 chronic conditions) in older adults in highincome countries. ${ }^{7}$ In the United States, 81 million adults were estimated to have multimorbidity in $2020 .{ }^{8}$ In Canada, the prevalence of multimorbidity is also high, with a reported prevalence ranging from around 30% to 70% in primary care settings, and around 17% to 59% in the general population. ${ }^{9}$ Multimorbidity increases healthcare costs and healthcare utilisation including hospitalisations. ${ }^{10,11}$

Several studies have examined the impact of multimorbidity on BP control, and there has been conflicting evidence on the association between multimorbidity and hypertension control. ${ }^{12-17}$ While some studies show that the presence of multimorbidity was positively associated with BP control, ${ }^{12,16,18}$ other studies suggested that people with more comorbidities had poorer management and control of hypertension. ${ }^{15,17}$ There is minimal evidence of this association in the Canadian population. Therefore, in this study, we aimed to investigate the association between multimorbidity and BP control in patients attending primary care in Canada, and to assess if individual comorbidities are associated with BP control.

Materials and Methods

Data source

This study used data from the University of Toronto Practice-Based Research Network (UTOPIAN), a primary care electronic medical records (EMRs) database. The UTOPIAN database contains deidentified records from participating family medicine clinics in Ontario, Canada, with most providers practicing in the Greater Toronto Area. ${ }^{19}$ Data include de-identified patient-level information on various factors including demographics, medical diagnoses, procedures, medications, immunizations, laboratory test results, vital signs, risk factors, and clinical notes.

Study design and eligible patients

This is a cross-sectional study using the UTOPIAN 2021Q4 database with a start date of January 01 2017 and an end date of December 31 2019. This end date was chosen to avoid the COVID-19 pandemic-related effects on the data. The data were accessed for research purposes from June 172022 to December 16 2022. We identified a cohort of patients who met the following selection criteria; had hypertension before December 31 2019; had blood pressure recorded between Jan 012017 and Dec 31 2019; and were at least 45 years old when their blood pressure was measured. Figure 1 provides a flowchart for the cross-sectional cohort.

We defined the hypertension phenotype using the following criteria (Appendix 2):

1. Free text documentation of hypertension was found within the (past or present) health condition section of the cumulative patient profile, including the following terms:
hypertension, hypertensive, htn; OR
2. Anti-hypertensive medication was prescribed and an elevated blood pressure reading was recorded at any point in the EMR (elevated blood pressure reading is defined as systolic blood pressure $\geq 140 \mathrm{mmHg}$ or diastolic blood pressure $\geq 90 \mathrm{mmHg}$; OR
3. Anti-hypertensive medication was prescribed and a billing record with the diagnosis code for hypertension (ICD-9 code 401) was recorded at any point in the EMR; OR
4. A billing record with the diagnosis code for hypertension (ICD-9 code 401) and an elevated blood pressure reading was recorded at any point in the EMR (elevated blood pressure reading is defined as systolic blood pressure $\geq 140 \mathrm{mmHg}$ or diastolic blood pressure ≥ 90 mmHg)

Multimorbidity

Multimorbidity was defined as having one or more long-term conditions in addition to hypertension. This definition of multimorbidity is similar to definitions used in other studies (REFs). ${ }^{20-22} \mathrm{~A}$ list of 11 a priori selected chronic conditions was used to define multimorbidity, in alignment with the Centers for Disease Control and Prevention (CDC) recommendations for defining and measuring multiple chronic conditions when using Medicare claims. ${ }^{23}$ These long-term condition are: ischemic heart disease, heart failure, atrial fibrillation, diabetes, chronic obstructive pulmonary disease, asthma, chronic kidney disease (chronic kidney disease stage 3 or more, or dependence on transplant or dialysis), cancers (including breast cancer, cervical cancer, lung cancer, colorectal cancer, ovarian cancer, pancreatic cancer, prostate cancer, thyroid cancer), osteoarthritis, dementia, depression and/or anxiety, and schizophrenia.

Covariate definitions

We used the most recent information on Body Mass Index (BMI) and smoking status as of December 31, 2019. BMI was grouped into underweight (≤ 18.4), normal (18.5-24.9), overweight (25.0-29.9), obese class I (30.0-34.9), obese class II (35.0-39.9), and obese class III (≥ 40.0). We calculated age (in years) on the date when the blood pressure measurement was recorded between January 01,2017 and December 31, 2019. We used rurality and neighbourhood income quintiles (as an indicator of socioeconomic status) using data from the 2016 Statistics Canada Census. ${ }^{24}$

We identified different classes of hypertension medication (including angiotensin converting enzyme inhibitors (ACEi), angiotensin II receptor blocker (ARBi), calcium channels, beta-blockers, diuretics, and other classes of hypertension medication) that were prescribed during the six months prior to the blood pressure measurement. The full description of drug names for each class of hypertension
medication is provided in Appendix section (i), along with the algorithm used to determine the presence of hypertension in EMRs (see Appendix section (ii)).

Outcome measure

The primary outcome measurement was the most recent BP measure recorded during the study period (January 01, 2017 to December 31, 2019). Uncontrolled BP was defined as having either systolic blood pressure $\geq 140 \mathrm{mmHg}$ or diastolic blood pressure $\geq 90 \mathrm{mmHg}$ for the last BP measurement prior to December 31 2019. The BP treatment target was chosen to align with the Hypertension Canada's 2016 Canadian hypertension education program guidelines for blood pressure measurement, diagnosis, assessment of risk, prevention, and treatment of hypertension that reflected the practice during the study period ${ }^{25}$ The SBP treatment goal is a pressure level of $<140 \mathrm{~mm} \mathrm{Hg}$ (Grade C). The DBP treatment goal is a pressure level of $<90 \mathrm{~mm} \mathrm{Hg}$ (Grade A). These targets were established using Office-based BP Measurements (OBPM). ${ }^{25}$ For patients with multiple BP readings recorded on the same day at the same visit (e.g. using an automated BPtru machine), we took the average measurement of the systolic and diastolic blood pressure measures on that day.

We also conducted a sensitivity analysis, with a BP target of $<130 / 80 \mathrm{mmHg}$, as recommended by the 2018 ESC/ESH Guidelines for the management of arterial hypertension ${ }^{26}$, and the 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults. ${ }^{27}$

Statistical analysis

We used descriptive statistics to summarize patient demographics and clinical characteristics associated with controlled and uncontrolled blood pressure. We used means, standard deviations, and median, minimum and maximum to summarize continuous variables, while frequencies and percentages were used to summarize categorical variables. To reduce the risk of re-identification, our reports exclude any cell count of five or fewer. Comparisons between patients with controlled and uncontrolled BP were assessed using Pearson chi-square tests for categorical covariates and using two-sample t-tests for continuous covariates.

