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Abstract 27 

Brain development in childhood is shaped by complex interactions between genetic 28 

predispositions, environmental influences, and neural connectivity, yet how these 29 

factors jointly contribute to cognitive and mental health outcomes remains unclear. 30 

Structural brain networks, quantified through graph-theoretic measures, have been 31 

linked to cognition and psychiatric risk, but the extent to which genetic architecture 32 

and environmental exposures shape these networks, and whether brain networks 33 

mediate these influences, is not well understood. Here we show that genetic 34 

predispositions related to cognitive ability and socioeconomic status (SES) exhibit 35 

the strongest covariation with structural brain network topology in children. Using 36 

sparse canonical correlation analysis (SCCA) on ABCD Study data (N = 10,343), we 37 

identified robust associations between brain network properties, polygenic scores for 38 

cognition, SES indicators, and cognitive-psychopathological phenotypes. Mediation 39 

analysis further demonstrated that structural brain networks partially mediate the 40 

influence of genetic and environmental factors on cognitive performance and mental 41 

health outcomes, suggesting that neurodevelopmental trajectories may be shaped 42 

by both genetic liability and modifiable environmental conditions. These findings 43 

provide empirical support for a multivariate, systems-level perspective on brain 44 

development and cognitive-psychopathological variation in youth. By elucidating 45 

shared neural substrates underlying genetic and environmental influences, this work 46 

advances our understanding of brain network development and highlights potential 47 

pathways for individualized interventions and predictive modeling in developmental 48 

psychiatry and neuroscience.  49 
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Introduction 50 

Childhood and adolescence are critical periods for brain development 51 

(Bethlehem et al., 2022). Proper brain development during this time is vital for 52 

cognitive and behavioral maturation (Bunge & Wright, 2007; Luna et al., 2010) and 53 

mental health (Fornito et al., 2015; Paus et al., 2008). This development is shaped by 54 

a complex interplay between genetic predispositions, environmental influences, and 55 

brain network dynamics, yet the precise mechanisms underlying these relationships 56 

remain poorly understood. Therefore, understanding the connections between the 57 

brain, cognitive-behavioral traits in children, and the impact of genetics and the 58 

environment on brain development is crucial in developmental and clinical 59 

neuroscience.  60 

The Adolescent Brain and Cognitive Development (ABCD) study provides an 61 

unprecedented opportunity to examine these interrelations in a large, representative 62 

sample (Jernigan et al., 2018). Leveraging multimodal neuroimaging, genome-wide 63 

polygenic scores (PGSs), and extensive environmental and behavioral assessments, 64 

the ABCD dataset enables a more comprehensive modeling of developmental 65 

trajectories than previously possible. 66 

The brain is best understood as a complex, interconnected network, rather 67 

than a collection of isolated regions. Graph-theoretic approaches to brain connectivity 68 

provide powerful tools to quantify structural network properties such as integration 69 

(e.g., global efficiency), segregation (e.g., modularity), and centrality (e.g., degree 70 

centrality) (Rubinov & Sporns, 2010). Diffusion MRI and tractography allow for the 71 

reconstruction of white matter networks, enabling researchers to examine how these 72 
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structural connections support cognition (Jeurissen et al., 2019; Sotiropoulos & 73 

Zalesky, 2019). Notably, individual differences in brain network organization have been 74 

linked to cognitive abilities (Bathelt, Gathercole, Butterfield, et al., 2018; Kim et al., 75 

2016; Koenis et al., 2015; Ma et al., 2017; Suprano et al., 2020), psychiatric risk 76 

(Alexander-Bloch et al., 2010; Collin et al., 2017; Rudie et al., 2012), and 77 

environmental influences such as socioeconomic status (Kim et al., 2019; Tooley et 78 

al., 2020). However, how genetic and environmental factors jointly shape structural 79 

brain networks, and whether these networks mediate their influence on cognitive and 80 

psychiatric outcomes, remains poorly understood. 81 

Twin and heritability studies suggest that brain network properties are, at least 82 

in part, genetically influenced, with estimates of heritability for measures like global 83 

efficiency ranging from 25% to 70% (Koenis et al., 2015; van den Heuvel et al., 2013). 84 

Yet, the specific genetic variants shaping these structural networks—particularly in the 85 

context of cognitive and psychiatric outcomes—remain poorly characterized. 86 

Investigating this gene-brain-behavior interplay is essential for understanding how 87 

biological predispositions manifest in cognitive and mental health outcomes during 88 

development. 89 

Despite valuable insights from previous studies, most prior research has 90 

employed univariate approaches, limiting the ability to capture the multivariate 91 

complexity of the gene/environment-brain-behavior relationship. To address this 92 

limitation, canonical correlation analysis (CCA) is useful for investigating holistic 93 

relationships underlying a set of variables. CCA models multivariate associations 94 

linking sets of variables from two or more domains by maximizing the canonical 95 

correlation between them (Hotelling, 1936; Wang et al., 2020). Indeed, CCA has been 96 
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widely applied in studying links between brain connectivity, cognitive function, genetics, 97 

and environmental factors (Alnaes et al., 2020; Fernandez-Cabello et al., 2022; 98 

Modabbernia et al., 2021; Smith et al., 2015; Wang et al., 2020). However, traditional 99 

CCA methods may struggle with high-dimensional datasets, necessitating more 100 

advanced approaches. To further address these limitations, we apply sparse canonical 101 

correlation analysis (SCCA) (Witten et al., 2009), a multivariate method that identifies 102 

maximally covarying patterns between genetic factors, brain network properties, and 103 

behavioral traits while reducing dimensionality and enhancing interpretability. 104 

Utilizing the ABCD dataset’s expansive genetic-environmental-neuroimaging-105 

behavioral data, this study aims to answer two fundamental questions. Firstly, “How 106 

do genetic predispositions/environmental influences shape structural brain network 107 

properties in children?”; Secondly, “Do brain network properties mediate the influence 108 

of genetic and environmental factors on cognitive or psychiatric phenotypes?” 109 

By integrating genetics, environmental, neuroimaging, and behavioral 110 

assessments in a large, developmentally significant cohort, this study seeks to 111 

elucidate the complex gene-environmental-brain-behavior pathways that shape 112 

cognitive and mental health outcomes. This research contributes to a more 113 

comprehensive understanding of the biological and environmental foundations of brain 114 

development and lays the groundwork for future interventions aimed at optimizing 115 

cognitive and psychological well-being in youth.  116 
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Methods and Materials 117 

