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Abstract 
Autosomal recessive (AR) coding variants are a well-known cause of rare disorders. We 
quantified the contribution of these variants to developmental disorders (DDs) in the largest 
and most ancestrally diverse sample to date, comprising 29,745 trios from the Deciphering 
Developmental Disorders (DDD) study and the genetic diagnostics company GeneDx, of 
whom 20.4% have genetically-inferred non-European ancestries. The estimated fraction of 
patients attributable to exome-wide AR coding variants ranged from ~2% to ~18% across 
genetically-inferred ancestry groups, and was significantly correlated with the average 
autozygosity (r=0.99, p=5x10-6). Established AR DD-associated (ARDD) genes explained 
90% of the total AR coding burden, and this was not significantly different between probands 
with genetically-inferred European versus non-European ancestries. Approximately half the 
burden in these established genes was explained by variants not already reported as 
pathogenic in ClinVar. We estimated that ~1% of undiagnosed patients in both cohorts were 
attributable to damaging biallelic genotypes involving missense variants in established 
ARDD genes, highlighting the challenge in interpreting these. By testing for gene-specific 
enrichment of damaging biallelic genotypes, we identified two novel ARDD genes passing 
Bonferroni correction, KBTBD2 (p=1x10-7) and CRELD1 (p=9x10-8). Several other novel or 
recently-reported candidate genes were identified at a more lenient 5% false-discovery rate, 
including ZDHHC16 and HECTD4. This study expands our understanding of the genetic 
architecture of DDs across diverse genetically-inferred ancestry groups and suggests that 
improving strategies for interpreting missense variants in known ARDD genes may allow us 
to diagnose more patients than discovering the remaining genes. 
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Introduction 
High-throughput exome and genome sequencing1 have revolutionised the diagnosis of 
developmental disorders (DD)2, typically allowing 30-40% of patients to obtain a genetic 
diagnosis3,4. Multiple new DD-associated genes have been discovered by statistical analysis 
of sequence data from large, phenotypically heterogeneous cohorts5–10. For example, a 
recent study brought together >30,000 trios primarily from the Deciphering Developmental 
Disorders (DDD) study and the US-based diagnostic testing company GeneDx, and 
identified twenty-eight novel genes in which de novo mutations are likely to cause DDs5. This 
contrasts with the more traditional approach of phenotype-driven gene discovery based on 
small numbers of patients or families who appear to have the same rare, clinically 
recognizable disorder (e.g.11,12), or the “Matchmaker Exchange” approach in which 
researchers identify additional patients from other cohorts who have potentially damaging 
variants in the same candidate disease gene as an index patient13.  
 
The genetic architecture of DDs has been shown to vary between genetically-defined 
ancestry groups as a result of varying levels of consanguinity6,14. In a study of 6,040 exome-
sequenced patients from the DDD study, we previously estimated through exome-wide 
burden analysis that ~4% of probands with European ancestries and ~31% of those with 
Pakistani ancestries could be explained by autosomal recessive (AR) coding variants, 
versus ~50% and ~30% respectively explained by de novo coding mutations6. Forty-eight 
percent of the exome-wide burden of recessive causes was in known AR DD-associated 
(ARDD) genes, indicating that larger sample sizes would be required to find the additional 
genes. Here, we combine a larger set of DDD trios with data from GeneDx to study the 
recessive contribution to DDs in a set of 29,745 trio probands across twenty-two genetically-
inferred ancestry (GIA) groups, of whom 20.4% have majority non-European ancestries. We 
first quantify the recessive contribution to DDs across GIA groups and the extent to which 
this is explained by known genes and known pathogenic variants. We then conduct gene-
based burden testing to identify new recessive genes underlying DDs. 

Results 
We analysed deidentified exome-sequence data from the DDD study (N=13,450 probands) 
and from GeneDx. Since the vast majority of DDD patients have at least one Human 
Phenotype Ontology (HPO) term under ‘abnormality of the nervous system’, we selected the 
36,057 GeneDx patients with at least one such term for inclusion in this analysis. There were 
differences in the reported phenotype distributions between the cohorts (Supplementary 
Figures 1 and 2; Supplementary Table 1), but these are likely to be largely attributable to 
the way HPO terms were recorded: DDD clinicians recorded HPO terms that they thought 
were particularly distinctive and likely to be relevant to a monogenic disorder, whereas for 
GeneDx, the HPO terms were abstracted from each patient’s medical history (see Methods). 
Consequently, many of the terms that differed in prevalence between the cohorts were 
nonspecific and/or indicated common conditions (e.g. ‘failure to thrive’, ‘asthma’) 
(Supplementary Note). Both cohorts have considerable heterogeneity of phenotypic 
presentations and genetic etiologies, and a similar burden of de novo mutations5. Given all 
this, we decided that the two cohorts were sufficiently similar to combine them for the work in 
this paper. 
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We began by classifying individuals into genetically-inferred ancestry (GIA) groups. The 
rationale for this was two-fold: firstly, we were interested in exploring differences in genetic 
architecture between these groups, and secondly, the analysis below relies on accurate 
estimates of allele frequencies which differ between groups. We recognize that these GIA 
groups do not capture the full genetic diversity of human populations. We determined the 
GIA groups for each cohort in a federated manner i.e. analysing summary statistics that 
were produced without physically combining the individual-level genetic data. The 
classifications were based on genetic similarity to individuals in the 1000 Genomes and 
Human Genome Diversity Panel (HGDP) reference datasets, inferred from principal 
component analysis (Supplementary Figures 3 and 4). We defined six continental-level 
GIA groups (AFR: African; AMR: Latin American; EAS: East Asian; EUR: European; MDE: 
Middle Eastern; SAS: South Asian) and, within these, forty-seven fine-scale GIA sub-groups 
(Supplementary Table 2).  
 
We carried out federated quality control (QC) on the exome data across the two cohorts 
(Supplementary Figures 5, 6 and 7), with sample QC done in a GIA-aware manner 
(Supplementary Figure 8; Supplementary Table 3) (see Methods). For the analyses 
described below, unless otherwise stated, we restricted to 29,745 unrelated trio probands 
from twenty-two GIA sub-groups (chosen as described in the Methods section “Sample 
filtering for the burden analysis”) for whom both parents were inferred to come from the 
same GIA group as the child, and from whom at least one parent was inferred to come from 
the same GIA sub-group as the child (Table 1; Supplementary Table 2).  

Exome-wide burden analysis 
Following our previous work6, we calculated the expected probabilities of rare (minor allele 
frequency; MAF <0.01) biallelic genotypes (homozygous non-reference, or compound 
heterozygous genotypes) in each cohort and GIA sub-group separately, taking into account 
GIA sub-group-specific allele frequencies and autozygosity levels (Supplementary Figure 
9). The four genotype consequence classes we considered included 
synonymous/synonymous (i.e. biallelic synonymous) as a negative control, plus three 
predicted damaging classes: LoF/LoF (loss-of-function), LoF/functional and 
functional/functional, where the “functional” class included protein-altering variants other 
than high-confidence LoFs that passed various deleteriousness filters (see Methods section 
on “Filtering of missense and other functional variants”).  
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GIA sub-group 
Closest corresponding 
reference population 

Number of unrelated probands 
Number of unrelated, 
unaffected parents 

Average FROH for 
probands 

DDD GeneDx Combined DDD GeneDx DDD GeneDx 

AFR3 West African - 96 96 - 232 - 0.0013 

AFR4+ African-American - 843 843 - 2109 - 0.0003 

AMR0+ Mexican - 1178 1178 - 2674 - 0.0017 

AMR3 Puerto Rican - 380 380 - 894 - 0.0027 

AMR4 Latin American* - 204 204 - 511 - 0.0029 

AMR9 Colombian - 260 260 - 745 - 0.0028 

EAS1 East Asian* - 65 65 - 205 - 0.0003 

EAS2 Chinese - 295 295 - 732 - 0.0008 

EAS3 East Asian* - 128 128 - 348 - 0.0007 

EAS5 Vietnamese/Cambodian - 89 89 - 245 - 0.0010 

EUR1 European* - 657 657 - 1694 - 0.0021 

EUR3 European* - 125 125 - 512 - 0.0005 

EUR4+ Western European 7057 12489 19546 12997 26016 0.0005 0.0004 

EUR5+ Eastern European 208 1577 1785 459 3909 0.0008 0.0002 

EUR6 European* - 38 38 - 200 - 0.0001 

EUR7 Italian 118 1412 1530 294 3620 0.0010 0.0005 

MDE2 Middle Eastern* - 79 79 - 149 - 0.0468 

MDE3+ Middle Eastern* 87 571 658 157 1114 0.0351 0.0335 

MDE4 Middle Eastern* - 87 87 - 167 - 0.0347 

SAS3 Bangladeshi 80 109 189 125 242 0.0185 0.0082 

SAS4+ Pakistani 467 454 921 577 832 0.0539 0.0298 

SAS5+ Indian 100 492 592 187 1019 0.0185 0.0108 

Total (all GIA sub-groups) 8117 21628 29745 14796 48169 0.0044 0.0027 

Total (seven GIA sub-groups in Figure 1) 7919 17604 25523 14377 37673 0.0043 0.0026 

Table 1: Sample sizes and average autozygosity values for the twenty-two GIA sub-groups included 
in the analyses, after removing probands with cross-continental admixture. The counts for all GIA sub-
groups are shown in Supplementary Table 2. Note that DDD samples from these GIA sub-groups 
were excluded if there were fewer than a hundred unrelated, unaffected parents in DDD. *For some 
GIA sub-groups there were no reference samples in the same cluster (Supplementary Figure 4), so 
we give only the GIA groups label for these. + indicates the seven GIA sub-groups included in the 
overall attributable fraction calculations given throughout the text, in Figure 1 and in Supplementary 
Figures 11, 15 and 17. FROH: fraction of the genome in runs of homozygosity (ROHs). 
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To quantify the exome-wide recessive burden, we compared the expected number of 
biallelic genotypes in a given consequence class to the observed number. Supplementary 
Figure 10 indicates that these generally agree well for biallelic synonymous genotypes in the 
largest GIA sub-groups, demonstrating that our QC is robust. For GIA sub-groups with 
smaller sample sizes, the observed number of biallelic synonymous genotypes was often 
significantly lower than expected (Supplementary Table 4), which we suspect is because 
our estimate of the expected number was being inflated due to overestimation of allele 
frequencies in the small sample sizes. Thus, for Figure 1 and for the total estimates reported 
throughout the text and shown in Figure 2 and Supplementary Figures 11, 15 and 17, we 
focused on seven large GIA sub-groups (see Methods section “Sample filtering for the 
burden analysis”): AFR4, AMR0, EUR4, EUR5, MDE3, SAS4 and SAS5 (total N=25,523 
unrelated probands; Table 1). We used the observed and expected numbers of biallelic 
genotypes within these different GIA sub-groups to calculate the fraction of patients 
attributable to autosomal recessive coding causes, which we refer to below as the 
“attributable fraction”. Briefly, this was calculated as the difference between the observed 
and expected number of damaging biallelic genotypes divided by the number of probands 
(Supplementary Table 4; see Methods section “Testing for enrichment of biallelic 
genotypes over expectation”). We calculated the attributable fraction both exome-wide using 
all probands in different GIA sub-groups separately or in aggregate (Figure 1, 
Supplementary Figures 12 and 17b), as well as in different subsets of probands and gene 
sets (Figure 2; Supplementary Figures 11 and 15). 
 