We fitted logistic regression models using the Generalized Estimating Equations (GEE) with an exchangeable working correlation matrix to assess the association between multimorbidity (or individual long-term condition) on uncontrolled BP. We reported both the unadjusted odds ratios and adjusted odds ratios. To account for multicollinearity, we fitted separate logistic models using GEE for multimorbidity and different comorbidities, respectively. We a priori specified age, sex, income quintiles, smoking BMI as potential confounders (i.e. common cause) for multimorbidity and for the outcome of BP control, while different classes of hypertension medications were considered potential mediators on the pathway between multimorbidity and BP control (see Supplementary Figure S1). In GEE models, we adjusted for the following covariates: age, sex, income quintiles, smoking status, BMI, number of primary care visits, along with the multimorbidity status.

In a sensitivity analysis, we used a reduced threshold for blood pressure control ($<130 / 80 \mathrm{~mm} \mathrm{Hg}$) and excluded BMI and smoking status in the regression models to include patients that did not have BMI or smoking status recorded.

Ethics approval

This study was approved by the Research Ethics Board at the University of Toronto (protocol number 00043354).

Results

Sample characteristics

A total of 67,385 patients who satisfied the selection criteria were included in this study. Patients in the sample had a mean age of 70.1 years (SD 11.8) and 53.1% were female. The prevalence of overweight and obesity was 66%, with a greater proportion of patients with class II and class III obesity in the uncontrolled BP group compared to the controlled BP group. There was no difference in socioeconomic status between the two groups. (Table 1)

Multimorbidity

The overall prevalence of multimorbidity was 80.6%. Patients with multimorbidity had a higher number of annual primary care visits than patients without multimorbidity in 2017, 2018 and 2019 (Supplementary Table S2). As an example, 8.0% of the patients with multimorbidity had more than 9 visits in 2019 compared to 1.9% of patients without multimorbidity

Uncontrolled blood pressure

Overall, 35.7% of patients had uncontrolled BP (34.1\% in patients with multimorbidity and 42.7% in patients without multimorbidity, $\mathrm{p}<0.001$). Figure 2 presents the percentages of uncontrolled BP in patients with and without multimorbidity. Across the three age groups, patients with multimorbidity had lower rates of uncontrolled BP compared to patients without multimorbidity.

The association between multimorbidity and hypertension control

Patients with multimorbidity had lower odds of uncontrolled BP compared to those without multimorbidity (adjusted $\mathrm{OR}=0.72,95 \%$ CI 0.68 to 0.76 , adjusted for age, sex, income quintiles, smoking status, body mass index, and number of visits). Younger patients had lower odds of having uncontrolled BP than older patients. Obese patients (in class I, II and III) had higher odds of uncontrolled BP than those with normal BMI. Current smokers had higher odds of having uncontrolled BP compared to non-smokers. Increasing number of visits to primary care doctors was associated with lower odds of uncontrolled BP. (Figure 3)

The association between types of long-term conditions and hypertension control

Among the long-term conditions, seven conditions were significantly associated with lower likelihood of uncontrolled BP: diabetes (adjusted OR 0.73 , 95% CI $0.70-0.77$), heart failure (adjusted OR 0.81 , 95% CI $0.73-0.91$), ischemic heart disease (adjusted OR $0.74,95 \%$ CI $0.69-0.79$), schizophrenia (adjusted OR $0.79,95 \%$ CI $0.65-0.97$), depression/anxiety (adjusted OR $0.91,95 \% \mathrm{CI} 0.86-0.95$), dementia (adjusted OR $0.87,95 \%$ CI $0.80-0.95$), and osteoarthritis (adjusted OR $0.89,95 \% \mathrm{CI} 0.85-$
0.93). The remaining long-term conditions (atrial fibrillation, COPD, asthma, chronic kidney disease, and cancer) were not associated with uncontrolled BP. (Figure 4)

Sensitivity analysis

Sensitivity analyses showed consistent results (Supplementary Tables S3, S4).

In GEE models using $\geq 130 / 80 \mathrm{mmHg}$ as the threshold for sub-optimal blood pressure control, multimorbidity was still significantly associated with reduced likelihoods of uncontrolled BP (adjusted ORs $0.56,95 \%$ CI $0.54-0.59$), adjusting for age, sex, income quintiles, body mass index, and number of visits).

Discussion

Summary of findings

In this study, we aimed to investigate the association between multimorbidity and uncontrolled BP, and to assess if individual long-term conditions are associated with uncontrolled BP. Our analysis in 67,385 Canadians aged 45 years or more with hypertension attending primary care from 2017 to 2019 showed an association between the presence of comorbidities and better blood pressure control. Multimorbidity was associated with approximately 30% lower odds of uncontrolled BP. The individual long-term conditions that were significantly associated with lower likelihood of uncontrolled BP include diabetes, heart failure, ischemic heart disease, schizophrenia, depression/anxiety, dementia, or osteoarthritis.

Comparison to the literature

Our finding aligns with other studies that examined this association, which reported that multimorbidity was one of the strongest predictors of controlled BP in patients with hypertension. Tapela and colleagues found that multimorbidity was positively associated with BP control among participants with hypertension in the UK Biobank, and the types of comorbidities that were significantly associated with controlled BP included cardiovascular disease (OR 2.11, 95\% CI 2.04 to
2.19), diabetes (OR 1.32, 95% CI 1.27 to 1.36), migraines (OR $1.68,95 \%$ CI 1.56 to 1.81), and depression (OR $1.27,95 \%$ CI 1.20 to 1.34). ${ }^{28}$ Another study conducted by Sarkar and colleagues in 31,676 patients with hypertension in the Lambeth Data-Net, a patient-level primary care database in the UK, found that $16,140(51 \%)$ had multimorbidity, and hypertensive patients with multimorbidity had lower BP than those with hypertension alone. ${ }^{12}$. Mini and colleagues also reported that blood pressure control was better in participants who reported any comorbidity (OR 2.37, 95\%CI 1.51-3.71) compared to those who did not report any. ${ }^{16}$ However, several other studies reported the opposite findings - people with more comorbidities had poorer management and control of hypertension. In a study of 223,286 patients with hypertension in Hongkong, Wong et al. found that the proportion of patients having poor BP control increased from 35.0% to 65.0% and 69.1% when the number of medical conditions increased from zero to one and two, respectively. ${ }^{15}$ However, this study enrolled adult patients prescribed their first antihypertensive agents; hence people with comorbidities (such as diabetes, heart failure, coronary heart disease) who were already on a relevant medication (betablockers, ACE inhibitors) for these reasons would be excluded from the hypertension cohort. A crosssectional analysis of the World Health Organisation Study of Global Ageing and Adult Health (WHO SAGE) Wave 1 (2007-10) in 41,557 adults (9778 with hypertension) from 6 middle-income countries (including China, Ghana, India, Mexico, Russia and South Africa) reported that more comorbidities were associated with increased odds of uncontrolled hypertension. ${ }^{17}$