ABCD participants  118 

We used genetic, neuroimaging, environmental, and phenotypic data from 119 

the Adolescent Brain Cognitive Development (ABCD) study (http://abcdstudy.org), 120 

specifically from release 2.0 for genetic and neuroimaging data, release 3.0 for 121 

genetic ancestry information, and release 5.1 for environmental and phenotypic data. 122 

The ABCD study, the largest longitudinal investigation of brain development and 123 

child health in the United States, recruited multiethnic children (N=11,875) aged 9-10 124 

years from 21 research sites. The self-reported ethnicities of participants included 125 

52.3% White, 20.3% Hispanic, 14.7% Black, and 12.5% Asian and others. All 126 

participants provided informed assent, and their parents or legal guardians provided 127 

informed consent before participating in the study. 128 

 129 

Genotype Data and Polygenic Scores 130 

The genotype data used in this study were obtained from the ABCD cohort, 131 

with DNA samples genotyped at Rutgers University Cell and DNA Repository 132 

(RUCDR) using the Affymetrix NIDA Smoke Screen Array. Standard quality control 133 

(QC) procedures were applied to remove variants with low genotype call rate and 134 

minor allele frequency (MAF). Genotype imputation was performed using the 135 

Michigan Imputation Server (Das et al., 2016) with the 1000 Genomes reference 136 

panel (Genomes Project et al., 2015). We further filtered out imputed variants that 137 

did not meet our QC criteria. To account for population structure and relatedness, 138 

principal component analysis (PCA) and kinship-based filtering were used to exclude 139 

close relatives (Conomos et al., 2015; Conomos et al., 2016). 140 

Polygenic scores (PGSs) for 30 cognitive, psychiatric, and behavioral traits 141 

were calculated based on genome-wide association study (GWAS) summary 142 

statistics. These included PGSs for cognitive performance, educational attainment, 143 

schizophrenia, bipolar disorder, depression, insomnia, body mass index, and 144 

automobile speed propensity, among others. The PGSs were derived using PRS-CS 145 

(Ge et al., 2019), a Bayesian regression approach, with optimal hyperparameter 146 
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selection.  147 

The genotype data and polygenic scores used in this study are identical to 148 

those reported in (Joo et al., 2024). A complete list of the 30 polygenic scores, along 149 

with further methodological details on genotype data processing, GWAS sources, 150 

ancestry-based adjustments, and validation procedures can be found in the 151 

Supplementary Materials or (Joo et al., 2024). 152 

 153 

Environmental Factors 154 

To investigate the relationship between children's brain network properties 155 

and their environment, we analyzed 56 variables representing various environmental 156 

aspects. These variables included indicators of family and neighborhood 157 

socioeconomic status, such as family income, parental education level, marital 158 

status, and neighborhood deprivation based on the Area Deprivation Index (ADI). 159 

Additionally, variables related to prenatal substance exposure (e.g., tobacco, alcohol, 160 

cocaine, and marijuana), as well as parental and family factors such as parental 161 

acceptance and family conflict, were included. 162 

To maximize statistical power, we imputed missing data to include as many 163 

samples as possible in the analysis. To account for uncertainty in imputing missing 164 

values and to improve the accuracy and reliability of the imputed values, we 165 

employed the Multiple Imputation by Chained Equations (MICE) method (Van 166 

Buuren & Groothuis-Oudshoorn, 2011). We set the number of imputation iterations to 167 

40 to ensure stable convergence. All imputation procedures were conducted using 168 

the statsmodels package in Python. To ensure that our analysis was robust to 169 
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imputation, we also conducted analyses using only the complete data without any 170 

missing values and included these results as supplementary material. 171 

 172 

Phenotype Data 173 

To explore the relationship between children's brain network properties and 174 

their cognitive ability, mental well-being, and physical health, we examined 86 175 

phenotype variables. To evaluate cognitive ability, we examined the NIH Toolbox 176 

measurements, which included fluid, crystallized, and overall cognition scores, along 177 

with domain-specific task scores for episodic memory, executive function, language, 178 

and processing speed (Weintraub et al., 2013). For assessing the children's mental 179 

health, our analysis encompassed a broad range of emotional and behavioral 180 

measurements, including instruments such as the Child Behavioral Checklist 181 

(CBCL), the Kiddie-Structured Assessment for Affective Disorders and Schizophrenia 182 

for DSM-5 (KSADS-5), and the Prodromal Psychosis Scale (PPS). We also included 183 

measures of behavioral tendencies, such as behavioral inhibition and activation 184 

(BIS/BAS), which assess avoidance behaviors, reward sensitivity, and behavioral 185 

control; impulsivity traits (UPPS), which measure dimensions such as urgency, 186 

perseverance, and sensation seeking; and sleep-related problems, which provide 187 

insights into sleep patterns, quality, and related disorders. For the children's physical 188 

health, we included data such as physical activity. To maximize statistical power, 189 

missing values in the phenotype data were imputed using the Multiple Imputation by 190 

Chained Equations method (Van Buuren & Groothuis-Oudshoorn, 2011). 191 

 192 
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Structural Brain Network Construction 193 

Detailed procedures for acquiring and preprocessing MRI data are described 194 

in (Kim et al., 2022). In brief, we used structural and diffusion MRI data acquired by 195 

the ABCD study (Casey et al., 2018) from data release 2.0. The preprocessing steps, 196 

as detailed in (Kim et al., 2022), included eddy current and head motion correction, 197 

diffusion gradient adjustment, and various distortion corrections. Quality control (QC) 198 

was performed using freesurfer QC metric (fsqc_qc) and raw dMRI QC metric 199 

(iqc_dmri_1_qc_score). To estimate brain structural networks from neuroimaging, 200 

individual connectome data was generated. This was achieved by applying MRtrix3 201 

(Tournier et al., 2019) to the preprocessed dMRI data to estimate whole-brain white 202 

matter tracts and generate individualized connectomes. Probabilistic tractography 203 

was performed using constrained-spherical deconvolution (CSD) (Calamante et al., 204 