The estimates of attributable fraction due to AR coding variants ranged from ~2-7% in 
AMR0, EUR4, EUR5 and SAS5 to 14.1% [95% CI: 5.6-23.0%] in MDE3 and 18.7% [10.8-
26.9%] in SAS4. For all populations, this was lower than the attributable fraction due to de 
novo coding mutations (Figure 1a). The AR attributable fraction was significantly correlated 
with the average level of autozygosity in the GIA groups (r=0.99, p=5x10-6 for the 7 GIA sub-
groups in Figure 1b), while the attributable fraction due to de novos was not (r=-0.46, 
p=0.30; Figure 1b). Thus, despite making up only a small proportion of the total number of 
probands (6% combined), SAS4 and MDE3 make up 26.1% of the total AR attributable 
fraction across these seven GIA sub-groups (Figure 1c). Supplementary Figure 11 shows 
that the total AR attributable fraction is slightly higher in GeneDx compared to DDD (4.4% 
versus 3.1%; p=1x10-6), which may reflect differences in the recruitment strategies for the 
two cohorts; as previously noted, DDD may be depleted of easy-to-diagnose recessive 
cases6. The recessive attributable fraction was also higher in diagnosed than undiagnosed 
patients (6.4% versus 2.6%; p=2.3x10-49), but similar in females and males (4.2% versus 
3.8%; p=0.055) (Supplementary Figure 11). 
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Figure 1. Estimates of the fraction of patients attributable to AR coding variants or de novo coding 
mutations in DDD and GeneDx across seven large GIA sub-groups. A) Estimated attributable fraction 
per GIA sub-group. The de novo attributable fractions (lighter shading) are stacked on the AR 
attributable fractions (darker shading), with the total height of the bars being the sum of the 
attributable fractions. Lines show 95% confidence intervals (CIs). B) Estimated attributable fraction 
due to de novo coding mutations (left) or AR coding variants (right) versus average autozygosity 
(FROH) for these seven GIA sub-groups. Coloured lines show 95% CIs. The black line is the line of 
best fit, and grey shading shows its 95% confidence interval. C) Comparison of the proportion of the 
total sample size (left) versus the proportion of the total AR attributable fraction (right) accounted for 
by each GIA sub-groups.  
 
We next examined how much of the exome-wide AR attributable fraction was explained by 
known disease-associated AR genes. We considered a set of 1,818 known ARDD genes 
that are used for diagnosis in one or both cohorts, including 1,069 “consensus” genes in both 
the DDG2P list and GeneDx’s in-house list, and 749 “discordant” genes in only one of the 
lists (Supplementary Table 5). Consensus genes explained 72.6% [65.6-79.8%] of the total 
exome-wide attributable fraction, and consensus+discordant genes explained 89.8% [81.7-
98.3%] (Figure 2a). Once the consensus+discordant genes were removed, there was no 
significant residual burden of damaging biallelic genotypes across the remaining genes 
(attributable fraction=0.4% [-0.1-0.9%]; p=0.08) (Figure 2a). Consensus+discordant genes 
explained 91.0% [81.3%-101.1%] of the total exome-wide attributable fraction in probands 
with European ancestries (EUR4+EUR5), which was not significantly different from the 
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fraction in those with non-European ancestries (AFR4+AMR0+MDE3+SAS4+SAS5) (87.9% 
[73.6%-103.0%]; p=0.9).  
 
We removed variants annotated as pathogenic/likely pathogenic (P/LP) in ClinVar and 
estimated the remaining AR attributable fraction in the consensus+discordant ARDD genes. 
In DDD, we estimated that 42.2% [26.3-59.2%] of the AR attributable fraction in these genes 
was explained by variants not annotated as P/LP in ClinVar, but the fraction was a bit lower 
in GeneDx (29.1% [21.0-37.6%]) (Figure 2b), likely reflecting the fact that GeneDx 
systematically submits pathogenic variants to ClinVar whereas DDD does not. This implies 
that a substantial fraction of the recessive burden in the GIA groups represented by DDD is 
due to variants in known AR genes that have not been annotated as P/LP in ClinVar. 
 
We then estimated the AR attributable fraction in as-yet-undiagnosed patients 
(Nundiagnosed=4,425 and 12,604 for DDD and GeneDx respectively for the seven GIA-groups in 
Figure 1) within the set of ARDD genes that were used for diagnosis by the relevant cohort. 
From this, we estimated that 1.2% [0.6-1.8%] of the as-yet-undiagnosed DDD patients are 
attributable to damaging biallelic coding variants in AR DDG2P genes (Figure 2c). Almost all 
of this (96.8%) is due to biallelic LoF/functional or functional/functional genotypes. Amongst 
these 4,425 DDD undiagnosed individuals, there are 367 damaging biallelic genotypes in AR 
DDG2P genes that have been reported back to clinicians via DECIPHER as potentially 
clinically relevant and that have either not yet been clinically evaluated (106 genotypes), or 
have been classified as being of uncertain significance (261 genotypes). Thus, based on the 
above attributable fraction estimate, this implies that 14.1% ([1.168% of 4425]/367) of these 
biallelic genotypes are actually pathogenic. Similarly, in GeneDx, we estimate that 1.7% [1.3-
2.1%] of as-yet-undiagnosed patients are attributable to damaging biallelic coding variants in 
known AR disease genes on GeneDx’s curated in-house list, of which 87.1% are biallelic 
LoF/functional or functional/functional. Many of these are likely being reported as VUSs as 
they do not currently meet the criteria for being classed as P/LP. This highlights the 
challenge of interpreting rare missense and other functional variants in ARDD genes.  
 
Amongst the undiagnosed GeneDx patients, there was a significant excess of rare LoF/LoF 
genotypes in ARDD genes on the diagnostic list, and the attributable fraction due to such 
genotypes was estimated at 0.2% [0.1-0.3%] (Figure 2c). In contrast, there was no 
significant burden of LoF/LoF genotypes in AR DDG2P genes in undiagnosed DDD patients 
(attributable fraction 0.04% [-0.09-0.24%]; z-test for a difference in proportions compared to 
the GeneDx attributable fraction p=0.02). This may partly reflect the fact that GeneDx does 
not usually carry out reanalysis as new genes are added to their diagnostic list, unless it is 
requested by the clinician or as part of a research project, and there can be a lag in issuing 
updated reports for patients when a variant’s classification is upgraded from “variant of 
unknown significance” to “likely pathogenic”. In contrast, the iterative reanalysis carried out 
in DDD ensures that these relatively easy-to-interpret diagnostic variants in newly defined 
ARDD genes are not missed15,16.  
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Figure 2: Estimates of the fraction of patients attributable to AR coding variants, in different subsets of 

genes and patients. These plots are focused on the individuals without cross-continental admixture 
from seven large GIA sub-groups, as in Figure 1 and Table 1. A) Estimates in all individuals from DDD 
and GeneDx combined, for all genes versus genes in the indicated lists. B) Estimates in all individuals 
for consensus+discordant genes split by cohort, comparing the estimates obtained with all variants 
versus after removing variants annotated as pathogenic/likely pathogenic in ClinVar. C) Estimates in 
undiagnosed individuals, for all genes versus the genes that are used for clinical filtering of diagnostic 
AR variants in the respective cohorts, split by cohort and functional consequence of the variants. Error 
bars show 95% confidence intervals. 
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Gene discovery 
We next tested for an enrichment of damaging biallelic genotypes in each gene to try to 
identify novel ARDD genes. For the main gene discovery analysis, we included 29,745 
unrelated trios without cross-continental admixture from the twenty-two GIA sub-groups 
shown in Table 1. We reasoned that although the expected number of biallelic genotypes 
was being overestimated in some of the smaller GIA sub-groups, this would only reduce our 
power rather than lead to false positives, and that the increased sample size by including 
these GIA sub-groups might compensate for this. For each gene, we used a Poisson test to 
compare the total observed number of biallelic genotypes in a given consequence class 
across GIA sub-groups with the total expected number (Supplementary Figure 13). We 
considered four combinations of damaging biallelic genotypes (LoF/LoF, 
LoF/LoF+LoF/functional, functional/functional, and all combined 
[LoF/LoF+LoF/functional+functional/functional]), and then took the lowest p-value per gene. 
We used a Bonferroni threshold of � � 7.2 � 10�� (corrected for four tests per each of 
17,320 genes).  
 