The BP control rate in our study is also consistent with the literature. In a recent report from the NCD Risk Factor Collaboration using data from 1990 to 2019 on people aged 30-79 years from populationrepresentative studies with measurement of blood pressure, the estimated rate of uncontrolled BP in Canada was $25 \%-30 \%$ in $2019 .{ }^{29}$ A report from the Danish General Practice Database of 37,651 patients with hypertension from 231 general practices showed that the overall BP control rate was $33.2 \% .^{18}$ A cross-sectional population-based study including 99,468 participants with hypertension enrolled in the UK Biobank reported that the overall control rate of BP was $38.1 \% .^{28}$

Implication for practice and research

The results from this study may reflect the achievement of primary care in controlling cardiovascular risk factors in patients with multimorbidity, including regular BP measures and treatment. Comorbidities may be associated with more frequent healthcare utilisation and hence increase the monitoring of chronic conditions, including BP measurement and counselling on lifestyle modifications and medication adherence. Another explanation could be the study's participation selection processes. Among people with hypertension as their only chronic health condition, those with poorer BP control may be more motivated to attend primary care and hence were included in this cohort. Thus, the observed associations could be explained by selection bias - hypertensive patients with no comorbidities, but uncontrolled BP may have been more likely to seek primary care compared to hypertensive patients with no comorbidities and controlled BP. These lead to opportunities to measure BP and obtain scripts, reminders given to them on taking medications, and better lifestyle modifications. More studies are needed to explore the mechanisms underlying the associations between multimorbidity and BP control.

Strengths and limitations

This is one of the largest analyses of hypertension control in adults attending primary care in Canada, with comprehensive sociodemographic and high-quality detailed clinical information, including comorbidities. However, the data was only collected from patients in Ontario and is not nationally representative. Another limitation of this study is that EMR data may be incomplete, and we might be unable to capture all cases of hypertension and/or prescriptions of anti-hypertensive medications. Lifestyle modification, which is an essential strategy in the management of hypertension and can influence BP control, could not be captured through the EMR data. Duration and severity of hypertension and other chronic diseases were also not captured. Therefore, results should be replicated and cautiously interpreted before generalizing to all patients in primary care.

Conclusion

In this large-scale study of patients attending primary care with hypertension, multimorbidity was associated with better BP control. Several long-term conditions were associated with better control, including diabetes, heart failure, ischemic heart disease, schizophrenia, depression/anxiety, dementia, and osteoarthritis. Further large-scale mixed methods studies are needed to explore the mechanisms
underlying the associations between multimorbidity and BP control, and to understand barriers to BP control in primary care.

Acknowledgements. Dr Tu Nguyen is supported by the University of Sydney Global Development Awards.

References

1. Oliveros E, Patel H, Kyung S, et al. Hypertension in older adults: Assessment, management, and challenges. Clinical Cardiology 2019; 43: 99-107.
2. Nguyen TN, Chow CK. Global and national high blood pressure burden and control. The Lancet 2021; 398(10304): 932-3.
3. Sierra C. Hypertension and the Risk of Dementia. Front Cardiovasc Med 2020; 7: 5-.
4. Fortin M, Dubois MF, Hudon C, Soubhi H, Almirall J. Multimorbidity and quality of life: a closer look. Health and quality of life outcomes 2007; 5: 52.
5. Skou ST, Mair FS, Fortin M, et al. Multimorbidity. Nat Rev Dis Primers 2022; 8(1): 48.
6. Kennard L, O'Shaughnessy KM. Treating hypertension in patients with medical comorbidities. BMJ 2016; 352: i101.
7. Ofori-Asenso R, Chin KL, Curtis AJ, Zomer E, Zoungas S, Liew D. Recent Patterns of Multimorbidity Among Older Adults in High-Income Countries. Popul Health Manag 2018.
8. Vogeli C, Shields AE, Lee TA, et al. Multiple chronic conditions: prevalence, health consequences, and implications for quality, care management, and costs. Journal of general internal medicine 2007; 22 Suppl 3: 391-5.
9. Mokraoui NM, Haggerty J, Almirall J, Fortin M. Prevalence of self-reported multimorbidity in the general population and in primary care practices: a cross-sectional study. BMC Res Notes 2016; 9: 314 .
10. Marina S-B, Mark A, Alessandra B, et al. Impact of multimorbidity on healthcare costs and utilisation: a systematic review of the UK literature. British Journal of General Practice 2021; 71(702): e39.
11. Rodrigues LP, de Oliveira Rezende AT, Delpino FM, et al. Association between multimorbidity and hospitalization in older adults: systematic review and meta-analysis. Age and Ageing 2022; 51(7): afac155.
12. Sarkar C, Dodhia H, Crompton J, et al. Hypertension: a cross-sectional study of the role of multimorbidity in blood pressure control. BMC family practice 2015; 16: 98-.
13. Paulsen MS, Andersen M, Thomsen JL, et al. Multimorbidity and Blood Pressure Control in 37651 Hypertensive Patients From Danish General Practice. Journal of the American Heart Association; 2(1): e004531.
14. Tran J, Norton R, Canoy D, et al. Multi-morbidity and blood pressure trajectories in hypertensive patients: A multiple landmark cohort study. PLoS medicine 2021; 18(6): e1003674-e.
15. Wong MC, Wang HH, Cheung CS, et al. Factors associated with multimorbidity and its link with poor blood pressure control among 223,286 hypertensive patients. Int J Cardiol 2014; 177(1): 202-8.
16. Mini G, Mohan M, Sarma P, Thankappan K. Multi-morbidity and blood pressure control: Results of a cross-sectional study among school teachers in Kerala, India. Indian Journal of Public Health 2021; 65(2): 190-3.
17. Sum G, Koh GC-H, Mercer SW, et al. Patients with more comorbidities have better detection of chronic conditions, but poorer management and control: findings from six middle-income countries. BMC Public Health 2020; 20(1): 9.
18. Paulsen MS, Andersen M, Thomsen JL, et al. Multimorbidity and blood pressure control in 37651 hypertensive patients from Danish general practice. J Am Heart Assoc 2012; 2(1): e004531.
19. Tu K, Sodhi S, Kidd M et al. The University of Toronto Family Medicine Report: Caring for our Diverse Populations. Toronto, ON; 2020.
20. Sarkar C, Dodhia H, Crompton J, et al. Hypertension: a cross-sectional study of the role of multimorbidity in blood pressure control. BMC Family Practice 2015; 16(1): 98.
21. Fortin M, Stewart M, Poitras ME, Almirall J, Maddocks H. A systematic review of prevalence studies on multimorbidity: toward a more uniform methodology. Ann Fam Med 2012; 10(2): 142-51.
22. Kone AP, Mondor L, Maxwell C, Kabir US, Rosella LC, Wodchis WP. Rising burden of multimorbidity and related socio-demographic factors: a repeated cross-sectional study of Ontarians. Can J Public Health 2021; 112(4): 737-47.
23. Goodman RA, Posner SF, Huang ES, Parekh AK, Koh HK. Defining and measuring chronic conditions: imperatives for research, policy, program, and practice. Prev Chronic Dis 2013; 10: E66.
24. Statistics Canada. Postal CodeOM Conversion File (PCCF), Reference Guide 2017. . https://www150.statcan.gc.ca/n1/pub/92-154-g/92-154-g2017001-eng.htm (accessed 01/11/2022.
25. Leung AA, Nerenberg K, Daskalopoulou SS, et al. Hypertension Canada's 2016 Canadian Hypertension Education Program Guidelines for Blood Pressure Measurement, Diagnosis, Assessment of Risk, Prevention, and Treatment of Hypertension. Can J Cardiol 2016; 32(5): 569-88.
26. Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J 2018; 39(33): 3021-104.
27. Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 2018; 71(6): e13-e115.
28. Tapela N, Collister J, Clifton L, Turnbull I, Rahimi K, Hunter DJ. Prevalence and determinants of hypertension control among almost 100000 treated adults in the UK. Open Heart 2021; 8(1): e001461.
29. Zhou B, Carrillo-Larco RM, Danaei G, et al. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 populationrepresentative studies with 104 million participants. The Lancet 2021; 398(10304): 957-80.
medRxiv preprint doi: https://doi.org/10.1101/2023.07.24.23293126; this version posted July 27, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.