2010; Tournier et al., 2007) with random seeding across the brain and target 205 

streamline counts of 20 million. Initial tractograms were filtered using spherical-206 

deconvolution informed filtering (2:1 ratio)(Smith et al., 2013), resulting in a final 207 

streamline count of 10 million. An 84x84 whole-brain connectome matrix was 208 

generated for each participant using the T1-based parcellation and segmentation 209 

from FreeSurfer with Desikan-Killiany atlas (Desikan et al., 2006)(68 nodes for the 210 

cortical regions and 16 nodes for the subcortical regions). This approach ensured 211 

that individual participants' connectomes were based on their neuroanatomy. The 212 

computation was conducted on supercomputers at Argonne Leadership Computing 213 

Facility Theta and Texas Advanced Computing Center Stampede2. 214 

 215 
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Brain Network Measures (BNMs) 216 

We used the connectome matrix to construct an undirect weighted graph 217 

representing the structural brain network. Nodes and edges in the graph represent 218 

parcellated gray matter regions and connections between them, respectively. 219 

Connection strength was quantified by the streamline counts. To account for the 220 

potential false positive connections generated by probabilistic tractography and their 221 

impact on network topology, we eliminated extremely weak connections (streamline 222 

counts less than 3). After thresholding, we excluded individuals with at least one 223 

isolated node, assuming all brain regions are communicable via at least one path. 224 

We calculated 13 different types of brain network measurements (BNMs) 225 

representing different aspects of brain network's property (Rubinov & Sporns, 2010; 226 

van den Heuvel & Sporns, 2011). We calculated eight global graph metrics (including 227 

network density, modularity, normalized modularity, normalized average clustering 228 

coefficient, normalized characteristic path length, global efficiency, normalized global 229 

efficiency, small worldness) and five nodal graph metrics (including degree, strength, 230 

clustering coefficient, betweenness centrality, nodal efficiency) to represent brain 231 

network's global and regional properties. All graph measures were calculated using 232 

the package Brain Connectivity Toolbox (https://sites.google.com/site/bctnet/).  233 

 234 

Statistical analysis 235 

Sparse Canonical Correlation Analysis 236 
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To examine a latent mode of covariation between structural brain network 237 

properties and various polygenic scores, environmental factors, and phenotypic 238 

outcomes, we used sparse canonical correlation analysis (Witten et al., 2009) 239 

between brain network measures and three types of non-imaging data (i.e., PGSs, 240 

environmental variables, phenotype variables) separately. While traditional CCA can 241 

be effective, it often suffers from overfitting and interpretability issues in high-242 

dimensional datasets. SCCA, with its L1 regularization, addresses these issues by 243 

producing sparse solutions that enhance interpretability and reduce overfitting. 244 

Although our dataset is not high-dimensional enough to make traditional CCA 245 

infeasible, we chose SCCA to identify interpretable patterns and ensure robust 246 

results. 247 

The most popular algorithm for sparse canonical correlation analysis is 248 

penalized matrix decomposition (PMD)(Witten et al., 2009), which solves 249 

optimization problem of below equation for given two sets of data matrix 𝑋!×#, 𝑌!×$. 250 

(n: sample size; p, q: the number of variables of domain X and Y respectively; u, v: 251 

canonical weights of domain X and Y respectively; c1, c2: regularization parameter) 252 

max 𝑐𝑜𝑣(𝑋𝑢,			𝑌𝑣) 253 

𝑠. 𝑡.   ∥ 𝑢 ∥%=∥ 𝑣 ∥%= 1,   ∥ 𝑢 ∥&≤ 𝑐&,   ∥ 𝑣 ∥&≤ 𝑐% 254 

To interpret Witten's sparse canonical correlation analysis as correlation 255 

maximization, we need to assume covariance matrices 𝑋'𝑋, 𝑌'𝑌 are identity 256 

matrices (Witten et al., 2009). But in our study with the high dimensional brain 257 

datasets, the assumption is hardly satisfied. For this reason, we interpreted Witten's 258 
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sparse canonical correlation analysis as a maximizing covariance algorithm between 259 

two sets of variables rather than maximizing correlation. 260 

To test the generalizability of the sparse canonical correlation analysis 261 

results, we split the dataset into a training and test set. To reduce ABCD site-262 

sensitive bias, we performed a stratified train (80%) - test (20%) split based on site 263 

ID. For the sparse canonical correlation analysis with PGS and brain network 264 

measures, we only used participants classified as genetically European ancestry to 265 

control genetic confounding effects as the main analysis. To ensure that these 266 

analyses generalize to a multiethnic dataset, we conducted additional analyses on 267 

the multiethnic dataset. In the multiethnic analysis, genetic ancestry was included as 268 

an additional covariate. Table 1 and Supplementary Table 1 summarize the 269 

demographic information of the samples included in main and supplementary 270 

analysis, respectively. 271 

We attempted to control for potential confounding effects from age, sex, self-272 

reported race/ethnicity, ABCD study site, and handedness. Similar to (Modabbernia 273 

et al., 2021), we controlled these potential confounding effects by regressing out the 274 

variance explained by age, sex, age * sex, age^2, age^2 * sex, self-reported 275 

race/ethnicity, ABCD study site, and handedness from all variables prior to 276 

performing SCCA analysis. For binary variables such as KSADS diagnosis, we used 277 

logistic regression to regress out these effects. The residualized data was then used 278 

as input for sparse canonical correlation analysis (SCCA). We used SCCA_PMD 279 

function from the Python 'cca-zoo' package. To ensure that the main findings are 280 

robust and not driven by the selection of specific covariates, we performed additional 281 
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analyses using a reduced set of covariates (age, sex, self-reported race/ethnicity, 282 

ABCD study site, and handedness). 283 

We selected optimal L1 regularization parameters from 5-fold cross validation 284 

searching from 0.1 to 1 with a step size of 0.05 for both X and Y variables 285 

respectively. The optimal L1 parameter combination was selected to maximize the 286 

covariance of validation set between canonical variates of the first component. 287 

For each sparse canonical correlation analysis, we extracted five modes of 288 

covariance. To examine the statistical significance of each mode, we used a 289 

permutation test. By randomly shuffling the rows of one dataset and remaining the 290 

other, we generated 5,000 permutation sets. The p-value of each component was 291 

calculated based on the number of permutation sets having greater covariance than 292 

that obtained from the original dataset, and FDR-correction was done within each 293 