We found twenty-five genes passing Bonferroni correction, and an additional forty-six genes 
passing a false-discovery rate (FDR) of 5% (Supplementary Table 6). Twenty-three of the 
Bonferroni significant genes (92%) and sixty-two of the FDR<5% genes (87.3%) are known 
ARDD genes on the GeneDx and/or DDG2P lists. Table 2 shows the nine genes passing 
FDR<5% which are not on either list: CRELD1, KBTBD2, ZDHHC16, ATG4C, HECTD4, 
ATAD2B, ATXN1, LRRC34, and C11ORF94. Of these, CRELD1 and KBTBD2 pass 
Bonferroni correction. In Supplementary Table 7, we present the observed deleterious 
biallelic variants in these nine genes, together with the patients’ associated HPO terms. See 
the Supplementary Note for information on some of the suggestive genes. 
 
CRELD1 (p=8.9x10-8) is an established monoallelic (dominant) DD gene on both the DDG2P 
and GeneDx lists, in which heterozygous missense mutations cause atrioventricular septal 
defect associated with heterotaxy syndrome17,18. We observed eight probands with biallelic 
LoF/functional or functional/functional genotypes in this gene, all of whom had global 
developmental delay and seizures, plus variable other features. A concurrent study involving 
patients from GeneDx and other cohorts has also identified CRELD1 as a novel ARDD gene 
with a differing phenotypic presentation to the dominant disorder it causes19. Three of the 
five GeneDx patients we identified were also in that study.  
 
We observed two patients with damaging LoF/functional compound heterozygous genotypes 
in KBTBD2 (p=1.2x10-7). The mouse knockout of this gene exhibits lipodystrophy, hepatic 
steatosis, insulin resistance, severe diabetes, and growth retardation20. Consistent with this, 
both patients displayed some degree of growth retardation. The older patient had 
hyperglycaemia and diabetes; the younger one was below the age at which diabetes might 
be expected to develop (Supplementary Table 7). Thus, the phenotypes in these patients 
appear to be consistent with the mouse knockout, but with some additional phenotypic 
features (microcephaly, cardiomyopathy, developmental delay). 
 
We calculated semantic similarity scores21 of HPO terms between pairs of patients with 
damaging biallelic genotypes in the genes that passed FDR<5% correction, and compared 
the distribution of these scores to scores from randomly-chosen pairs of patients 
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(Supplementary Figure 14). We found that the patients with damaging biallelic genotypes 
in the consensus+discordant genes were significantly more phenotypically similar to each 
other than were the randomly-chosen patients (one-sided Wilcoxon rank sum p=2.2x10-126), 
and also more similar than the patients with damaging biallelic genotypes in the nine novel 
FDR<5% genes (p=0.00376). However, the latter were also significantly more phenotypically 
similar to each other than were the randomly-chosen patients (p=0.024), which strengthens 
the evidence that they result in distinct phenotypes. 
 
We repeated the gene-based tests using only undiagnosed probands (N=20,217 trios), after 
applying a stricter filter for admixed probands (requiring both parents to come from the same 
GIA sub-group as the child; N=23,574 trios), and after removing the filter of probands with 
inferred cross-continental admixture (N=32,058 trios). No additional novel genes were 
identified, and key conclusions were unchanged (Supplementary Table 6).  
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HGNC 
symbol 

Most significant 
variant class 

Observed 
(Expected) 

p-value Supporting evidence and notes 
Level of 
evidence 

CRELD1 All 6 (0.2060) 8.91x10-8 

Cosegregation in one affected 
sibling 

Observed in an additional proband 
who was removed due to admixture 

Known dominant DD gene 

Very strong 

KBTBD2 LoF/Functional 2 (0.0005) 1.21x10-7 

Similar phenotype in mouse 
model20,22 

Extremely constrained (pLI=1) 
Very strong 

ZDHHC16 
LoF/LoF + 

LoF/Functional 
3 (0.0264) 2.99x10-6 

Cosegregation in one affected 
sibling 

Zebrafish model shows defective 
telencephalon development23 

Strongly 
suggestive 

ATG4C 
LoF/LoF + 

LoF/Functional 
7 (0.6660) 6.46x10-6 

No other supporting evidence 

Contrary evidence: 2/7 probands 
have confirmed alternative 

diagnoses 

Weakly 
suggestive 

HECTD4 LoF/LoF 2 (0.0042) 8.67x10-6 
Recently implicated gene24 

Extremely constrained (pLI=1) 
Strongly 

suggestive 

ATAD2B 
LoF/LoF + 

LoF/Functional 
2 (0.0049) 1.21x10-5 

Cosegregation in one affected 
sibling 

Extremely constrained (pLI=1) 

Weakly 
suggestive 

ATXN1 LoF/LoF 1 (0.0001) 9.04x10-5 

Homozygous mouse knockout 
shows neurobehavioral 

abnormalities25 

Known dominant DD gene 

Extremely constrained (pLI=0.97) 

Strongly 
suggestive 

LRRC34 
LoF/LoF + 

LoF/Functional 
3 (0.0700) 5.42x10-5 

Homozygous LoF previously 
reported in a Joubert syndrome 

patient26 

Contrary evidence: One patient has 
a confirmed alternative diagnosis 

Weakly 
suggestive 

C11ORF94 LoF/LoF 2 (0.0110) 5.96x10-5 

No other supporting evidence 

Contrary evidence: One patient has 
a confirmed alternative diagnosis 

Weakly 
suggestive 

Table 2: Genes not in the consensus or discordant lists that pass FDR<5% in the main gene burden 
analysis, which was based on 29,745 probands without inferred cross-continental admixture. P-values 
< 7.2x10-7

 pass Bonferroni correction. We only show the result for the most significant combination of 
consequence classes per gene. Supplementary Table 6 shows results for all combinations of 
consequence classes. 
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Discussion 
We have examined the contribution of AR coding variants to DDs in the largest sample to 
date, containing about six times more trios and greater ancestral diversity than our previous 
work in an earlier release of the DDD study6. The current study demonstrates the power of 
federated analysis of large multi-ancestry cohorts from which genome-wide individual-level 
data cannot be combined in a single location due to data governance considerations. 
Transferring deidentified summary data (principal components and their loadings) between 
cohorts allowed us to identify individuals with similar GIA across cohorts (Supplementary 
Figure 4), boosting power particularly for smaller and historically understudied groups. Using 
these multiple GIA groups, we showed that the average level of autozygosity is a strong 
predictor of the fraction of patients in a given sample who are attributable to AR causes 
(Figure 1b, Supplementary Figure 12).  
 
We found that the great majority of the AR burden is explained by known ARDD genes, and 
that this is true both for European-ancestry and non-European-ancestry individuals (91% 
versus 88%). In contrast, our 2018 paper6 reported that amongst DDD probands with 
European and Pakistani GIA (roughly corresponding to the EUR4 and SAS4 GIA sub-groups 
in this work), the AR DDG2P genes known at the time explained 48% of the recessive 
burden. Supplementary Figure 15 shows that the most recent DDG2P ARDD gene list 
explains a higher fraction of the burden in this analysis than the list used in our previous 
paper6, and that the GeneDx ARDD gene list explains the highest fraction. This suggests 
that DDG2P is a more conservatively curated list than the GeneDx list. It also reflects the 
success of worldwide AR gene-discovery efforts over the last five years, many of which have 
been conducted through MatchMaker Exchange-style approaches13. The comparably 
modest yield of new ARDD genes in this work suggests that this kind of statistical analysis of 
large, relatively unselected cohorts may not be the most efficient way to find new AR genes. 
A more efficient approach may entail identifying new candidate genes in unsolved cases in 
geographically-isolated populations or in consanguineous families with multiple affected 
individuals, then finding additional cases via Matchmaker Exchange or other global data 
sharing initiatives. 
 
Our paper contains several clinically important messages. Firstly, the fact that most of the 
AR burden is in known ARDD genes suggests that, if a patient undergoes sequencing and is 
not found to have any candidate putatively damaging biallelic genotypes in these genes (of 
which only a subset meet ACMG P/LP criteria), their residual risk of having an AR condition, 
at least due to coding variants, is low. However, it does depend on their degree of 
consanguinity; from the attributable fraction estimates in our dataset, we estimate this 
residual risk at 0.43% [0.01-0.87%] if the patient has FROH<0.0156 (the expectation for 
offspring of second cousins), and 14.56% [2.50-27.31-%] otherwise (FROH>0.0156). 
Secondly, our estimates suggest that a substantial fraction of potential diagnoses in known 
AR genes are being missed, mostly those involving missense variants, which remain 
challenging to interpret (Figure 2c). For example, amongst the 7,732 DDD individuals 
included in our main burden analysis, there are 230 confirmed AR diagnoses in DDG2P 
genes, and the attributable fraction estimate in Figure 2c suggests that there are an 
additional ~52 diagnoses to be made in these genes amongst the 4,425 undiagnosed 
patients (1.168% of 4,425); thus, we are missing ~18.4% of diagnoses (52/282) in AR 
DDG2P genes. Thirdly, our results also imply that, if we could find all the possible diagnoses 
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in established ARDD genes by better distinguishing pathogenic from benign functional 
variants, we would likely diagnose about twice as many patients as we would by discovering 
new ARDD genes, at least in the GIA groups under study here; our attributable fraction 
estimates suggest that, amongst undiagnosed DDD and GeneDx patients, there are ~237 
diagnoses yet to be made from LoF/functional and functional/functional genotypes in the 
ARDD genes that are already used for reporting by the relevant cohort, versus ~103 
diagnoses to be made from as-yet-undiscovered ARDD genes. Finally, the fact that ~42% of 
the burden in established ARDD genes in DDD is not explained by ClinVar P/LP variants  
suggests that recessive carrier screening, which currently tends to focus on such  variants27, 
has the potential to be extended in future as knowledge about which variants are clinically 
significant increases.  
 