Table 1: Patient characteristics

	Controlled BP $(\mathrm{N}=43303)$	Uncontrolled $\begin{gathered} \text { BP } \\ (\mathrm{N}=\mathbf{2 4 0 8 2}) \end{gathered}$	$\begin{gathered} \text { Overall } \\ (\mathrm{N}=67385) \end{gathered}$
Age (years)			
Mean (SD)	70.3 (11.6)	69.6 (12.2)	70.1 (11.8)
Median [Min, Max]	70.0 [47.0, 111]	69.0 [47.0, 110]	70.0 [47.0, 111]
Age group (years)			
45-74 years	30562 (70.6\%)	17256 (71.7\%)	47818 (71.0\%)
75-84 years	8927 (20.6\%)	4486 (18.6\%)	13413 (19.9\%)
$85+$ years	3814 (8.8\%)	2340 (9.7\%)	6154 (9.1\%)
Sex			
Female	22637 (52.3\%)	13132 (54.5\%)	35769 (53.1\%)
Male	20666 (47.7\%)	10950 (45.5\%)	31616 (46.9\%)
Income Quintiles			
1 (low income)	8984 (20.7\%)	5090 (21.1\%)	14074 (20.9\%)
2	7812 (18.0\%)	4328 (18.0\%)	12140 (18.0\%)
3	7264 (16.8\%)	3938 (16.4\%)	11202 (16.6\%)
4	7572 (17.5\%)	4177 (17.3\%)	11749 (17.4\%)
5 (high income)	10693 (24.7\%)	5976 (24.8\%)	16669 (24.7\%)
Missing	978 (2.3\%)	573 (2.4\%)	1551 (2.3\%)

Multimorbidity

No
7473 (17.3\%) 5574 (23.1\%) 13047 (19.4\%)

	$\begin{aligned} & \text { Controlled BP } \\ & (\mathrm{N}=43303) \end{aligned}$	Uncontrolled $\begin{gathered} B P \\ (\mathrm{~N}=\mathbf{2 4 0 8 2}) \end{gathered}$	Overall $(\mathrm{N}=67385)$
Yes	35830 (82.7\%)	18508 (76.9\%)	54338 (80.6\%)
Body mass index level			
Missing	7831 (18.1\%)	5018 (20.8\%)	12849 (19.1\%)
18.4 or less (Underweight)	267 (0.6\%)	145 (0.6\%)	412 (0.6\%)
18.5-24.9 (Normal)	6453 (14.9\%)	3220 (13.4\%)	9673 (14.4\%)
25-29.9 (Overweight)	13470 (31.1\%)	6999 (29.1\%)	20469 (30.4\%)
30-34.9 (Obese Class I)	9278 (21.4\%)	5095 (21.2\%)	14373 (21.3\%)
35-39.9 (Obese Class II)	3782 (8.7\%)	2208 (9.2\%)	5990 (8.9\%)
40 or more (Obese Class III)	2222 (5.1\%)	1397 (5.8\%)	3619 (5.4\%)
Most recent smoking status			
Missing	11062 (25.5\%)	6740 (28.0\%)	17802 (26.4\%)
Current	4219 (9.7\%)	2542 (10.6\%)	6761 (10.0\%)
Non-Smoker	19999 (46.2\%)	10868 (45.1\%)	30867 (45.8\%)
Past	8023 (18.5\%)	3932 (16.3\%)	11955 (17.7\%)
Cancer			
No	37881 (87.5\%)	21349 (88.7\%)	59230 (87.9\%)
Yes	5422 (12.5\%)	2733 (11.3\%)	8155 (12.1\%)
Ischemic Heart disease			
No	37182 (85.9\%)	21679 (90.0\%)	58861 (87.4\%)
Yes	6121 (14.1\%)	2403 (10.0\%)	8524 (12.6\%)