CCA.  294 

𝑝(!)*++,)-,. =
𝑁!(// )*1 2 )*1

𝑁!(//
 295 

Selected variables and their loading depend on the input sample. To find 296 

variables reliably related to each mode, we used bootstrap resampling. We randomly 297 

resampled 5,000 times with replacement and assessed the 95% confidence interval 298 

of each variable's loading and how consistently it was selected. We interpreted the 299 

significant modes based on loading patterns of variables whose 95% confidence 300 

interval of loading does not cross zero (Xia et al., 2018) and selected more 301 

frequently than expected by chance (i.e., more frequently selected than expected by 302 

binomial distribution). Because sparse canonical correlation analysis with bootstrap 303 

sample may change the order of components (axis rotation) and signs (reflection) 304 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 17, 2025. ; https://doi.org/10.1101/2023.07.24.23293075doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.24.23293075
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

 14/53  

 

(Misic et al., 2016; Xia et al., 2018), the re-alignment procedure is needed to 305 

estimate confidence interval of loading properly. We matched the components and 306 

signs based on cosine similarity of weight vectors obtained from original dataset and 307 

bootstrap sample. To assess the reproducibility of the findings, we applied the model 308 

to the held-out test set and estimated significance of each mode through the 309 

permutation test. 310 

Mediation Analysis 311 

After performing sparse canonical correlation analysis (SCCA), we tested 312 

whether brain network properties mediate the influence of genetic and environmental 313 

factors on cognitive and psychiatric phenotypes. Since SCCA identifies latent modes 314 

of covariation between brain network properties and multiple domains, the SCCA-315 

derived variates serve as optimal summary representations that capture the 316 

dominant axes of covariation among brain network properties, genetic 317 

predispositions, environmental influences, and phenotypic traits. We used these 318 

summary scores in mediation analysis to test the hypothesized gene/environment–319 

brain network–phenotype pathway while reducing high-dimensional data into 320 

interpretable components.  321 

We used the same covariates as in the SCCA, which include age, sex, age * 322 

sex, age^2, age^2 * sex, self-reported race/ethnicity, ABCD study site, and 323 

handedness. The two-sided p-values for each path were estimated from 500 324 

bootstrap samples using the mediation_analysis function from the Python 'pingouin' 325 

package.   326 
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Results 327 

Using sparse canonical correlation analysis (SCCA), we investigated 328 

relationships between structural brain network properties and three domains: 329 

genome-wide polygenic scores (PGSs), environmental factors, and phenotypic 330 

outcomes. Figure 1 presents only variables whose 95% confidence intervals for 331 

loadings do not cross zero, ensuring reliable positive or negative associations. 332 

Covariation between polygenic scores and structural brain network properties 333 

Our analysis identified a statistically significant mode of covariation between 30 334 

genome-wide polygenic scores and brain network measures (PGS-BNM mode 1, 𝑝  =335 

0.001 	, 𝑐𝑜𝑣  =  0.895, 𝑟 = 0.143, FDR corrected). 336 

In this mode of PGSs (Figure 1A), polygenic scores reflecting cognitive ability 337 

(e.g., IQ and educational attainment) showed the strongest positive loadings, while the 338 

polygenic score for BMI showed a negative loading. Additionally, polygenic scores for 339 

automobile speed propensity and cannabis use had moderate positive loadings, 340 

whereas those for insomnia showed moderate negative loadings. Given these 341 

dominant loading patterns, this mode represents variance along the ‘Cognitive-342 

Obesity Genetic Axis,’ primarily reflecting genetic traits related to cognitive ability. 343 

Loadings for polygenic scores not shown in (Figure 1A) are provided in 344 

(Supplementary Figure 1). 345 

Higher values in this mode were linked to increased nodal efficiency in the 346 

temporal gyri, betweenness centrality in the supramarginal and post-central gyri, and 347 

higher clustering coefficients in the temporal, parietal, central, and inferior frontal gyri 348 

(Figure 1B).  Conversely, higher values in this mode were associated with lower 349 
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connectivity in the cingulate cortex, insula, and subcortical regions, along with reduced 350 

nodal efficiency in the insula and subcortical regions. Regarding global brain network 351 

measures, density (-0.613) and global efficiency (-0.421) showed negative loadings, 352 

while the normalized average clustering coefficient (0.542) showed a positive loading. 353 

Results from the multi-ethnic analysis were consistent with those observed in 354 

the European-only analysis (Supplementary Figure 2). When we controlled for 355 

confounding effects using a simplified set of covariates, the results remained largely 356 

unchanged. However, when the SCCA model trained on the training set was applied 357 

to the test set, the p-value was marginally significant (p = 0.0534). 358 

 359 

Covariation between environmental factors and structural brain network 360 

properties 361 

Among the five modes analyzed, only the first mode was statistically 362 

significant and generalized to the hold-out test set (ENV-BNM mode 1, p < 0.001, 363 

cov = 1.251, cor = 0.146, FDR corrected). The environmental component of this 364 

mode predominantly captured variance related to socioeconomic status (SES) 365 

(Figure 1C).  366 

Notably, neighborhood-level SES variables, such as ADI median family 367 

income and ADI education level, showed the strongest positive loadings. Similarly, 368 

family-level SES variables, including household income, also showed positive 369 

associations, though their loadings were slightly lower than those of neighborhood-370 

level SES measures. Variables reflecting neighborhood-level socioeconomic 371 
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deprivation, such as ADI poverty indices, showed strong negative loadings. 372 

Additionally, prenatal substance exposures—such as tobacco exposure during 373 

pregnancy—showed moderate negative associations with this component. These 374 

results suggest that this component reflects a spectrum of socioeconomic status 375 

from socioeconomic advantage to disadvantage.  376 

On the brain network side (Figure 1D), connection strength and nodal 377 

efficiency in the temporal gyrus showed positive loadings, and connection strength, 378 

betweenness centrality, and clustering coefficient in regions such as the cingulate 379 

cortex and precuneus showed negative loadings. Regarding global brain network 380 

measures, normalized global efficiency (0.360) showed positive loading.  381 

These results were robust across different sets of covariates. When missing 382 

values were handled by dropping incomplete cases rather than through imputation, 383 

the environmental component remained consistent. The general loading patterns of 384 

brain network properties were also similar; but, the overall magnitude of the loadings 385 

was slightly lower than in the main analysis, possibly due to reduced statistical power 386 

(Supplementary Figure 4). 387 

 388 

Covariation between phenotypes and structural brain network properties 389 

Among the five modes of covariation identified by SCCA, the first two modes 390 

were statistically significant and generalized to the hold-out test sets (Pheno-BNM 391 

mode 1: p < 0.001, cov = 1.421, r = 0.143; Pheno-BNM mode 2: p < 0.001, cov = 0.923, 392 

r = 0.123, all p-values were FDR corrected).  393 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 17, 2025. ; https://doi.org/10.1101/2023.07.24.23293075doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.24.23293075
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