Despite the fact that the vast majority of the AR burden was explained by known genes in 
the GeneDx and/or DDG2P lists, we did identify several new or only recently-described 
genes with compelling or suggestive evidence for causation (Table 2). Overall, we consider 
CRELD1 and KBDBT2 to be confirmed bona fide ARDD genes, ZDHHC16, HECTD4 and 
ATXN1 to be highly suggestive (see Supplementary Note), and ATG4C, ATAD2B, LRRC34 
and C11ORF94 to be weakly suggestive. Of the thirty-two damaging biallelic genotypes 
contributing to the discovery of these nine genes, twenty-seven were LoF/functional or 
functional/functional. Our stringent missense filtering (Supplementary Figure 16 and 17) 
boosted our power to implicate these genes: had we done more lenient missense filtering, 
the genes highlighted in Table 2 would all have had less significant p-values, and none 
would have passed Bonferroni correction (Supplementary Figure 18).  
 
This work has several limitations. Firstly, the families studied are not a random sample of the 
DD patient population, and may be depleted of easy-to-solve families with recessive 
conditions. Thus, we may have underestimated the contribution of AR variants to DDs as a 
whole, and hundreds of known ARDD genes did not reach formal Bonferonni significance in 
our study; we emphasise that the genes that passed Bonferroni correction in this work are 
not the only bona fide ARDD genes. Secondly, our estimates of attributable fraction assume 
that every excess damaging biallelic genotype over expectation fully ‘explains’ one proband 
(i.e. fully penetrant monogenic causes), which may over-simplify the genetic architecture. 
Thirdly, although our sample contained considerable ancestral diversity, it is clearly not 
representative of the global population, and the sample sizes for many GIA sub-groups were 
too small to get precise estimates of attributable fraction. This also undoubtedly reduced our 
power for gene discovery since parental allele frequencies are overestimated in these small 
samples. Finally, we focused on protein-coding single nucleotide variants and small indels, 
so our estimates do not include the recessive contribution of noncoding variants or copy 
number variants. 
 
In conclusion, discovery of the remaining ARDD genes will require larger samples and/or 
more focused sampling of consanguineous families with multiple affected individuals. 
However, these as-yet-undiscovered genes are unlikely to account for a high fraction of 
patients, at least in the GIA groups represented in this study. To maximise diagnostic yield, 
future work should develop better strategies to distinguish pathogenic from benign functional 
recessive variants, such as approaches involving multiplex assays of variant effects28,29.  
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Data availability 
Sequence and variant-level data and phenotype data from the DDD study data are available 
on the European Genome-phenome Archive (EGA; https://www.ebi.ac.uk/ega/) with study ID 
EGAS00001000775. GeneDx data cannot be made available through the EGA owing to the 
nature of consent for clinical testing. GeneDx-referred patients are consented for aggregate, 
deidentified research and subject to US HIPAA privacy protection. As such, we are not able 
to share patient-level BAM or VCF data, which are potentially identifiable without a HIPAA 
Business Associate Agreement. Access to the deidentified aggregate data used in this 
analysis is available upon request to GeneDx. GeneDx has contributed deidentified data to 
this study to improve clinical interpretation of genomic data, in accordance with patient 
consent and in conformance with the ACMG position statement on genomic data sharing. 
Clinically interpreted variants and associated phenotypes from the DDD study are available 
through DECIPHER (https://www.deciphergenomics.org/). Clinically interpreted variants from 
GeneDx are deposited in ClinVar (https://www.ncbi.nlm.nih.gov/clinvar) under accession 
number 26957 (https://www.ncbi.nlm.nih.gov/clinvar/submitters/26957/).  

Code availability 
The code to perform the burden analysis and reproduce plots from this paper is available on 
GitHub (https://github.com/chundruv/DDD_GeneDx_Recessives), as is the code to run the 
Phenopy method (https://github.com/GeneDx/phenopy).  
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Methods 

Cohorts, sequencing, alignment and variant calling 

Deciphering Developmental Disorders (DDD) 
Between April 2011 and April 2015, the DDD study recruited a total of 13,450 patients (88% 
in a trio) with a severe developmental disorder who remained undiagnosed after undergoing 
the typical clinical genetics investigations30. The phenotypic inclusion criteria included 
neurodevelopmental disorders, congenital abnormalities, growth abnormalities, dysmorphic 
features, and unusual behavioural phenotypes. Recruitment took place across twenty-four 
regional genetics services within the United Kingdom and the Republic of Ireland health 
services. The families gave their informed consent to participate, and the study was 
approved by the UK Research Ethics Committee (10/H0305/83, granted by the Cambridge 
South Research Ethics Committee, and GEN/284/12, granted by the Republic of Ireland 
Research Ethics Committee).  
 
Details on sample collection, exome sequencing, alignment, variant calling and variant 
annotation have been described previously6,7,9. Briefly, exome capture was carried out with 
either the Agilent SureSelect Human All Exon V3 or V5 baits. We used the BWA aln 
algorithm (BWA version 0.5.10) and the BWA mem algorithm (BWA version 0.7.12)31,32 to 
align reads to the GRCh37 1000 Genomes Project phase 2 reference (hs37d5). Picard 
Markduplicates (versions 1.98 and 1.114)33 and Genome Analysis Toolkit IndelRealigner 
(GATK version 3.1.1 and version 3.5.0)34–36 were used for sample-level BAM improvement. 
To call single-nucleotide variants (SNVs) and indels, we used the GATK HaplotypeCaller, 
CombineGVCFs and GenotypeGVCFs (GATK version 3.5.0). Variant-calling was restricted 
to the merged bait regions from the Agilent V3 and V5 exome capture kits used in the 
sequencing, plus a padding region of 100 base pairs on either side. 

GeneDx 
Patients were referred to GeneDx for clinical whole-exome sequencing for diagnosis of 
suspected Mendelian disorders as previously described5,37. Patient medical records were 
converted into HPO terms using Neji concept recognition38 with manual review by laboratory 
genetic counsellors or clinicians. Patients were selected for inclusion in this study based on 
having one or more HPO terms from a list of 716 that fell under “abnormality of the nervous 
system”30. The study was conducted in accordance with all guidelines set forth by the 
Western Institutional Review Board, Puyallup, WA (WIRB 20162523). Informed consent for 
genetic testing was obtained from all individuals undergoing testing, and WIRB waived 
authorization for use of deidentified aggregate data. Individuals or institutions who opted out 
of this type of data use were excluded. 
 
The samples underwent exome sequencing as previously described37 with either SureSelect 
Human All Exon v4 (Agilent Technologies, Santa Clara, CA), Clinical Research Exome 
(Agilent Technologies, Santa Clara, CA), or xGen Exome Research Panel v1.0 (IDT, 
Coralville, IA). They were sequenced with either 2x100 or 2x150bp reads on HiSeq 2000, 
2500, 4000, or NovaSeq 6000 (Illumina, San Diego, CA). Reads were mapped to the 
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published human genome build UCSC hg19/GRCh37 reference sequence using the 
Burrows Wheeler Aligner (BWA) (using either v0.5.8 to v0.7.8 depending on the time of 
sequencing)31,32. BAM files were then converted to CRAM format with Samtools version 
1.3.139 and indexed. Individual gVCF files were called with GATK v3.7-0 HaplotypeCaller34–36 
in GVCF mode by restricting output regions to the RefGene primary coding regions +/- 50bp. 
Single-sample gVCF files were then combined into multi-sample gVCF files, with each 
combined file containing 200 samples. These multi-sample GVCF files were then jointly 
genotyped using GATK v3.7-0 GenotypeGVCFs. GATK v3.7-0 VariantRecalibrator (VQSR) 
was applied for both SNPs and indels, with known SNPs from 1000 Genomes phase 1 high 
confidence set and “gold standard” indels from Mills et al.40. 

Relatedness estimation 
Relatedness between samples within each cohort was estimated using KING –kinship41. For 
DDD, we used common variants (MAF>0.01) that passed the following hard genotype filters: 
genotype quality (GQ) > 20, depth (DP) > 7, p-value from a binomial test on allelic depth > 
0.001, and (after applying those genotype-specific filters) low missingness (<5%). For 
GeneDx, we used the same set of SNPs as used in the PCA, described in the next section. 
We used a cutoff of kinship coefficient > 0.04419417 to define related individuals, which is 
the lower bound cutoff for third-degree relatives. For each cohort, a list of unrelated parents 
and unrelated probands was created in a way that maximized the number of samples 
retained. 

Ancestry assignment 

Assigning broad-scale genetically-inferred ancestry groups 
To identify samples with similar genetic ancestry, we subset the genotypes of samples from 
1000 Genomes phase 342 and the Human Genome Diversity Project (HGDP)43 to the 
common SNVs (MAF>0.01) with low missingness (<10%). We ran pairwise LD pruning using 
plink44 (--indep-pairwise 50 5 0.2). We applied hard genotype filters to the DDD and GeneDx 
datasets (GQ>20, DP>7, and, subsequent to this, genotype missingness <10%), and took 
the intersection of the remaining variants across the datasets (N=17,693 SNVs). The first 20 
PCs of the 1000 Genomes and HGDP reference cohorts were calculated using GCTA 
(version 1.93.0)45,46. Using the SNP loadings, we project the DDD and GeneDx samples onto 
the reference sample PCs. Using the first seven PCs, we ran UMAP47 with the umap-learn 
python package with parameters - min-dist=0 and n_neighbours=100. This created the six 
clusters seen in Supplementary Figure 3, with the corresponding labels applied to DDD 
and GeneDx samples based on the locations of the reference individuals with known 
ancestry. We refer to these as “genetically-inferred ancestry (GIA) groups”. 

Fine-scale ancestry 
To assign fine-scale genetic ancestry to the individuals within each GIA group, we ran PCA 
on the individuals from 1000 Genomes and HGDP as well as the unrelated parents in the 
GeneDx dataset from that GIA group. We then projected the remaining samples from 
GeneDx and the DDD samples from that GIA group onto these PCs. To assign individuals to 
GIA sub-groups, we took the PCs that captured the majority of the variation within the broad-
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scale GIA group within which they fell, used these as input for UMAP, then ran HDBSCAN (a 
clustering algorithm)48 on the UMAP coordinates to create fine-scale clusters which we call 
GIA sub-groups (Supplementary Figure 4).  