Heart failure

	$\begin{aligned} & \text { Controlled BP } \\ & (\mathrm{N}=43303) \end{aligned}$	Uncontrolled $\begin{gathered} B P \\ (\mathrm{~N}=\mathbf{2 4 0 8 2}) \end{gathered}$	Overall $(\mathrm{N}=67385)$
No	40754 (94.1\%)	23082 (95.8\%)	63836 (94.7\%)
Yes	2549 (5.9\%)	1000 (4.2\%)	3549 (5.3\%)
Atrial fibrillation			
No	38362 (88.6\%)	21878 (90.8\%)	60240 (89.4\%)
Yes	4941 (11.4\%)	2204 (9.2\%)	7145 (10.6\%)
Diabetes Mellitus			
No	28126 (65.0\%)	17210 (71.5\%)	45336 (67.3\%)
Yes	15177 (35.0\%)	6872 (28.5\%)	22049 (32.7\%)

Chronic Kidney disease

No	$35292(81.5 \%)$	$20021(83.1 \%)$	$55313(82.1 \%)$
Yes	$8011(18.5 \%)$	$4061(16.9 \%)$	$12072(17.9 \%)$

Chronic Obstructive Pulmonary Disease

No	$39365(90.9 \%)$	$22197(92.2 \%)$	$61562(91.4 \%)$
Yes	$3938(9.1 \%)$	$1885(7.8 \%)$	$5823(8.6 \%)$

Osteoarthritis

No	$26654(61.6 \%)$	$15500(64.4 \%)$	$42154(62.6 \%)$
Yes	$16649(38.4 \%)$	$8582(35.6 \%)$	$25231(37.4 \%)$

Dementia

No	$39774(91.9 \%)$	$22422(93.1 \%)$	$62196(92.3 \%)$
Yes	$3529(8.1 \%)$	$1660(6.9 \%)$	$5189(7.7 \%)$

Depression and/or Anxiety

	Controlled BP	Uncontrolled	Overall
	$\mathbf{(N = 4 3 3 0 3)}$	BP	(N=67385)
		$(\mathbf{N}=\mathbf{2 4 0 8 2})$	
No	$28943(66.8 \%)$	$16728(69.5 \%)$	$45671(67.8 \%)$
Yes	$14360(33.2 \%)$	$7354(30.5 \%)$	$21714(32.2 \%)$

Schizophrenia

No	$42726(98.7 \%)$	$23853(99.0 \%)$	$66579(98.8 \%)$
Yes	$577(1.3 \%)$	$229(1.0 \%)$	$806(1.2 \%)$

Comparisons between patients with controlled and uncontrolled BP were assessed using Pearson chisquare tests for categorical covariates and two-sample t-tests for continuous covariates. All p-values <0.001
medRxiv preprint doi: https://doi.org/10.1101/2023.07.24.23293126; this version posted July 27, 2023. The copyright holder for this preprint

Figure 1: Flowchart for the generation of this cross-sectional cohort
medRxiv preprint doi: https://doi.org/10.1101/2023.07.24.23293126; this version posted July 27, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.

384

385

386

387

388

389
Figure 2: Percentage of patients with uncontrolled blood pressure

Figure 3: Unadjusted and adjusted odds ratios for uncontrolled blood pressure with respect to patient characteristics. *Odds ratio >1 means a greater likelihood of uncontrolled blood pressure. Models were adjusted for age, sex, income quintiles, smoking status, body mass index, and number of visits.

Figure 4: Unadjusted and adjusted odds ratios for uncontrolled blood pressure with respect to individual long-term conditions. *Odds ratio >1 means a greater likelihood of uncontrolled blood pressure. Models were adjusted for age, sex, income quintiles, smoking status, body mass index, and number of visits.
medRxiv preprint doi: https://doi.org/10.1101/2023.07.24.23293126; this version posted July 27, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.

428
 Supplementary data

Figure S1: Directed acyclic graph for the effect of multi-morbidity on blood pressure control

Table S1: Unadjusted and adjusted odds ratios for uncontrolled blood pressure with respect to patient characteristics

Type	Contrast	Odds ratios	Upper	Lower	P-value
Unadjusted odds ratios	Total number of primary care visits: 9+ visits v.s. 0-2 visits	0.73827	0.79546	0.68520	<0.001
Unadjusted odds ratios	Total number of primary care visits: 6-8 visits v.s. 0-2 visits	0.78719	0.83093	0.74576	<0.001
Unadjusted odds ratios	Total number of primary care visits: 3-5 visits v.s. 0-2 visits	0.80753	0.83877	0.77746	<0.001
Unadjusted odds ratios	Smoking Status: Past v.s. Non Smoker				
Unadjusted odds	Smoking Status: Current v.s. Non Smoker	0.92141	0.96352	0.88113	<0.001
ratios		1.01420	1.07104	0.96038	0.612
Unadjusted odds	BMI level: 40 or more (Obese Class III) v.s. 18.5-24.9	1.20424	1.31402	1.10364	<0.001

medRxiv preprint doi: https://doi.org/10.1101/2023.07.24.23293126; this version posted July 27, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.

ratios	(Normal)				
Unadjusted odds ratios	BMI level: 35-39.9 (Obese Class II) v.s. 18.5-24.9 (Normal)	1.12685	1.20470	1.05403	<0.001
Unadjusted odds ratios	BMI level: 30-34.9 (Obese Class I) v.s. 18.5-24.9 (Normal)	1.07457	1.13840	1.01432	0.015
Unadjusted odds ratios	BMI level: 25-29.9 (Overweight) v.s. 18.5-24.9 (Normal)	1.03133	1.08717	0.97836	0.251
Unadjusted odds ratios	BMI level: 18.4 or less (Underweight) v.s. 18.5-24.9 (Normal)	1.11997	1.37281	0.91370	0.275
Unadjusted odds ratios	Income Quintiles: 4 v.s. 5	0.98538	1.03246	0.94044	0.536
Unadjusted odds ratios	Income Quintiles: 3 v.s. 5	0.97333	1.02475	0.92448	0.303
Unadjusted odds ratios	Income Quintiles: 2 v.s. 5	0.97613	1.02786	0.92701	0.359
Unadjusted odds ratios	Income Quintiles: 1 v.s. 5	0.97758	1.02763	0.92997	0.373
Unadjusted odds ratios	Sex: Male v.s. Female	0.91376	0.94975	0.87915	<0.001
Unadjusted odds ratios	Age group: 75-84 years v.s. $85+$ years	0.81139	0.86227	0.76352	<0.001
Unadjusted odds ratios	Age group: 45-74 years v.s. $85+$ years	0.88376	0.94439	0.82703	<0.001
Unadjusted odds ratios	Multimorbidity: Yes v.s. No	0.69121	0.71972	0.66384	<0.001
Adjusted odds ratios	Total number of primary care visits: $9+$ visits v.s. $0-2$ visits	0.81565	0.89297	0.74502	<0.001
Adjusted odds ratios	Total number of primary care visits: 6-8 visits v.s. 0-2 visits	0.82926	0.88645	0.77576	<0.001
Adjusted odds ratios	Total number of primary care visits: 3-5 visits v.s. 0-2 visits	0.81522	0.85468	0.77759	<0.001
Adjusted odds ratios	Smoking Status: Past v.s. Non Smoker	0.93085	0.97948	0.88463	0.006
Adjusted odds ratios	Smoking Status: Current v.s. Non Smoker	1.14532	1.22043	1.07484	<0.001
Adjusted odds ratios	BMI level: 40 or more (Obese Class III) v.s. 18.5-24.9 (Normal)	1.33611	1.47065	1.21388	<0.001
Adjusted odds ratios	BMI level: 35-39.9 (Obese Class II) v.s. 18.5-24.9 (Normal)	1.23587	1.34055	1.13938	<0.001
Adjusted odds ratios	BMI level: 30-34.9 (Obese Class I) v.s. 18.5-24.9	1.15571	1.23387	1.08249	<0.001

