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Abstract 16 

Polygenic scores (PGS) have emerged as the tool of choice for genomic prediction in a wide 17 

range of fields from agriculture to personalized medicine. We analyze data from two large 18 

biobanks in the US (All of Us) and the UK (UK Biobank) to find widespread variability in PGS 19 

performance across contexts. Many contexts, including age, sex, and income, impact PGS 20 

accuracies with similar magnitudes as genetic ancestry. PGSs trained in single versus multi-21 

ancestry cohorts show similar context-specificity in their accuracies. We introduce trait prediction 22 

intervals that are allowed to vary across contexts as a principled approach to account for context-23 

specific PGS accuracy in genomic prediction. We model the impact of all contexts in a joint 24 

framework to enable PGS-based trait predictions that are well-calibrated (contain the trait value 25 

with 90% probability in all contexts), whereas methods that ignore context are mis-calibrated. We 26 

show that prediction intervals need to be adjusted for all considered traits ranging from 10% for 27 

diastolic blood pressure to 80% for waist circumference. Adjustment of prediction intervals 28 

depends on the dataset; for example, prediction intervals for education years need to be adjusted 29 

by 90% in All of Us versus 8% in UK Biobank. Our results provide a path forward towards 30 

utilization of PGS as a prediction tool across all individuals regardless of their contexts while 31 

highlighting the importance of comprehensive profile of context information in study design and 32 

data collection. 33 

Introduction 34 

Accurate prediction of complex diseases/traits integrating genetic and non-genetic factors is 35 

essential for a wide range of fields from agriculture to personalized genomic medicine. The 36 

genetic contribution to common traits is typically predicted using polygenic scores (PGS) that 37 

summarize the joint contribution of many genetic factors1–4. A critical barrier in PGS use is their 38 

context-specific accuracy – their performance (and/or bias) varies across genetic ancestry5–9, age, 39 

sex, socioeconomic status and other factors10–12.  This prevents equitable use of PGS across 40 

individuals of all contexts4,5,13.  41 
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PGS use data from large-scale genome-wide association studies (GWAS) to estimate linear 42 

prediction models of traits based on genetic variants; these prediction models are then used for 43 

new data that often has different context characteristics from the GWAS training data (e.g., 44 

different distributions of genetic ancestry, social determinants of health, etc.)1,2,14.  Even when 45 

testing data is similar to training data, genetic effects themselves can vary by contexts (e.g., due 46 

to genotype-environment interaction, across age15, sex16, genetic ancestry17–20) thus leading to 47 

differential PGS performance (as traditional PGS do not model such interactions). Furthermore, 48 

when genetic effects are unknown, allele frequency, linkage disequilibrium and differential tagging 49 

of true latent genetic factors can also lead to context-specific accuracy of PGS-based 50 

predictions10,15,21.  51 

To account for PGS accuracy variability, we propose an approach to incorporate context-52 

specificity into trait prediction intervals that are allowed to vary across contexts. Trait prediction 53 

intervals denote the range containing true trait values with pre-specified confidence (e.g., 90%). 54 

And they provide a natural approach to model variability in PGS accuracies – narrower prediction 55 

intervals correspond to contexts where PGS attains higher accuracy – that can then be used in 56 

applications of PGS-based trait predictions10,22,23. As an example, consider the case of two 57 

individuals with the same PGS-based predictions for low-density lipoprotein cholesterol (LDL) of 58 

120 mg/dL. If the two individuals have different contexts (e.g., sex) that are known to impact PGS 59 

accuracy (e.g., R2=0.1 in men vs. 0.2 in women), their prediction intervals will also vary (e.g., 120 60 

± 40 mg/dL vs. 120 ± 10 mg/dL). In this example the second individual is more likely to meet a 61 

decision criterion of LDL>100 mg/dL for clinical intervention. 62 

To achieve calibration across all contexts, we propose a statistical model (CalPred) that jointly 63 

models the effects of all contexts on PGS accuracy leveraging calibration data. The key 64 

assumption is that new target individuals for whom PGS-based predictions will be employed have 65 

similar contexts as the calibration data. This is motivated by precision health efforts that created 66 

EHR-linked biobanks of patients from the same medical system in which the PGS-based 67 

prediction will be applied in the future24–27; in this context the assumption is that the biobank is 68 

representative of future patients entering the same medical system. 69 

First, we analyze data across two large-scale biobanks (UK Biobank28 and All of Us29) to find  70 

pervasive impact of context on PGS accuracy across a wide range of traits. All considered traits 71 

(N=72) have at least one context impacting their accuracies10,12. Socio-economic contexts have 72 

similar magnitudes of impact on PGS accuracies as genetic ancestry; for example, PGS accuracy 73 

varies by up to ~50% for individuals across the context of “education years” averaged across all 74 

considered traits in All of Us. Moreover, socio-economic contexts have greater impact on PGS 75 

accuracy in All of Us, a more diverse dataset, as compared to UK Biobank.  76 

Second, we use simulations and real data analysis to find that CalPred provides well-calibrated 77 

prediction intervals across individuals of diverse contexts. For example, CalPred jointly models 78 

the impact of genetic ancestry, age and sex and other social determinants of health on LDL 79 

prediction to find that prediction intervals need adjustment by up to ~40% across contexts to 80 

achieve calibration. The context-specificity of PGS prediction varies across traits, with largest 81 

adjustments observed for traits including waist circumference and average mean spherical 82 
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equivalent (avMSE) where prediction intervals need adjustment by ~100% for individuals in 83 

certain contexts; meanwhile certain traits such as diastolic blood pressure only need a modest 84 

adjustment by ~20%. Notably, the context-specificity of the same trait also depends on the studied 85 

population; for example, prediction intervals for education years need adjustment by 90% in All of 86 