Variant QC 
Autosomal SNVs and indels underwent quality control (QC) separately within each cohort. In 
brief, we restricted to the variants within the intersection of the calling regions of the two 
cohorts, calculated metrics to determine the quality of SNV and indels passing a set of 
different thresholds, then selected the thresholds so as to optimise these quality metrics 
(Supplementary Figures 5 and 6).  
 
The QC was conducted using bcftools version 1.1639. 

SNV QC 
 
The following genotype- and variant-level metrics were tested: 
 
Genotype-level metrics: 

1. Genotype Quality (GQ > {20,25,30}) 
2. Depth (DP > {7, 10}) 
3. Binomial p-value of allelic depth (for heterozygotes) ( P(AD) > {0, 0.001}) 

Variant-level metrics: 
1. VQSLOD (VQSLOD > {-1.5, -2.0, -2.5, -3.0}) 
2. Fraction of non-missing genotypes passing genotype-level QC thresholds (FPASS > 

{0.5, 0.7}) 
 
For each combination of metrics, we measured the following: 

1. Transmission rate of synonymous singletons. Specifically, we identified synonymous 
variants seen in a single parent in the dataset, and determined what fraction of these 
were transmitted to the child. Since these variants are unlikely to contribute to the 
phenotype, we expect them to be transmitted 50% of the time, so we optimised the 
choice of QC parameters to get this metric as close as possible to 50% while 
simultaneously optimising the other metrics (Supplementary Figure 5).  

2. Sensitivity to detect known de novo SNVs. Previous analysis had identified a total of 
41,890 (38,038 SNV, and 3,852 indel) likely pathogenic de novo mutations across 
the two cohorts that passed stringent quality control5. We wanted to retain as many of 
these variants as possible (Supplementary Figure 5). 

3. Number of variants that are called as homozygous for the alternate allele in the child 
and homozygous for the reference allele in both parents. These candidate de novo 
mutations are almost certainly errors.  

4. Number of candidate de novo mutations that are seen in multiple individuals across 
the dataset (recurrent de novos), likely to be enriched for errors.  

5. Rate of Mendelian errors in trios. 
6. Total number of variants passing QC. We wish to maximise this while simultaneously 

optimising the other metrics. (Supplementary Figure 5) 
7. The transition to transversion ratio Ts/Tv (Supplementary Figure 5). 
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We chose the following thresholds for SNV QC: 
For DDD: 

● GQ > 20 
● DP > 7 
● P(AD) > 0.001 
● VQSLOD > -2.0 
● FPASS > 0.5 

For GeneDx: 
● GQ > 25 
● DP > 10 
● P(AD) > 0.001 
● VQSLOD > -2.0 
● FPASS > 0.7 

Indel QC 
The following genotype- and variant-level metrics were tested: 
 
Genotypes-level metrics: 

1. Genotype Quality (GQ > {20,25,30}) 
2. Depth (DP > {7, 10}) 
3. Allelic Balance (Variant Allele Frequency) for heterozygotes (AB > {0.2, 0.3}) 

Variant-level metrics: 
1. VQSLOD (VQSLOD > {-2.0, -5.0}, and no VQSLOD) 
2. Fraction of genotypes passing genotype-level QC thresholds (FPASS > {0.5, 0.7}). 

 
For each combination of metric we measured: 

1. Transmission rate of rare inframe variants in low pLI, non-monoallelic DDG2P genes 
(Supplementary Figure 6). The logic here is the same as for the synonymous 
singletons mentioned above; inframe indels in these genes are likely under minimal 
selective pressure, on average, so we calibrated our QC so that the transmission of 
these variants was as close as possible to 50% while also optimising the other 
metrics. We also filtered to variants with MAF<0.001 in (or absent from) gnomAD49 
for checking this metric. 

2. Sensitivity to detect de novo indels. A total of 3,852 de novo indel mutations were 
detected across the two cohorts in previous analyses5. We wanted to maximise our 
sensitivity to detect these mutations (Supplementary Figure 6). 

3. Number of coding indels passing QC (Supplementary Figure 6). 
4. Ratio of frameshift to nonsense variants. From previous studies50,51, we expect the 

ratio of frameshift to nonsense mutations to be roughly 1.2. 
 
We chose the following thresholds for indel QC: 
For DDD: 

● GQ > 20 
● DP > 7 
● AB > 0.2 
● No VQSLOD 
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● FPASS > 0.5 
For GeneDx: 

● GQ > 30 
● DP > 7 
● AB > 0.3 
● No VQSLOD 
● FPASS > 0.7 

 
The number of variants before and after QC is given in Supplementary Table 3. 

Sample QC 
After applying the variant and genotype QC, we carried out sample QC by running 
regressions of different quality metrics on several covariates (detailed below), then removing 
individuals whose residuals were greater than four median absolute deviations from the 
median for these two regressions (Supplementary Figure 8). 
 

ratio of transitions to transversions ~ exome_capture_platform + GIA_subgroup_label 
 
ratio_of_heterozygous_to_homozygous_genotypes ~ exome_capture_platform + 
GIA_subgroup_label + FROH 

In addition, we removed individuals with a proportion of genotypes missing greater than 0.2. 

The number of individuals in each GIA sub-group before and after QC is given in 
Supplementary Table 2. 

Variant annotation and filtering 

Initial variant filtering 
We calculate the allele frequencies amongst unrelated, unaffected parents within all GIA 

sub-groups in our data that have �150 unrelated, unaffected parents, from the two cohorts 

separately. We retained variants with MAF≤0.01 within all GIA sub-groups available, and 

with MAF<0.01 in all gnomAD v2.1.1 GIA groups49. 
 
We removed any variants that overlap with a known recent segmental duplication52 or a 
simple tandem repeat53 obtained from the UCSC browser54. We also removed any variants 
which do not overlap the intersection of the bait regions from all exome captures used in the 
sequencing of both cohorts. 

Variant annotation 
Both cohorts were annotated using VEP v94.555 including the LOFTEE plugin49. We focused 
on the annotation in the canonical transcript to group variants into three classes: 
synonymous, loss-of-function and functional. 
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As a control we considered synonymous variants with maximum SpliceAI56 score < 0.1. 
 
Our classifications of loss-of-function (LoF) and functional variants were adapted from those 
used in gnomAD49 
(https://github.com/broadinstitute/gnomad_methods/blob/main/gnomad/utils/vep.py). We 
classified the following VEP-predicted consequences as LoF, including only those that were 
predicted as high confidence (HC) LoFs by LOFTEE: 

● splice_donor_variant 
● splice_acceptor_variant 
● stop_gained 
● frameshift_variant 
● stop_lost 
● transcript_ablation 

We grouped the following predicted consequences together into a group we call “functional 
variants”: 

● missense_variant 
● inframe_insertion 
● inframe_deletion 
● start_lost 
● transcript_amplification 
● protein_altering_variant 
● splice_region_variant 
● LoFs predicted to be low confidence (LC) by LOFTEE 
● synonymous variant with a minimum SpliceAI score of 0.8 

We removed variants if the predicted consequence in the canonical transcript did not fit into 
any of the categories listed above. 

Filtering of missense and other functional variants 

There are many metrics to predict deleteriousness of missense variants, but most of these 
are focused on predicting deleteriousness in the heterozygous state. We assessed several 
of these metrics (VARITY57, PrimateAI58, MPC59, CADD60,61, ClinPred62, MoI-Pred recessive 
probability63, REVEL64, PolyPhen65), comparing the distributions for known pathogenic 
recessive missense variants in DDD (i.e. annotated as pathogenic/likely pathogenic in 
DECIPHER) to all missense variants on chromosome 20 (Supplementary Figure 16). We 
observed that PrimateAI and MPC were less discriminating than the other metrics in this 
context, and thus removed them. (Although CADD was also less discriminating, we retained 
it since it was available for all variants, unlike some of the other annotations.) We also 
removed VARITY-R since it uses the same model as VARITY-ER but just a different training 
set. For each of the remaining six metrics, we defined the threshold which gave us 90% 
sensitivity to detect the known pathogenic recessive missense variants (CADD_PHRED�24.18; 

REVEL�0.36; VARITYER_LOO�0.25; PolyPhen�0.59; ClinPred�0.53; MoI-Pred recessive 

probability�0.11). For inframe indels, we used a filter of CADD_PHRED�17.34 (i.e. the CADD 
value which captures 90% of known inframe pathogenic recessive variants from 
DECIPHER66). For the remaining consequences that are included in the functional category, 
we use a filter of CADD_PHRED�24.18.  
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We then evaluated the burden (observed/expected) and attributable fraction ([observed-
expected]/sample size) (see section on Burden Analysis below) obtained for LoF/functional 
and functional/functional biallelic genotypes when requiring missense variants to pass the 
above cutoffs for different numbers of annotations (Supplementary Figure 17). Since not all 
of these deleteriousness metrics were available for all missense variants, we additionally 
evaluated the burden and attributable fraction when requiring missense variants to pass 
�70% of available annotations (Supplementary Figure 17). This final filter was the one 
chosen for the main analyses, on the basis of giving relatively high observed/expected (i.e. 
more significant enrichment) as well as relatively high attributable fraction (i.e. explaining 
more probands). 

ROH calling 
Runs of homozygosity (ROHs) were called using bcftools-roh67 using common variants 
(MAF>0.01) with GQ�20 and DP�7 and low genotype missingness (<10%). Our previous 
work noted the effect of LD thinning on the calling of ROHs, with the optimal LD thinning 
differing by autozygosity levels6. We repeated the ROH calling for four values of LD thinning, 
r2={0.2,0.4,0.6,0.8}. The ROHs were called within each cohort for each GIA group 
independently to give a more accurate allele frequency estimate for the common variants 
used in the analysis. We retained ROHs that had quality score PHRED�20. For each 
individual, we calculated the fraction of the genome in runs of homozygosity, FROH. The 
distribution of FROH values for each GIA sub-group is shown in Supplementary Figure 9.  