	(Normal)				
Adjusted odds ratios	BMI level: 25 - 29.9 (Overweight) v.s. 18.5-24.9 (Normal)	1.08476	1.15337	1.02024	0.009
Adjusted odds ratios	BMI level: 18.4 or less (Underweight) v.s. 18.5-24.9 (Normal)	1.03778	1.32207	0.81462	0.764
Adjusted odds ratios	Income Quintiles: 4 v.s. 5				
Adjusted odds ratios	Income Quintiles: 3 v.s. 5	0.96900	1.03199	0.90985	0.327
Adjusted odds ratios	Income Quintiles: 2 v.s. 5	0.96202	1.02630	0.90176	0.241
Adjusted odds ratios	Income Quintiles: 1 v.s. 5	0.98320	1.04831	0.92213	0.604
Adjusted odds ratios	Sex: Male v.s. Female	1.00317	1.06821	0.94208	0.921
Adjusted odds ratios	Age group: 75-84 years v.s. 85+ years	0.89949	0.93914	0.86152	<0.001
Adjusted odds ratios	Age group: 45-74 years v.s. 85+ years	0.80118	0.87470	0.73384	<0.001
Adjusted odds ratios	Multimorbidity: Yes v.s. No	0.77803	0.84269	0.71832	<0.001

Table S2: Mean number of primary care visits for patients with and without multi-morbidity

Mean (standard deviation) number of primary	multimorbidity	
care visits annually	No	Yes
2017	2.14 (2.17)	3.80 (3.44)
2018	2.30 (2.22)	3.88 (3.36)
2019	2.44 (2.19)	3.91 (3.28)
Frequency (N , column \%)		
0-2 visits	8599	22134

medRxiv preprint doi: https://doi.org/10.1101/2023.07.24.23293126; this version posted July 27, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.

	65.91	40.73
3-5 visits	3523	19794
	27.00	36.43
6-8 visits	729	7838
	5.59	14.42
9+ visits	196	4572
	1.50	8.41
2018		
0-2 visits	8219	21141
	63.00	38.91
3-5 visits	3813	20635
	29.23	37.98
6-8 visits	779	8143
	5.97	14.99
9+ visits	236	4419
	1.81	8.13
2019		
0-2 visits	7934	20688
	60.81	38.07

medRxiv preprint doi: https://doi.org/10.1101/2023.07.24.23293126; this version posted July 27, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.

3-5 visits	4024	21156
6-8 visits	30.84	38.93
	846	8145
9+ visits	6.48	14.99
	243	4349

439

440
Table S3: Patient characteristics for sub-optimal blood pressure control ($\geq 130 / 80 \mathrm{mmHg}$)

	Controlled BP $\text { (} \mathrm{N}=19535 \text {) }$	Uncontrolled BP ($\mathrm{N}=47850$)	$\begin{aligned} & \text { Overall } \\ & \text { (} \mathrm{N}=67385 \text {) } \end{aligned}$	P-value
Age (years)				
Mean (SD)	72.1 (11.5)	69.2 (11.9)	70.1 (11.8)	<0.001
Median [Min, Max]	72.0 [47.0, 111]	69.0 [47.0, 110]	70.0 [47.0, 111]	
Age group (years)				
45-74 years	12809 (65.6\%)	35009 (73.2\%)	47818 (71.0\%)	<0.001
75-84 years	4597 (23.5\%)	8816 (18.4\%)	13413 (19.9\%)	
$85+$ years	2129 (10.9\%)	4025 (8.4\%)	6154 (9.1\%)	
Sex				
Female	10183 (52.1\%)	25586 (53.5\%)	35769 (53.1\%)	0.00652
Male	9352 (47.9\%)	22264 (46.5\%)	31616 (46.9\%)	
Income Quintiles				
1 (low income)	4259 (21.8\%)	9815 (20.5\%)	14074 (20.9\%)	<0.001
2	3605 (18.5\%)	8535 (17.8\%)	12140 (18.0\%)	

medRxiv preprint doi: https://doi.org/10.1101/2023.07.24.23293126; this version posted July 27, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.

	Controlled BP	Uncontrolled BP	Overall
	$(\mathbf{N}=19535)$	$(\mathbf{N}=\mathbf{4 7 8 5 0})$	($\mathrm{N}=67385)$
3	$3223(16.5 \%)$	$7979(16.7 \%)$	$11202(16.6 \%)$
4	$3323(17.0 \%)$	$8426(17.6 \%)$	$11749(17.4 \%)$
5 (high income)	$4626(23.7 \%)$	$12043(25.2 \%)$	$16669(24.7 \%)$
Missing	$499(2.6 \%)$	$1052(2.2 \%)$	$1551(2.3 \%)$

Multimorbidity

No	$2528(12.9 \%)$	$10519(22.0 \%)$	$13047(19.4 \%)$	
Yes	$17007(87.1 \%)$	$37331(78.0 \%)$	$54338(80.6 \%)$	