 18/53  

 

The first mode captured covariation between brain network properties and an 394 

integrated measure of cognitive ability and psychopathology in children (Figure 1E). 395 

Cognitive ability-related scores (e.g., NIH Toolbox scores) showed positive loadings, 396 

while psychopathology-related scores (e.g., CBCL scores) showed negative 397 

loadings. These loading patterns suggest that the first phenotype mode reflects 398 

variation along the cognitive ability-psychopathology axis. 399 

Brain network properties associated with this mode showed positive loadings 400 

for nodal efficiency and betweenness centrality in the temporal and parietal cortices. 401 

In contrast, connection strength in the insula, cingulate, precuneus, and subcortical 402 

regions showed negative loadings. Additionally, nodal efficiency in the insula and 403 

subcortical regions was negatively associated with this mode (Figure 1F). No 404 

significant global brain network measures were identified for this mode. 405 

In phenotype mode 2 (Figure 2), positive loadings were observed for 406 

standing height, being born prematurely, having hearing or vision issues, and 407 

experiencing obstetric complications. Although the uncertainty in loading estimation 408 

is considerable, abnormal behavior (CBCL scores) also exhibited the highest positive 409 

loading in this mode (Supplementary Figure 7). On the brain network properties 410 

side, lower connection strength and nodal efficiency were observed in the precentral 411 

and postcentral gyri, superior frontal gyrus, and thalamus. Degree in the middle 412 

temporal gyrus, superior frontal gyrus, and postcentral gyrus also tended to be lower. 413 

Among global brain network metrics, normalized modularity (-0.195), global 414 

efficiency (-0.343), and normalized global efficiency (-0.487) showed negative 415 

loadings, while modularity (0.534) showed positive loading. 416 
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The findings remained stable across different covariate sets. When missing 417 

values were handled by excluding incomplete cases instead of using imputation, the 418 

mode 1 results remained consistent (Supplementary Figure 6). However, in mode 419 

2, unlike the imputed case, only height, weight, and BMI exhibited reliable positive 420 

loadings, while CBCL, despite its high estimation uncertainty, showed a strong 421 

negative loading (Supplementary Figure 8). 422 

 423 

Shared Covariation Patterns in Brain Network Properties  424 

Our SCCA identified certain brain network properties that showed similar 425 

covariation patterns across genetic factors related to cognitive ability, socioeconomic 426 

status, and phenotypes of cognitive ability-psychopathology. (Figure 1G) presents 427 

the brain network properties that shared common loading patterns with the primary 428 

SCCA modes for polygenic scores (PGS mode 1), environmental factors (ENV mode 429 

1), and phenotypes (Pheno mode 1). Across these domains, brain network measures 430 

such as nodal efficiency in the temporal gyrus consistently showed positive loadings, 431 

while measures like connection strength in the posterior cingulate and subcortical 432 

regions consistently showed negative loadings.  433 

 434 

Mediation Analysis 435 

The observed covariation patterns in brain network properties across genetic, 436 

environmental, and phenotypic domains led us to hypothesize that structural brain 437 

networks mediate two key relationships: (1) between genetic factors related to 438 
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cognitive ability and the cognitive ability-psychopathology phenotype, and (2) 439 

between socioeconomic status and the cognitive ability-psychopathology phenotype. 440 

To test these hypotheses, we conducted mediation analyses using SCCA-derived 441 

summary scores from each domain. 442 

Our analysis revealed significant mediation effects in both cases. Structural 443 

brain network properties partially mediated the relationship between polygenic 444 

scores for cognitive ability and the cognitive ability-psychopathology phenotype 445 

(indirect effect = 0.023, p < 0.001; Figure 3A), as well as between socioeconomic 446 

status and the cognitive ability-psychopathology phenotype (indirect effect = 0.015, p 447 

< 0.001; Figure 3B). 448 

 449 

Discussion  450 

This study investigated how structural brain network properties covary with 451 

genetic, environmental, and phenotypic factors in 9–10-year-old children and 452 

whether these properties mediate genetic and environmental effects on cognitive-453 

behavioral outcomes. By integrating polygenic scores (PGS), environmental 454 

variables, and cognitive-behavioral traits using sparse canonical correlation analysis 455 

(SCCA), we identified shared covariation patterns in brain network properties across 456 

these domains. Previous studies have demonstrated that structural brain network 457 

properties are heritable (Koenis et al., 2015; van den Heuvel et al., 2013), but the 458 

specific genetic contributions to brain network organization in children remain 459 

underexplored. Our findings address this gap by providing evidence that cognitive 460 

ability-related genetic factors, socioeconomic status, and cognitive-461 
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psychopathological phenotypes are key determinants of structural brain network 462 

variations in preadolescents. Moreover, mediation analyses reveal that structural 463 

brain network properties serve as intermediaries between genetic/environmental 464 

influences and cognitive-psychopathological outcomes. This suggests that variations 465 

in brain network organization may provide a mechanistic pathway through which 466 

early-life genetic and environmental factors contribute to individual differences in 467 

cognitive and mental health outcomes. 468 

Our results reveal that structural brain network properties exhibit distinct yet 469 

overlapping covariation patterns with genetic, environmental, and phenotypic factors. 470 

Specifically, brain network measures such as nodal efficiency in the temporal and 471 

parietal cortices were consistently associated with cognitive ability-related genetic 472 

factors, higher socioeconomic status, and better cognitive performance. Conversely, 473 

weaker connectivity in the posterior cingulate, insula, and subcortical regions was 474 

commonly linked to genetic risk for lower cognitive ability, socioeconomic 475 

disadvantage, and increased psychopathology. Consistent with prior studies (Alnaes 476 

et al., 2020; Fernandez-Cabello et al., 2022; Modabbernia et al., 2021; Smith et al., 477 

2015), these findings suggest that children’s brain network properties also covary 478 

along spectrums of ‘positive-negative’ factors across genetic, environmental, and 479 

phenotypic dimensions. Unlike previous studies that explored covariation between 480 

brain features and only some of these domains, our study examined all three factors 481 

simultaneously, identifying a common set of brain network properties that covary 482 

across genetic, environmental, and phenotypic factors. These findings highlight the 483 

potential of these brain networks as key substrates underlying cognitive and mental 484 
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health disparities, shaped by both genetic predisposition and environmental 485 

influences during childhood. 486 

Our findings align with established neurodevelopmental models, which 487 

suggest that childhood and adolescence are characterized by a shift from 488 

subcortical-driven to cortico-cortical-dominated network organization (Baker et al., 489 