Burden analysis 

Sample filtering for the burden analysis 
We removed trios in which both parents were inferred to come from different GIA sub-groups 
to the proband. Unless stated otherwise, we also removed trios with cross-continental 
admixture i.e. in which one parent was inferred to come from a different GIA group to the 
proband. Supplementary Tables 4 and 6 also include results from sensitivity analyses in 
which we either a) removed all probands with any admixture (‘strict admixture filtering’ i.e. in 
which either parent was inferred to come from a different GIA sub-group from the child) or b) 
did no additional admixture filtering beyond requiring at least one parent to come from the 
same GIA sub-group as the child. We restricted all analyses to the twenty-two GIA sub-
groups listed in Table 1, which were those that had at least 150 unrelated, unaffected 
parents, and a proportion of probands with cross-continental admixture <0.15. Figure 1, 
Figure 2 and Supplementary Figure 11 show exome-wide burden results for seven large 
GIA sub-groups combined (AFR4, AMR0, EUR4, EUR5, MDE3, SAS4 and SAS5), which 
were those that had at least 500 trios, for which the observed number of biallelic 
synonymous genotypes did not differ significantly from expectation (see below; unlike 
EUR1), and for which the exome-wide burden estimates were consistent when carrying out 
strict admixture filtering (unlike EUR7) (Supplementary Table 4).  
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Calculating the observed and expected number of biallelic genotypes 
We extracted all observed trio genotypes with an observed rare allele in proband or parent to 
calculate the observed and expected number of biallelic genotypes. We removed genotypes 
within a trio if there was a Mendelian error or if any one of the three individuals had a 
missing genotype.  
 
The expected number of biallelic genotypes per person was calculated in the same way as 
previously described in Martin et al.6 and summarised here. We considered four classes of 
biallelic genotype: LoF/LoF, LoF/functional, functional/functional and 
synonymous/synonymous. In short, the expected number of biallelic genotypes per person in 
GIA sub-group p, in variant class c, in gene g was calculated as: 

����,�,�� � ������	
�,���,�,� 

where ������	
�,� is the number of unrelated probands in GIA sub-group p and ��,�,� is the 

expected frequency of biallelic genotypes given by, 
��,�,� � �1 	 
�,����

�,�,�
� 
�,���,�,� 

where ��,�,� is the cumulative frequency of parental haplotypes containing at least one 

variant of class c in gene g with MAF <0.01 in GIA sub-group p, and 
�,� is the proportion of 

probands in GIA sub-group p with a ROH overlapping gene g. For the case of LoF/functional 
compound heterozygous genotypes, the expected frequency was calculated as: 

���/��	����	��,�,� � �1 	 
�,��2���,�,����	����	��,�,��1 	 ���,�,��� 

 
To calculate the cumulative frequency, we counted the number of haplotypes with at least 
one variant of class c in gene g in GIA sub-group p amongst unrelated, unaffected parents 
(��,�,�), and divided this by the total number of haplotypes in that group (�����). 

��,�,� �  ��,�,�/����� 

 
To calculate ��,�,�, within a gene, variant class, and GIA sub-group, for each unrelated, 
unaffected parent, we counted two haplotypes if a homozygous alternative genotype was 
observed, and one haplotype if a single heterozygous genotype was observed. When a 
parent had multiple heterozygous variants in that class within the gene, we tried to infer their 
phase based on transmission to the child, then counted one haplotype if they were in cis or 
two otherwise. If the phase was not clear, we counted one haplotype. 
 
We determined compound heterozygous genotypes as those for which the proband inherited 
at least one heterozygous variant in the relevant class from each parent within a gene. To 
determine the observed count of biallelic genotypes, we counted the number of individuals 
with at least one homozygous alternative or compound heterozygous genotype within a 
variant class in the gene. If multiple deleterious biallelic genotypes were observed in a given 
individual, we only counted the one with the most severe consequence (e.g. if an individual 
had both a LoF/LoF and a LoF/functional compound heterozygous genotype in the same 
gene, this was counted only as LoF/LoF). 

Testing for enrichment of biallelic genotypes over expectation 
To determine the exome-wide burden of biallelic genotypes in variant class c in GIA sub-
group p, we summed the observed and expected number across genes and compared these 
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using a Poisson test. For the deleterious classes (LoF/LoF, LoF/functional and 
functional/functional) we used a one-sided Poisson test, testing whether the observed 
number was significantly greater than the expected, whereas for the biallelic synonymous 
class, we used a two-sided test. To determine the fraction of cases attributable to damaging 

biallelic genotypes, we calculated ��,� � ∑� ��,�,� and ��,� � ∑� ��,�,� for the three 

deleterious classes, then calculated the attributable fraction for GIA sub-group p as 

�∑� ��,� 	 ∑� ��,��/��, where �� is the number of unrelated probands in  p. Within 
each GIA sub-group within each cohort, we chose the LD thinning threshold which gives us 
the maximum p-value in the synonymous variant class (given in Supplementary Table 4), 
then used this LD thinning threshold to calculate the ��,�,� for all variant classes for that GIA 

sub-group. We calculated the observed and expected values in DDD and GeneDx 
individually, and also conducted a pooled analysis by summing ��,�,� and ��,�,� across 
cohorts (Supplementary Table 4). The pooled estimates of attributable fraction calculated 
across the three deleterious genotype classes and across several GIA sub-groups (Figure 
1, Supplementary Figure 11) are calculated as ∑� �∑� ��,� 	 ∑� ��,���/ ∑� �� .  

 
For our exome-wide burden analyses (Figure 1, Supplementary Table 4, Supplementary 
Figures 10, 11, 12, 15 and 17), we removed genes flagged in gnomAD v2 as having an 
outlying number of synonymous variants, too many missense variants, or too many loss of 
function variants49, and genes that do not overlap with the intersection of the bait regions 
across all the exome capture kits used in DDD or GeneDx. This left 17,320 genes, of which 
16,424 had at least one variant that passed our filtering.  
 
In the Discussion, we present estimates of the residual risk of having an AR condition for 
undiagnosed patients without any candidate putatively damaging variants in known ARDD 
genes. To estimate this, we first removed individuals considered diagnosed and individuals 
with a damaging biallelic genotype that passed our filtering in a consensus or discordant 
gene. We then split the rest of the individuals into high (FROH>0.0156) and low (FROH<0.0156) 
autozygosity groups, and within each of these groups, calculated the attributable fraction in 
the genes not on the consensus or discordant gene lists.  

Per-gene tests and multiple testing correction 
For the per-gene enrichment tests, we initially tried implementing the original method used 
by Akawi et al.8, which is the exact probability for a sum of independent binomials. However, 
this method involves calculating all the possible ways the observed biallelic genotypes could 
have been distributed across the GIA sub-groups, and this proved to be computationally 
intractable for genes with high counts for our large sample size. Thus, we instead treated the 
total count of biallelic genotypes across GIA sub-groups as a sum of Poisson-distributed 
random variables with rates ��, �� , � , �	 . This value follows a Poisson distribution with rate 
�� � �� � � � �	 . Thus, we summed the observed and expected values across GIA sub-
groups for a given gene and ran a one-sided Poisson test to determine the probability of 

observing at least ∑� ��,�,� genotypes given the expected number ∑� ��,�,�. 

Supplementary Figure 13 shows that this sum-of-Poissons approach gives very similar p-
values to the previous approach (Pearson correlation R=0.98), particularly for genes with 
p<0.05 which are the ones of interest.  
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On each gene, we did four non-independent tests for these four likely damaging classes of 
variant: 

- LoF/LoF 
- LoF/LoF + LoF/functional 
- functional/functional 
- LoF/LoF + LoF/functional + functional/functional 

As a Bonferroni correction we used � � 0.05/�17320 � 4� � 7.2  10��. We used estimates 
in all four damaging classes to calculate the Benjamini & Hochberg false discovery rate 
(FDR)-adjusted p-values. We also implemented a test based on synonymous/synonymous 
genotypes as a control, and reassuringly, the p-values from this followed the expected null 
distribution (Supplementary Figure 13c).  

Burden explained by ClinVar pathogenic variants 
Figure 2b shows the estimate of the AR attributable fraction after removing variants 
annotated as pathogenic/likely pathogenic (P/LP) in ClinVar. For this, we removed biallelic 
genotypes if the variant (for homozygotes) or both variants (in a compound heterozygote 
pair) fulfilled the following criteria: 

- had CLNSIG=Pathogenic OR CLNSIG=Likely_pathogenic, OR  
- had CLNSIG=Conflicting_interpretations_of_pathogenicity AND 

(CLNSIGCONF~Pathogenic|Likely_pathogenic AND NOT 
CLNSIGCONF~Benign|Likely_benign) i.e. if there were conflicting assertions of 
pathogenicity, at least one of those assertions was P/LP, but none were “benign” 
or “likely benign” 

Filtering and analysis of de novo mutations 
De novo mutations (DNMs) were called by GATK Haplotype Caller, and variant calls were 
restricted to -/+ 50bp of RefGene primary coding regions. Specific filters for DNM calls were: 
calls were required to have greater than 10 reads in the proband, more than 3 supporting 
reads, a genotype quality of greater than 40 and a strand bias of less than 30, and allele 
fraction of >0.15 for SNVs and >0.25 for indels (except for calls on chrX in males, which 
were allowed to have an allele fraction of 1). Indels greater than 100bp and variants that 
were seen in more than 11 parents across the cohort were removed. Sites with an allele 
fraction of less than 0.3 were excluded if any one of the following conditions were met: 
BaseQRankSum (Z-score from Wilcoxon rank sum test of Alt Vs. Ref base qualities) <= 
0.75, MQ (RMS Mapping Quality) <= 58  or QD (Variant Confidence/Quality by Depth) <= 8. 
Variants were annotated with bcftools-csq68 on the canonical transcript (Gencode GRCh38, 
version 43). 
 