Body mass index level

Missing	3347 (17.1\%)	9502 (19.9\%)	12849 (19.1\%)	<0.001
18.4 or less (Underweight)	152 (0.8\%)	260 (0.5\%)	412 (0.6\%)	
18.5-24.9 (Normal)	3226 (16.5\%)	6447 (13.5\%)	9673 (14.4\%)	
25-29.9 (Overweight)	6190 (31.7\%)	14279 (29.8\%)	20469 (30.4\%)	
30-34.9 (Obese Class I)	4043 (20.7\%)	10330 (21.6\%)	14373 (21.3\%)	
35-39.9 (Obese Class II)	1630 (8.3\%)	4360 (9.1\%)	5990 (8.9\%)	
40 or more (Obese Class III)	947 (4.8\%)	2672 (5.6\%)	3619 (5.4\%)	
Most recent smoking status				
Missing	4935 (25.3\%)	12867 (26.9\%)	17802 (26.4\%)	<0.001
Current	1909 (9.8\%)	4852 (10.1\%)	6761 (10.0\%)	
Non Smoker	8856 (45.3\%)	22011 (46.0\%)	30867 (45.8\%)	
Past	3835 (19.6\%)	8120 (17.0\%)	11955 (17.7\%)	
Cancer				
No	16955 (86.8\%)	42275 (88.3\%)	59230 (87.9\%)	<0.001
Yes	2580 (13.2\%)	5575 (11.7\%)	8155 (12.1\%)	
Ischemic Heart disease				
No	16032 (82.1\%)	42829 (89.5\%)	58861 (87.4\%)	<0.001

medRxiv preprint doi: https://doi.org/10.1101/2023.07.24.23293126; this version posted July 27, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.

	$\begin{aligned} & \text { Controlled BP } \\ & \text { (N=19535) } \end{aligned}$	Uncontrolled BP $\text { (} \mathrm{N}=47850 \text {) }$	$\begin{gathered} \text { Overall } \\ \text { (} \mathrm{N}=67385 \text {) } \end{gathered}$	P-value
Yes	3503 (17.9\%)	5021 (10.5\%)	8524 (12.6\%)	
Heart failure				
No	18006 (92.2\%)	45830 (95.8\%)	63836 (94.7\%)	<0.001
Yes	1529 (7.8\%)	2020 (4.2\%)	3549 (5.3\%)	
Atrial fibrillation				
No	16799 (86.0\%)	43441 (90.8\%)	60240 (89.4\%)	<0.001
Yes	2736 (14.0\%)	4409 (9.2\%)	7145 (10.6\%)	
Diabetes Mellitus				
No	11842 (60.6\%)	33494 (70.0\%)	45336 (67.3\%)	<0.001
Yes	7693 (39.4\%)	14356 (30.0\%)	22049 (32.7\%)	
Chronic Kidney disease				
No	15193 (77.8\%)	40120 (83.8\%)	55313 (82.1\%)	<0.001
Yes	4342 (22.2\%)	7730 (16.2\%)	12072 (17.9\%)	
Chronic Obstructive Pulmonary Disease				
No	17487 (89.5\%)	44075 (92.1\%)	61562 (91.4\%)	<0.001
Yes	2048 (10.5\%)	3775 (7.9\%)	5823 (8.6\%)	
Mental health				
No	11804 (60.4\%)	30997 (64.8\%)	42801 (63.5\%)	<0.001
Yes	7731 (39.6\%)	16853 (35.2\%)	24584 (36.5\%)	

the threshold for sub-optimal blood pressure control.

Contrast	Adjusted odds ratios	Lower	Upper	P-value
Multimorbidity: Yes vs. No	0.56	0.54	0.59	<0.001
Age group: 45-74 years vs. 85+ years	1.29	1.22	1.37	<0.001
Age group: 75-84 years vs. 85+ years	0.98	0.92	1.05	0.582
Sex: Male vs. Female	0.91	0.88	0.94	<0.001
Income Quintiles: 1 vs. 5	0.93	0.88	0.98	0.005
Income Quintiles: 2 vs. 5	0.95	0.90	1.00	0.062
Income Quintiles: 3 vs. 5	0.97	0.92	1.02	0.34
Income Quintiles: 4 vs. 5	0.98	0.93	1.03	0.405
Region: Urban vs. Rural	0.84	0.78	0.90	<0.001

446

Type	Contrast	Odd ratios	Lower	Upper	P-Value
Unadjusted odds ratios	Ischemic Heart Disease: Yes vs. No	0.66969	0.63707	0.70399	<0.001
Unadjusted odds ratios	Heart Failure: Yes vs. No	0.71025	0.65731	0.76745	<0.001
Unadjusted odds ratios	Atrial Fibrillation: Yes vs. No	0.79316	0.75169	0.83692	<0.001
Unadjusted odds ratios	Diabetes Mellitus: Yes vs. No	0.73233	0.70360	0.76223	<0.001
Unadjusted odds ratios	Chronic Obstructive Pulmonary Disease: Yes vs. No	0.82250	0.77670	0.87100	<0.001
Unadjusted odds ratios	Chronic Kidney Disease: Yes vs. No	0.90107	0.86078	0.94326	<0.001
Unadjusted odds ratios	Osteoarthritis: Yes vs. No	0.88485	0.85331	0.91755	<0.001
Unadjusted odds ratios	Cancer: Yes vs. No	0.88660	0.84844	0.92646	<0.001
Unadjusted odds ratios	Dementia: Yes vs. No	0.85688	0.80274	0.91466	<0.001
Unadjusted odds ratios	Depression and/or Anxiety: Yes vs. No	0.87679	0.84454	0.91028	<0.001
Unadjusted odds ratios	Schizophrenia: Yes vs. No	0.78581	0.67154	0.91952	<0.001

Adjusted odds ratios	Ischemic Heart Disease: Yes vs. No	0.73727	0.68770	0.79041	<0.001
Adjusted odds ratios	Heart Failure: Yes vs. No	0.81404	0.72606	0.91268	<0.001
Adjusted odds ratios	Atrial Fibrillation: Yes vs. No	0.92968	0.86071	1.00417	0.064
Adjusted odds ratios	Diabetes Mellitus: Yes vs. No	0.73368	0.70013	0.76885	<0.001
Adjusted odds ratios	Chronic Obstructive Pulmonary Disease: Yes vs. No	0.98163	0.90611	1.06344	0.65
Adjusted odds ratios	Chronic Kidney Disease: Yes vs. No	0.94286	0.88606	1.00330	0.063
Adjusted odds ratios	Osteoarthritis: Yes vs. No	0.88625	0.84715	0.92716	<0.001
Adjusted odds ratios	Cancer: Yes vs. No	0.95232	0.89199	1.01672	0.143
Adjusted odds ratios	Dementia: Yes vs. No	0.86759	0.79505	0.94675	0.001
Adjusted odds ratios	Depression and/or Anxiety: Yes vs. No	0.90557	0.86453	0.94856	<0.001
Adjusted odds ratios	Schizophrenia: Yes vs. No	0.79424	0.65170	0.96795	0.022

Appendix

The appendix section contains the following sections:
i) Drug names for different classes of hypertension medications;
ii) Definition for the hypertension phenotype;
iii) Definition for primary care visit in UTOPIAN database;