2015; Langen et al., 2018; Menon, 2013; Sato et al., 2015). Specifically, favorable 490 

genetic and phenotypic traits related to cognitive ability and SES were associated 491 

with greater nodal efficiency and betweenness centrality in the temporal and parietal 492 

cortices and reduced connectivity in the posterior cingulate, insula, and subcortical 493 

regions. These patterns are consistent with established neurodevelopmental 494 

trajectories, which involve a progressive strengthening of long-range cortico-cortical 495 

connectivity (Hwang et al., 2013; Oldham & Fornito, 2019) and reduction in 496 

subcortical connectivity as higher-order networks become more specialized (Baker et 497 

al., 2015; Langen et al., 2018; Sato et al., 2015). Interestingly, the associations 498 

between genetic, environmental, and phenotypic factors and brain network 499 

organization mirror expected patterns of cortical-subcortical reorganization, wherein 500 

cortico-cortical integration strengthens while subcortical connectivity decreases. 501 

These findings suggest that genetic and environmental influences may shape the 502 

timing or pace of this cortical-subcortical transition, potentially accelerating or 503 

delaying neurodevelopmental trajectories and influencing individual differences in 504 

cognitive and mental health outcomes (Heller et al., 2016). 505 

Children with higher cognitive performance tend to have greater nodal 506 

efficiency and betweenness centrality in the temporal, parietal, and superior frontal 507 

regions—areas crucial for higher-order cognitive functions such as language, 508 
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semantic processing, abstract reasoning, and working memory (Binder et al., 2009; 509 

Culham & Kanwisher, 2001; du Boisgueheneuc et al., 2006; Price, 2012; Visser et 510 

al., 2012). This suggests that enhanced network integrity in these regions supports 511 

cognitive ability by efficient communication across the brain. Consistent with this, our 512 

results support the parieto-frontal integration theory (P-FIT) of intelligence (Basten et 513 

al., 2015; Jung & Haier, 2007), which posits that effective information integration 514 

across distributed networks, particularly involving the frontal, parietal, and temporal 515 

regions, underlies intelligence. Notably, while previous studies have linked global 516 

efficiency with cognitive performance (Bathelt, Gathercole, Butterfield, et al., 2018; 517 

Kim et al., 2016; Ma et al., 2017), our findings—derived from a largest to date 518 

sample—suggest that regional network efficiency, rather than global efficiency, is 519 

more strongly associated with cognitive ability. This highlights the importance of 520 

region-specific network topologies in understanding neurodevelopmental differences. 521 

Although neighborhood-level socioeconomic status (SES) and family-level 522 

SES are both associated with children’s brain development, neighborhood-level SES 523 

has a unique relationship with brain structure and functional networks, distinct from 524 

that of family-level SES (Rakesh et al., 2022; Tooley et al., 2020). In our results, the 525 

link between neighborhood-level SES and structural brain network properties was 526 

more pronounced than associations with family-level SES. 527 

Prenatal substance exposure, particularly to tobacco and marijuana, 528 

exhibited moderate negative loadings within the SES-related brain network mode, 529 

reinforcing prior findings that lower socioeconomic status is associated with 530 

increased prenatal exposure to neurotoxic substances (Gu et al., 2024; Metz et al., 531 

2018; Mravcik et al., 2020). This association likely reflects a complex interplay 532 
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between socioeconomic adversity and prenatal environmental stressors, both of 533 

which have been implicated in shaping neurodevelopmental trajectories (El Marroun 534 

et al., 2016; Ross et al., 2015; Thompson et al., 2009). Given that SES-related 535 

disparities in brain connectivity may stem from a combination of prenatal exposures, 536 

postnatal environments, and genetic predispositions, the observed negative loading 537 

may capture broader socioeconomic influences rather than a direct teratogenic effect 538 

of prenatal substance exposure. However, disentangling these effects is challenging, 539 

as the precise mechanisms through which prenatal exposures contribute to structural 540 

brain network alterations remain unclear. Future studies leveraging genome-541 

environment interaction analyses, longitudinal neuroimaging, and causal inference 542 

approaches (e.g., Mendelian randomization) are essential to elucidate how prenatal 543 

risk factors, SES, and genetic predispositions collectively shape neurodevelopmental 544 

outcomes. 545 

Phenotype mode 2 presents a complex pattern, linking standing height, 546 

perinatal risk factors, and sensorimotor brain networks. The lower network efficiency 547 

in the precentral and postcentral gyri, superior frontal gyrus, and thalamus suggests 548 

a potential connection to early neurodevelopmental processes, particularly those 549 

involved in motor and sensory integration. Given the variability in loading estimates, 550 

further research is needed to determine whether these associations reflect specific 551 

neurodevelopmental mechanisms or statistical artifacts. 552 

Several limitations should be acknowledged. First, the cross-sectional design 553 

precludes causal inferences, necessitating longitudinal research to validate the 554 

mediating role of brain networks in shaping developmental trajectories of cognitive 555 

and mental health. Second, gene-by-environment (G×E) interactions were not 556 
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explicitly modeled, limiting our ability to assess whether socioeconomic status (SES) 557 

moderates genetic influences on brain connectivity. Future research should integrate 558 

G×E interaction analyses to better understand how genetic predispositions interact 559 

with environmental contexts in shaping neurodevelopment. Finally, although sparse 560 

canonical correlation analysis (SCCA) provided a powerful multivariate approach, it 561 

assumes linear relationships between brain networks and genetic/environmental 562 

factors, which may oversimplify complex neurodevelopmental processes. Future 563 

studies should consider non-linear modeling approaches and more sophisticated 564 

causal inference methods (e.g., Mendelian randomization, structural equation 565 

modeling) to capture the intricate interplay of genes, environments, and brain 566 

development.  567 

Addressing these gaps will enhance the robustness of future research, 568 

ultimately contributing to a more comprehensive understanding of how genetic and 569 

environmental factors shape brain development. These insights may inform early 570 

intervention strategies aimed at mitigating neurodevelopmental disparities, such as 571 

targeted cognitive training, socioeconomic policy reforms, or school-based 572 

enrichment programs that support children from disadvantaged backgrounds.  573 
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Tables 625 

Table 1. Demographic information of the main analysis participants. 626 

   PGS – BNM 

(n=5,784)  