We calculated the expected number of DNMs in subgroupings of probands using a gene-
specific null mutation rate model for different functional classes of mutations based on 
estimated triplet-specific mutation rates, accounting for gene length and sequence context69. 
The exome-wide attributable fraction was calculated as follows, for a given group of 
probands: 

!" #$%$ 
&&'(�)&
�*" �'
+&($# �
 ���� 	 ����� � ����	����	�� 	 ����	����	���   

# �'$�
#-.
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Where �� is the exome-wide observed number of de novo variants in consequence class c, 
��  is the expected number calculated using the model from69, and �  is a correction factor 

calculated as 
�����������

 �����������
.  

Definition of known DD-associated genes 
To get a list of “known” autosomal recessive developmental disorder-associated (ARDD) 
genes, we combined the list of genes from the Developmental Disorders Gene-to-Phenotype 
Database (DDG2P) used by DDD with a list of diagnostic genes used within the GeneDx in-
house pipelines. There is an additional list of candidate genes in which GeneDx reports 
VUSs, but we do not consider these here. We downloaded the latest version of DDG2P on 
6th March 2023 from https://www.ebi.ac.uk/gene2phenotype/downloads and retained those 
genes listed as having “definitive”, “strong” and “moderate” evidence (i.e. the clinically 
reportable categories) which were listed as “biallelic_autosomal”. This left 1,236 genes. 
From the GeneDx list (current July 2022), we retained those annotated as “validated” (i.e. 
the clinically reportable categories) which were listed as “autosomal recessive”. The GeneDx 
gene curation rules consider the following evidence in the course of validating a disease 
gene: 1) replication (at least two independent publications OR one large collaborative paper 
recruiting individuals from different backgrounds if GeneDx was involved) and 2) the number 
of probands segregating molecularly strong variants. There were 2,223 AR genes on the 
“validated” list, many of which are actually associated with disorders that are not DDs. Of 
these, we retained the 1,144 that were also “biallelic_autosomal” on the DDG2P list (at any 
confidence level), plus 331 which were not on the DDG2P ARDD gene list but which were 
classed as autism or intellectual disability genes by GeneDx. The remaining 748 genes were 
curated by two clinical geneticists (HVF and ES) to determine those that caused DDs as 
opposed to later-onset disorders, and of these, 191 were retained. The GeneDx ARDD gene 
list thus contained 1,666 genes. We called the 1,074 genes present on both the DDG2P and 
GeneDx ARDD gene lists “consensus” genes, and the 754 present on just one of those lists 
“discordant” genes; of these, 1,069 and 749 respectively were amongst the 17,320 genes 
retained for analysis (Supplementary Table 5). 

Phenotypic similarity of patients 
The phenotypic similarity of patients was calculated following Kaplanis et al.5 with the 
phenopy package https://gitbub.com/GeneDx/phenopy. The pairwise similarity of two terms 
in The Human Phenotype Ontology (HPO) were compared quantitatively using the Hybrid 
Relative Semantic Similarity (HRSS) metric, and similarity for two lists of terms was 
calculated via a Best Match Average21. The phenotype similarity between two probands is 
defined as the listwise HRSS of the phenotypes describing each proband. Only terms 
currently in the HPO at the time of analysis were included, and any updates to retired HPO 
terms were handled by searching for the alternate IDs of all current phenotypes and 
replacing them where appropriate. The set of HPO terms assigned to each proband were 
pruned by removing ancestor terms in any ancestor-descendant pairs. As before, the 
information content (IC) of each term used for HRSS calculations was the mean of the IC 
based on the HPO-OMIM-ORPHANET phenotype-to-gene annotations and the phenotype-
to-gene annotations of monogenic diagnosed cases from the relevant cohort/s (i.e. DDD 
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alone if examining a pair of DDD patients, GeneDx alone if examining a pair of GeneDx 
patients, or DDD+GeneDx if examining a pair consisting of one patient from each cohort).  
 
For the genes that passed FDR<5% in the genotype-based test, the phenotypic similarity of 
all pairs of probands with damaging biallelic variants in that gene were calculated. We 
compared the distribution of these scores to a null distribution of HRSS scores for 100,000 
randomly-chosen pairs (Supplementary Figure 14). This null distribution was created such 
that the fraction of randomly-chosen pairs that involved a) two DDD patients, b) two GeneDx 
patients or c) one DDD and one GeneDx patient matched the fraction amongst the patients 
with damaging biallelic variants in the FDR<5% genes.  

Supplementary Note 

Phenotypic comparisons of the cohorts 
DDD patients were slightly more male-biased than GeneDx patients (58.4% male versus 
55.7% male, Fisher’s exact test p-value = 8x10-8). They were also slightly younger at 
recruitment on average (7.3 years versus 9.4 years; t-test p-value <1x10-163), and the age 
distribution was less variable (standard deviation 6.1 years for DDD versus 10.2 years for 
GeneDx) (Supplementary Figure 1). DDD patients had significantly fewer HPO terms on 
average than GeneDx patients (7.0 terms versus 19.8; t-test p-value<1x10-200). This likely 
reflects differences in how these HPO terms were recorded. For DDD, clinical geneticists 
recorded phenotypes that they thought likely to be relevant to a monogenic diagnosis and 
that were particularly distinctive amongst the population of rare disease patients being seen 
in genetics clinics, whereas in GeneDx, the HPO terms were extracted from the medical 
notes (including medical history and primary indication) through a mixture of automated text 
mining and manual curation by nurses, contractors and genetic counsellors trained in the 
abstraction process. Accordingly, there were multiple organ systems in which GeneDx 
patients were substantially more likely than DDD patients to have an HPO term, even after 
controlling for age and sex, including the musculature, digestive, cardiovascular, immune, 
respiratory and blood systems (Supplementary Figure 2). However, examination of the 
most common HPO terms revealed that many of those assigned to GeneDx patients are 
nonspecific (e.g. feeding difficulties, bruising susceptibility, failure to thrive) or represent 
common diseases (e.g. asthma, eczema) (Supplementary Table 1). These differences are 
likely related to differences in coding practices between the clinicians recruiting to DDD 
versus GeneDx rather than true phenotypic differences between cohorts.  
 

Suggestive new genes passing FDR<5% but not Bonferroni 
correction 
Our signal in ZDHHC16 was driven by one patient with a LoF/LoF genotype and two with 
LoF/functional genotypes (p=3.91x10-6). Two unrelated probands were strikingly similar 
phenotypically, having microcephaly, seizures, developmental 
regression/neurodegeneration, and abnormalities of the respiratory system. However, the 
third had a less distinctive phenotype involving generalised developmental delay with 
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seizures, and had a sibling with a similar phenotype and the same ZDHHC16 variants. 
Consistent with the neurodevelopmental features in these patients, ZDHHC16 has been 
shown to play a critical role in the regulation of neural stem/progenitor cell proliferation in 
zebrafish telencephalic development23.  
 
Biallelic variants in HECTD4 (p=8.67x10-6 in our analysis) were recently reported to cause a 
neurodevelopmental disorder characterised by intellectual disability, seizures, movement 
disorder, behavioural abnormalities, macrocephaly, abnormality of dentition, and agenesis of 
the corpus callosum24. The two unrelated probands we observed with biallelic LoF/LoF 
genotypes in this gene also exhibited many of these features. 
 
We found a single individual with a biallelic damaging genotype (homozygous LoF) in 
ATXN1 (p=9.04x10-5), in which expansions of a trinucleotide repeat are a dominant cause of 
spinocerebellar ataxia type 1 (SCA1)70. There has also been a report of neurobehavioral 
abnormalities in the homozygous knockout mouse25. SCA1 is a neurodegenerative disorder 
rather than a developmental disorder, with typical onset in the third or fourth decade of life, 
but it can have early onset in childhood. The symptoms of our biallelic patient, who was 
recruited as a toddler, are consistent with SCA1, but there were additional clinical features 
including developmental delay and some dysmorphic features. 
 
We observed three patients with damaging biallelic genotypes (all biallelic LoF) in LRRC34 
(p=5.42x10-5). A homozygous LoF in this gene has previously been reported in a patient with 
Joubert Syndrome, with accompanying functional evidence supporting pathogenicity 26. One 
of our three patients already has a monogenic diagnosis in a different gene, another had a 
phenotype consistent with Joubert Syndrome, but the third was phenotypically distinct. We 
consider that more evidence is required to definitively implicate LRRC34 as a biallelic DD 
gene. 
 
We observed two individuals with biallelic LoFs in C11ORF94 (p=9.04x10-5), a known 
regulator of male fertility that plays a role in sperm-oocyte membrane binding71,72. This gene 
has not previously been linked to developmental disorders. Our two patients did not have 
particularly similar phenotypes, and one had a partial diagnosis in another gene. Hence, we 
consider this finding very tentative and that more evidence is required to definitively implicate 
this gene as a DD-associated gene. 
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Supplementary Figures 

Supplementary Figure 1 

 
Supplementary Figure 1: Distribution of age at assessment (A) and number of HPO terms 
(B) between DDD and GeneDx patients. The vertical lines indicate the means. 
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Supplementary Figure 2 

 
Supplementary Figure 2: Proportion of probands from each cohort with at least one HPO 
term within the indicated chapter (green text) or specific phenotype (black text), ordered by 
the prevalence in GeneDx. We used logistic regression to test whether there was a 
significant difference in phenotype prevalence between cohorts after controlling for sex and 
age. All of the indicated phenotypes showed a significant association with cohort (p<0.0001) 
except the following: any ID/DD/language impairment, polydactyly, abnormality of the breast 
and abnormality of the thoracic cavity.  
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Supplementary Figure 3 

 
Supplementary Figure 3: UMAP of the first seven principal components (PCs) of the 1000 
Genomes and HGDP samples with DDD and GeneDx samples projected onto the PCs. The 
GIA groups were labelled based on the ancestry of the 1000 Genomes/HGDP reference 
samples within each cluster. 
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Supplementary Figure 4 
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Supplementary Figure 4: UMAPs based on principal components from each continental-
level cluster. The PCA was run on each GIA group separately using the 1000 
Genomes/HGDP reference samples together with the unrelated parents from GeneDx, then 
the DDD samples and remaining GeneDx samples were projected onto these. The clusters 
indicated in the left-hand plots were determined using HDBSCAN. The right-hand plots show 
the same UMAP but instead coloured to indicate which samples come from each cohort 
versus the reference samples. The GIA groups were as follows: A-B) African (AFR), C-D) 
Latin American (AMR), E-F) East Asian (EAS), G-H) European (EUR), I-J) Middle Eastern 
(MDE), and K-L) South Asian (SAS).  
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Supplementary Figure 5 