Hypertension medication classes

The following search criteria were used to identify hypertension medication:

Drug class	Search criteria								
name									
inhibitors	\%medication(in=ACE,								
search='benazepril\|Lotensin	captopril	Capoten	Captotec	Captril	cilazapril	Inhib			
ace\|Inhibase	enalapril	Vasotec	fosinopril	Monopril	lisinopril	Zestril	Prinivil	per	
indopril\|Coversyl	quinapril								

	hcl\|Accupril	Accupro	ramipril	Altace	trandolapril	Mavik');														
ARB inhibitors	\%medication(in=ARB, search='candesartan\|Atacand	eprosartan	Teveten	irbesartan	Avapro	losartan	 Cozaar\|olmesartan	Olmetec	telmisartan	Micardis	valsartan	Diovan');								
Calcium channels	\%medication(in=Ca_channel, search='amlodipine\|Norvasc	diltiazem	Cardizem	Tiazac	felodipine	Renedil	Plen dil\|nicardipine	Cardene	nifedipine	Adalat	nimodipine	Minotop	verapamil	Isop tin \|Veralan	Veramil');					
Beta- blockers	\%medication(in=beta_blockers, search='acebutolol\|Monitan	Sectral	Rhotral	atenolol	Tenormin	bisoprolol	Mon ocor\|labetalol	Trandate	metoprolol	Lopressor	Toprol	Betaloc	nadolol	Corgard \|oxprenolol	Trasicor	pindolol	Visken	propranolol	Inderal	Detensol');
Diuretics	\%medication(in=diuretics, search='amiloride\|Midamor	spironolactone	Aldactone	triamterene	Neo Diurex\|chlortalidone	Thiazide	Hygroton	hydrochlorothiazide	Oretic	Microzide										

	Diuchlor $\mathrm{H} \mid$ Esidrix\|Hydro Aquil	Hydrodiuril	Neo Codema	Urozide	Apo- Hydro\|indapamide	Lozide');					
Other classes of hypertension medication	************************										
	Others includes										
	- Renin Inhibitor										
	- Alpha-2 Adrenergic Receptor Agonist										
	- combination medications										
	*******************************;										
	\%medication(in=others,										
	search=										
	'aliskiren\|Basilez	clonidine	Catapres	Catapresan	Kapvay	Dixarit	methyldopa	D opazide	Methazide	Doparil	
	benazepril \& hydrochlorothiazide \| Lotensin										
	cilazapril \& hydrochlorothiazide \|Inhibace Plus										
	enalapril \& hydrochlorothiazide \| Vaseretic										
	ramipril \& hydrochlorothiazide \|Altace HCT										
	lisinopril \& hydrochlorothiazide \|Zestoretic	Prinzide									
	perindopril \& indapamide \|Coversyl Plus										
	perindopril \& amlodipine \|Viacoram										

verapamil \& trandolapril\|Tarka						
chlortalidone \& reserpine\|Regroton						
methyldopa \& hydrochlorothiazide\|Aldoclor	Aldoril					
clonidine \& chlortalidone\|Clorpres	Combipres					
reserpine \& hydrochlorothiazide\|Hydroserpine	Hydropres	Serpasil Esidrix				
reserpine \& hydrochlorothiazide\|hydralazine hcl Ser-Ap-ES	Serpazide	Uni				
Serp\|Hydrap-Es	Diuretic-Ap-Es	Marpres	Serathide	Unipres	Serpex	
metoprolol \& hydrochlorothiazide\|Dutoprol	Lopressor HCT					
metoprolol \& chlortalidone\|Lopressidone	Logroton					
amiloride \& hydrochlorothiazide\|Amiloride HCTZ	Amihydro	Riva-				
Amilzide\|Amilazide	Amilzide	Atenidone	Moduretic			
triamterene \& hydrochlorothiazide\|Dyazide	Maxzide	Diazide	Pro			
Spironolactone \& hydrochlorothiazide\|Aldactazide	Spirozide	Spirozine				

Hypertension phenotype

We defined the hypertension phenotype using the following criteria:
4. A billing record with the diagnosis code for hypertension (401) was found and an elevated blood pressure reading was recorded at any point in the EMR
a. elevated blood pressure reading is defined as systolic blood pressure $>=140 \mathrm{mmHg}$ or diastolic blood pressure $>=90 \mathrm{mmHg}$

Definition for primary care visit in UTOPIAN database

OHIP service codes billed during the study period (Jan 2017 to Dec 2019) were used to select family physician visits that occurred via telephone, video, or in-person. Billing records for eligible patients containing any of the following service codes were counted as family physician visits:

Code	Description	Code	Description
A001	minor assessment	K017	periodic health visit-child aft. 2nd birthday
A002	enhanced 18-month well baby visit	K022	hiv prim care individ care $1 / 2 \mathrm{hr}$ or major part
A003	major assessment	K028	sexually transmitted disease (std) counseling
A004	general re-assessment	K030	diabetic management fee
A007	intermediate assessment	K032	gp-specific neurocognitive assessment
A008	mini assessment	K033	counselling - $1 \mathrm{pt} / \mathrm{yr} / \mathrm{unit}$
A071	complex medical specific reassessment	K039	smoking cessation follow-up visit
A131	complex medical specific reassessment	K130	periodic health visit - adolescent

A134	medical specific re-assessment	K131	periodic health visit - adult aged 18 to 64 inclusive
A624	medical specific re-assessment	K132	periodic health visit - adult 65 years of age and older
A888	partial assessment	K680	substance abuse - extended assessment
A903	pre-op assessment	P003	obs.-prenatal care-gen.assess-major prenatal visit
A920	medical management of early pregnancy, initial visit	P004	obs.-prenatal care-minor prenatal assess.-subseq.prenat.vis.
K005	primary mental health	P005	antenatal health screen
K007	ind. psychotherapy per half hour - gp	P008	obs.-post-natal care in office
K013	counselling-one or more people-per $1 / 2 \mathrm{hr}$	K037	fibromyalgia/chronic fatigue syndrome care
K080	Minor assessment of patient by telephone or video	K081	Intermediate assessment including psychotherapy by telephone or video
K082	Psychotherapy, psychiatric or mental health counselling by telephone or video	K087	Minor assessment of an uninsured by telephone or video
K088	Intermediate assessment of an uninsured patient including psychotherapy by telephone or video	K089	Psychotherapy, psychiatric or mental health counselling of an uninsured patient by telephone or video

medRxiv preprint doi: https://doi.org/10.1101/2023.07.24.23293126; this version posted July 27, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.