ENV – BNM 

(n=10,343)  

Pheno – BNM 

(n=10,343)  

   train  test  train  test  train  test  

N total 4,626 1,157 8,274 2,069 8,274 2,069 

Sex Male  2,453 627 4,343 1,065 4,343 1,065 

Female  2,172 529 3,929 1,003 3,929 1,003 

Other 1 1 2 1 2 1 

Race White  3,225 802 4,350 1,128 4,350 1,128 

Black  29 7 1,194 295 1,194 295 

Hispanic  902 223 1,686 408 1,686 408 

Asian  8 0 173 37 173 37 

Other  462 125 871 201 871 201 

627 
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Figure 1 Loading patterns of principal mode of sparse canonical correlation analysis. The 628 

SCCA results for the first modes of PGS-BNM, ENV-BNM, and Pheno-BNM. Only variables with 95% 629 

confidence intervals, estimated from 5,000 bootstrap samples, that do not cross zero are shown. 630 

Results for other variables can be found in supplementary figures. (A) The loadings of significant PGS 631 

variables in the PGS-BNM mode 1. The error bars represent the 95% confidence interval of the 632 

loading, estimated from the 5,000 bootstrap samples. The color of each bar represents the category 633 

to which the variable belongs. (B) The loadings of significant nodal brain network measures in the 634 

PGS-BNM mode 1. The loading patterns were visualized with R-package ‘ggseg’ (Mowinckel & Vidal-635 

Pineiro, 2020). (C) The loadings of significant environmental variables in the ENV-BNM mode 1. (D) 636 

The loadings of significant nodal brain network measures in the ENV-BNM mode 1. (E) The loadings 637 

of significant phenotype variables in the Pheno-BNM mode 1. (F) The loadings of significant nodal 638 

brain network measures in the Pheno-BNM mode 1. (G) Brain network measures that their loadings 639 

are commonly significant in PGS-BNM mode 1, ENV-BNM mode1, and Pheno-BNM mode1. 640 

  641 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 17, 2025. ; https://doi.org/10.1101/2023.07.24.23293075doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.24.23293075
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

 31/53  

 

 642 

Automobile 
Speed Propensity

Educational 
Attainment

Cognitive 
Performance

A Polygenic Scores Lodings in PGS-BNM SCCA Mode1
Degree

Normalized Nodal Efficiency

Strength

Betweenness Centrality

Normalized Clustering Coefficient

−1.0

−0.5

0.0

0.5

1.0
loading

B Brain Network Lodings in PGS-BNM SCCA Mode1

C Environmental Lodings in ENV-BNM SCCA Mode1

Strength

Degree

Betweenness Centrality

Normalized Nodal Efficiency

Normalized Clustering Coefficient

−1.0

−0.5

0.0

0.5

1.0
loading

D Brain Network Lodings in ENV-BNM SCCA Mode1

Strength Normalized Nodal EfficiencyBetweenness Centrality
GCommonly Covarying Brain Network Measures

E Phenotype Lodings in Pheno-BNM SCCA Mode1

−1.0

−0.5

0.0

0.5

1.0
loading

F Brain Network Loadings in Pheno-BNM SCCA Mode1

Strength

Degree

Normalized Clustering Coefficient

Normalized Nodal Efficiency

Betweenness Centrality

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 17, 2025. ; https://doi.org/10.1101/2023.07.24.23293075doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.24.23293075
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

 32/53  

 

 643 

Figure 2 Loading patterns of second mode of Pheno-BNM sparse canonical correlation 644 
analysis. (A) The loadings of significant phenotype variables in the Pheno-BNM SCCA mode 2. (B) 645 
The loadings of significant nodal brain network measures in the Pheno-BNM SCCA mode 2. 646 
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Figure 3 Results of mediation analysis investigating the gene-brain network-phenotype and 648 
environment-brain network-phenotype pathways. Mediation analysis was conducted using 649 
canonical variates derived from SCCA for polygenic scores, brain network measures, phenotypes, 650 
and environmental factors. (A) Brain network properties mediating the relationship between polygenic 651 
scores (reflecting cognitive ability) and phenotype scores (reflecting cognitive ability-652 
psychopathological traits). (B) Brain network properties mediating the relationship between 653 
environmental factors (reflecting socioeconomic status) and phenotype scores (cognitive ability-654 
psychopathological traits). 655 
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Supplementary Materials 1065 

Details on Genotype Data 1066 

The saliva DNA samples of study participants were collected, and 733,293 1067 

single nucleotide polymorphisms (SNPs) were genotyped at Rutgers University Cell 1068 

and DNA Repository (RUCDR) with Affymetrix NIDA Smoke Screen Array. Using 1069 

PLINK 1.90, we excluded SNPs with genotype call rate <95%, sample call rate 1070 

<95%, and minor allele frequency (MAF) <1% before imputation. The genotypes 1071 

were imputed using the Michigan Imputation Server (Das et al., 2016) using the 1000 1072 

Genome phase3 version5 panel (Genomes Project et al., 2015) with Eagle v2.4 1073 

phasing (Loh et al., 2016). Then, the imputed variants with INFO score > .3 that did 1074 

not meet our quality control criteria (i.e., call rate <95%, MAF <1%, and Hardy–1075 

Weinberg equilibrium p-value <1e-6) were additionally filtered out. To address 1076 

potential bias derived from genetically diverse and related family members in the 1077 

ABCD study, we employed PC-Air (Conomos et al., 2015) and PC-Relate (Conomos 1078 

et al., 2016) to obtain genetically unrelated individuals beyond 4th-degree relatives 1079 

(i.e., kinship coefficient >0.022) and to remove outliers beyond 6 SD limits from the 1080 

center of ancestrally informative principal component (PC) space. After quality 1081 

control procedures, we included a total of 11,301,999 variants in 10,199 multiethnic 1082 

participants. From these, we excluded first-, second-, or third-degree related 1083 

samples, resulting in 8,620 unrelated multiethnic participants, among whom 6,555 1084 

were of European ancestry. 1085 

 1086 

Details on Polygenic Scores (PGSs) 1087 
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Polygenic scores (PGSs) analyzed in this study are the same PGSs data 1088 

used in (Joo et al., 2024). PGSs were derived using summary statistics from publicly 1089 

available genome-wide association studies (GWAS). Thirty traits were selected 1090 

based on relevance to cognitive, psychiatric, and behavioral outcomes. The chosen 1091 