 
Supplementary Figure 5: Choosing optimal QC metrics for SNVs. A) and B) show the 
transmission rate of synonymous singletons vs sensitivity to detect validated de novo 
variants in GeneDx and DDD respectively. Panels C) and D) show the transition to 
transversion ratio versus the mean number of non-reference genotypes per trio in GeneDx 
and DDD respectively. The red triangle represents the value for the final QC threshold 
chosen. 
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Supplementary Figure 6 

 

Supplementary Figure 6: Choosing optimal QC metrics for indels. A) and B) show the 
transmission rate of rare inframe variants in low pLI non-monoallelic DDG2P genes 
vs sensitivity to detect validated de novo indels in GeneDx and DDD respectively. 
Panels C) and D) show the same transmission rate as the previous panels versus 
the mean number of coding indels per person in GeneDx and DDD respectively. The 
red triangle represents the final QC threshold chosen. 
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Supplementary Figure 7 

 

Supplementary Figure 7: Rare variant (MAF<0.01 across the cohort) count distributions for 
different exome capture platforms for EUR4 individuals. 
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Supplementary Figure 8

 
 
Supplementary Figure 8: Distribution of various metrics per sample before and after 
sample QC. A) The residuals of the transition-transversion ratio, after regressing out the 
effect of population, and exome capture, split by exome capture before removing sample QC 
outliers and B) after removing the sample QC outliers. C) The proportion of genotypes 
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missing, split by dataset, before removing sample QC outliers, and D) after removing sample 
QC outliers. E) The residuals of the heterozygous to homozygous alternative ratio, after 
regressing out the effect of population, exome capture, and FROH, split by exome capture, 
before removing sample QC outliers, and F) after removing sample QC outliers. The vertical 
lines represent the thresholds for outlier removal (see Methods for details). 
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Supplementary Figure 9 

 
Supplementary Figure 9: Density plots of distribution of FROH amongst the probands per 
GIA sub-groups on a pseudo-log scale (FROH+0.0001). The vertical line represents 
FROH=0.0156 which is the expected value for the offspring of second cousins.  
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Supplementary Figure 10 

 
Supplementary Figure 10: Exome-wide observed and expected number of biallelic 
genotypes per GIA sub-group, for the four consequence classes. This is after excluding trios 
with cross-continental admixture. This figure shows only GIA sub-groups with at least 200 
trios; numbers for all GIA sub-groups are shown in Supplementary Table 4, together with 
estimates obtained with either no admixture filtering or stricter admixture filtering. The GIA 
sub-groups used in Figure 1 are shown in blue bold text along the x-axis. Coloured points 
are the observed numbers, black points are the expected numbers, and black lines show 
95% confidence intervals around the observed. For some GIA sub-groups, the black points 
and/or black lines are not visible as they lie under the coloured points. P-values are shown 
for those where there is a nominally significant (p<0.05) difference between the observed 
and expected values, according to a Poisson test (two-sided for synonymous/synonymous, 
one-sided otherwise). 
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Supplementary Figure 11 

 
Supplementary Figure 11: Fraction of patients in different groups attributable to de novo 
versus autosomal recessive coding variants [(observed-expected)/N]. The patients are split 
by level of consanguinity (A), cohort (B), diagnostic status (C) or sex (D). The bars show the 
overall estimates across the seven GIA sub-groups in Figure 1, excluding cross-continental 
admixed individuals. 
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Supplementary Figure 12

 
Supplementary Figure 12: The estimated attributable fraction versus the average FROH for 
all twenty-two GIA sub-groups included in Table 1, split by cohort. The line of best fit is 
shown, with a 95% confidence interval around it shown in grey shading. The adjusted R2 is 
0.38, significantly different from 0 (p=2.3x10-4). 
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Supplementary Figure 13 

Supplementary Figure 13: Performance of the per-gene tests. A) and B) are a comparison 
of the p-values, across every consequence class (i.e. four tests per gene plotted here), from 
the sum-of-Poissons method used in this paper with the sum-of-binomials method used in 
Akawi et al. 8 and Martin et al. 6. These show that the methods agree well for low p-values 
(Pearson correlation of 0.98 for panel A). Panel C) shows QQ-plots of the sum-of-Poissons 
method applied to 30,168 unrelated trios without cross-continental admixture from the 
twenty-two GIA sub-groups shown in Table 1, after removing genes with zero observed 
counts. 
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Supplementary Figure 14 

 
 
Supplementary Figure 14: Cumulative distribution functions for pairwise phenotypic 
similarity scores as calculated by Phenopy. The distribution of novel genes (ATAD2B, 
ATG4C, ATXN1, C11ORF94, CRELD1, HECTD4, KBTBD2, LRRC34, ZDHHC16) passing 
FDR<5% is shown in red, consensus/discordant genes passing FDR<5% in blue, and the 
similarity scores of random pairs in grey. Random pairs were selected proportionally to 
match the occurrence of DDD/DDD, GeneDx/GeneDx and DDD/GeneDx pairs in the novel 
and consensus/discordant sets. The phenotypic similarity scores in patients with damaging 
biallelic genotypes in the novel genes were significantly lower than those for patients with 
such genotypes in consensus/discordant genes (one-sided Wilcoxon rank sum p=0.003), but 
they were significantly higher than random scores (one-sided Wilcoxon rank sum p=0.024) 
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Supplementary Figure 15 

Supplementary Figure 15: Fraction of patients in each cohort attributable to AR coding 
variants both across all genes and in the indicated ARDD gene lists. 
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Supplementary Figure 16 

 
Supplementary Figure 16: Distributions of pathogenicity predictors for 122 known 
pathogenic recessive missense variants from DECIPHER versus all missense variants on 
chromosome 20. 
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Supplementary Figure 17 

 
Supplementary Figure 17: Effect of different strategies for filtering missense variants on 
exome-wide burden and attributable fraction. A) Ratio of observed to expected genotypes 
and B) attributable fraction [(Observed-Expected)/N], for LoF/functional and 
functional/functional genotypes, using different numbers of missense pathogenicity filters 
(see section on “Filtering of missense and other functional variants” in the Methods). Results 
are from the same samples as Figure 1 (i.e. the seven large GIA sub-groups with the cross-
continental admixture filter, for GeneDx and DDD combined).  
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Supplementary Figure 18 

 
Supplementary Figure 18: Comparison of p-values from the per-gene tests obtained using 
missense variants passing one, two, three or four deleteriousness filters versus passing 70% 
of missense deleteriousness filters (used in the main analysis). Only the p-value for the 
consequence combination that was most significant in the main analysis is shown. Genes 
highlighted in Table 2 are coloured in green. 
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Supplementary Tables  
 
Supplementary Table 1. Comparison of prevalence of common HPO terms between 13,450 
DDD patients and 36,057 GeneDx patients. Included are the HPO terms seen in >1% of 
patients from either cohort. The prevalence was compared using a Fisher’s exact test. 
 
Supplementary Table 2: Sample sizes for each GIA sub-group, pre- and post-QC. This 
includes counts of all probands, probands in full trios (used in main analyses) with and 
without admixture filters, and of parents used for calculating the expected number of biallelic 
genotypes. The average FROH of full trio probands (post-QC) for each GIA sub-group is 
given, with and without admixture filters. The GIA groups labelled with a suffix “_OTH” are 
the individuals who were unassigned by the fine-scale ancestry classification; these 
probands were removed from all analyses unless stated. A total of 132 individuals that failed 
sample QC did not have any ancestry assignment in the GIA group assignment; these 
individuals are not included in this table or any genetic analyses. 

Supplementary Table 3. Variant counts before and after QC for SNVs and indels for each 
cohort. 
 
Supplementary Table 4. Results from exome-wide burden analysis. We show the results 
for DDD and GeneDx pooled, and each separately, with three different strengths of 
admixture filtering (1. cross-continental admixture removed, as used in Figure 1; 2. no 
admixture filtering; 3. all admixture removed), for the twenty-two analysed GIA sub-groups, 
as well as the totals across all GIA sub-groups and the seven large ones used in Figure 1. 
For each, we give the number of unrelated trios analysed (N), the observed (O) and 
expected (E) number of biallelic genotypes per consequence class, their ratio (O/E), the 
estimate of attributable fraction ([O-E]/N), a Poisson p-value for the difference between 
observed and expected (p_poisson), and the upper and lower bound of a 95% confidence 
interval around the observed value (lower and upper bound O 95CI). We also include the r2 
threshold used for LD pruning prior to ROH calling in each GIA group. 

Supplementary Table 5: List of consensus and discordant genes using DDG2P and 
GeneDx curated lists. 
 
Supplementary Table 6: Results from the per-gene tests. We include only the counts for 
16,424 genes with at least one variant observed that passed our filtering. We present results 
based on four different sets of trios: 

a) Diagnosed+undiagnosed, removing those with cross-continental admixture 
(sample sizes for the twenty-two GIA sub-groups shown in Table 1) 

b) Undiagnosed only, removing those with cross-continental admixture 
c) Diagnosed+undiagnosed, no admixture filtering 
d) Diagnosed+undiagnosed, removing those with any admixture 

For all four sets of trios, we show the overall observed and expected number of biallelic 
genotypes, the Poisson p-value and FDR-adjusted p-value. For (a) we also include a 
breakdown of the observed and expected counts for each GIA sub-groups within each 
variant consequence class tested. 
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Supplementary Table 7. Variants and chapter-level HPO phenotypes for novel genes that 
were FDR<5% significant in our analysis. Patient GDX7 was the only patient with consent to 

provide specific HPO terms and details.  
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