GWAS include attention-deficit/hyperactivity disorder (ADHD) (Demontis et al., 1092 

2019), cognitive performance (CP) (Lee et al., 2018), educational attainment (EA) 1093 

(Lee et al., 2018), major depressive disorder (MDD) (Wray et al., 2018), insomnia 1094 

(Jansen et al., 2019), snoring (Jansen et al., 2019), intelligence quotient (IQ) 1095 

(Savage et al., 2018), post-traumatic stress disorder (PTSD) (Nievergelt et al., 2019), 1096 

depression (DEP) (Howard et al., 2019; Shen et al., 2020), body mass index (BMI) 1097 

(Akiyama et al., 2017; Locke et al., 2015), alcohol dependence (ALCDEP) (Walters 1098 

et al., 2018), autism spectrum disorder (ASD) (Grove et al., 2019), automobile 1099 

speeding propensity (ASP) (Akiyama et al., 2017), bipolar disorder (BIP) (Stahl et al., 1100 

2019), cannabis during lifetimes (Cannabis) (Pasman et al., 2019), ever smoker 1101 

(Karlsson Linner et al., 2019), shared effects on five major psychiatric disorder 1102 

(CROSS) (Cross-Disorder Group of the Psychiatric Genomics, 2013), alcoholic 1103 

drinks consumption per week (Drinking) (Karlsson Linner et al., 2019), anorexia 1104 

nervosa (Watson et al., 2019), neuroticism (Nagel et al., 2018), obsessive-1105 

compulsive disorder (OCD) (International Obsessive Compulsive Disorder 1106 

Foundation Genetics & Studies, 2018), first principal components of four risky 1107 

behaviors (Risky Behav) (Karlsson Linner et al., 2019), general risk tolerance 1108 

(RiskTol) (Karlsson Linner et al., 2019), schizophrenia (SCZ) (Bipolar et al., 2018; 1109 

Lam et al., 2019), worrying (Nagel et al., 2018), anxiety (Otowa et al., 2016), 1110 

subjective well-being (SWB) (Okbay et al., 2016), general happiness (UK Biobank 1111 

GWAS. Neale Lab. http://www.nealelab.is/ukbiobank/), and general happiness for 1112 
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health (happiness-health) (UK Biobank GWAS. Neale Lab. 1113 

http://www.nealelab.is/ukbiobank/) and meaningful life (happiness-meaning) (UK 1114 

Biobank GWAS. Neale Lab. http://www.nealelab.is/ukbiobank/). 1115 

For 25 of these traits, where only European-based GWAS were available, we 1116 

calculated polygenic scores using European-based GWAS summary statistics. For 1117 

five traits where multiethnic GWAS results were available (PTSD, DEP, BMI, 1118 

ALCDEP, SCZ), we calculated polygenic scores using both European-based and 1119 

multiethnic-based GWAS summary statistics. In the European-only analysis, we 1120 

used polygenic scores for all 30 traits calculated based on European-based GWAS. 1121 

The GWAS summary statistics were used as input for PRS-CS (Ge et al., 1122 

2019), a Bayesian regression method, to estimate the posterior effect sizes of SNPs. 1123 

The final scores were calculated using PLINK v1.9. To optimize the scores, we 1124 

followed the suggestion of the original PRS-CS paper and chose the optimal global 1125 

shrinkage hyperparameter (phi, j) from among four possible values: 1, 1e-2, 1e-4, 1126 

and 1e-6. The validation procedure was carried out within 14 PGSs (i.e., DEP, MDD, 1127 

ADHD, general happiness, happiness-health, happiness-meaning, SWB, insomnia, 1128 

snoring, BMI, PTSD, CP, EA, IQ) that had related measures in the ABCD study. For 1129 

each PGS, we performed linear regression of the phenotype variable with each of 1130 

the four scores and covariates (sex, age, and the first ten genetic PCs), and then, 1131 

based on R2 and beta coefficient of PGS, selected one of the four PGSs. The 1132 

remaining 16 PGSs was automatically validated by PRS-CS-auto (Ge et al., 2019), 1133 

which select the optimal value of global shrinkage parameter employing a Bayesian 1134 

approach. Finally, to minimize the bias from population stratification, we residualized 1135 

the final PGSs with the first ten genetic PCs. 1136 
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Supplementary Table 1. Demographic information of the 1137 

supplementary analysis participants (multiethnic analysis and 1138 

complete data samples). 1139 

   PGS – BNM 

(n=7,297)  

ENV – BNM 

(n=4,215)  

Pheno – BNM 

(n=6,598)  

   train  test  train  test  train  test  

N total 5,837 1,460 3,372 843 5,278 1,320 

Sex Male  3,087 765 1,790 440 3,031 758 

Female  2,747 695 1,581 403 2,247 562 

Other 3 0 1 0 0 0 

Race White  3,251 780 1,702 451 3,036 765 

Black  798 207 474 103 674 161 

Hispanic  1,176 302 781 183 933 228 

Asian  18 6 86 21 94 19 

Other  594 165 329 85 541 147 

 1140 

 1141 

 1142 

 1143 

 1144 
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Supplementary Figure 1. SCCA Loadings of Polygenic Scores in 1145 

European Samples. 1146 

 1147 
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Supplementary Figure 2. SCCA Loadings of Polygenic Scores and 1155 

Brain Network Measures in Multiethnic Samples. 1156 
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Supplementary Figure 3. SCCA Loadings of Environmental 1159 

Variables in the Main Analysis. 1160 

 1161 

 1162 

 1163 

 1164 

 1165 

 1166 

 1167 

 1168 

 1169 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 17, 2025. ; https://doi.org/10.1101/2023.07.24.23293075doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.24.23293075
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

 49/53  

 

Supplementary Figure 4. SCCA Loadings of Environmental 1170 

Variables and Brain Network Measures in Non-Imputed Samples. 1171 
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Supplementary Figure 5. SCCA Loadings of Phenotype Variables in 1174 

the Main Analysis Mode 1. 1175 
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Supplementary Figure 6. SCCA Loadings of Phenotype Variables 1185 

and Brain Network Measures in Non-Imputed Samples Mode 1. 1186 
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Supplementary Figure 7. SCCA Loadings of Phenotype Variables in 1189 

the Main Analysis Mode 2. 1190 
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Supplementary Figure 8. SCCA Loadings of Phenotype Variables 1200 

and Brain Network Measures in Non-Imputed Samples Mode 2. 1201 
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