Us versus 8% in UK Biobank, reflecting the more diverse distribution of education years and other 87 

social determinants of health in All of Us. Overall, our approaches provide a path forward to 88 

modeling differential PGS accuracy by context in prediction of complex traits in humans. 89 

Results 90 

Overview 91 

We incorporate context-specific accuracy in PGS-based predictions using prediction intervals that 92 

are allowed to vary across contexts to maintain calibration: the true phenotype is contained within 93 

the prediction interval at a pre-specified probability (e.g., 90%; Figure 1a). Naturally, as accuracy 94 

varies by context, the interval width needs to vary adaptively such that calibration is maintained 95 

(Figure 1b). For illustrative purpose we distinguish among three types of prediction intervals 96 

(Figure 2). First, standard errors of PGS weights can be used to estimate prediction intervals that 97 

do not vary across contexts and/or individuals; these types of intervals are calibrated only when 98 

target perfectly matches training which is hard to achieve in practice. Second, prediction intervals 99 

can be estimated empirically using a calibration dataset across all data ignoring context1,30–34; 100 

these types of intervals are robust to mismatches between training and testing, but are mis-101 

calibrated in particular contexts due to the variability of PGS accuracy. Third, prediction intervals 102 

that vary across contexts can be estimated using a calibration dataset by empirically quantifying 103 

the impact of each context on prediction accuracy; context-specific prediction intervals are 104 

adaptive and robust across contexts albeit at the expense of a more complex statistical model 105 

and larger calibration data that spans all contexts. Motivated by clinical implementation of PGS-106 

based predictions in medical systems where EHR-linked biobanks already exist, here we focus 107 

on leveraging calibration data to estimate context-specific prediction intervals. In this scenario it 108 

is natural to use existing EHR-linked biobanks as approximation for future patients within the 109 

same medical system. For example, UCLA ATLAS biobank24 contains data of ~150k patients 110 

within the UCLA Health system that can be used to calibrate PGS-based predictors for future 111 

visits of UCLA patients.  112 

Mathematically, we model context-specific prediction accuracy via the error term 𝔼[(𝑦! − 𝑦&!)"|𝐜!] 113 

for phenotype 𝑦! and prediction mean (or point prediction) 𝑦&! = 𝔼[𝑦!|𝐜!] as a function of context 𝐜! 114 

for each individual i in the calibration dataset. We parametrize the impact of all contexts on 115 

prediction intervals in a joint model as 𝔼[(𝑦! − 𝑦&!)"|𝐜!] = exp/𝐜!#𝛃$1 where 𝐜!  denotes contexts 116 

including age, sex, socioeconomic factors and top principal components (denoting major axes of 117 

genetic ancestry; Methods).  𝛃$ quantifies the unique impact of each context on variation of the 118 

prediction interval accounting for other contexts (Methods). This approach is a generalization of 119 

the context-free approach. Denoting prediction standard deviation (SD) as σ3! = 4exp/𝐜!#𝛃5$1, 90% 120 

prediction intervals can be derived as (𝑦&! − 1.645 × σ3! , 𝑦&! + 1.645 × σ3!). 121 
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Widespread context-specific PGS accuracy in diverse populations 122 

Although PGS accuracy has been shown to vary across selected traits and contexts5,10–12, its 123 

pervasiveness remains unclear. We analyzed two large-scale biobanks in the UK and US (UK 124 

Biobank and All of Us) comprising >600K individuals spanning a wide range of contexts. We 125 

trained PGS for 72 traits in individuals previous annotated as “White British”28 (WB) from UK 126 

Biobank and evaluated these PGSs in independent testing data from UK Biobank and All of Us. 127 

We focused on 11 contexts that span genetic ancestry, sex, age, and socio-economic factors 128 

such as educational attainment (Methods). We used relative ΔR2 to quantify the impact of context 129 

to PGS accuracy defined as 
%!"#	%&'(!')*
+ &%,"!!"-	%&'(!')*

+

%.))
+ , where 𝑅[()*(+,]"  denotes R2 between PGS 130 

and residual phenotype computed in a given range of the context variable (top/bottom quintile for 131 

continuous contexts; binary subgroups for binary contexts). We found widespread context-132 

specific PGS accuracies across all traits and contexts studied (Figure 3, S1 and S2, Table S1 and 133 

S2; Methods).  134 

Context-specific accuracy in UK Biobank 135 

All 72 traits had at least one context impacting their accuracies in UK Biobank data; 264 (out of 136 

792) PGS-context pairs had significant variable accuracy (p < 0.05 / (72 × 11); Methods). Overall, 137 

genetic ancestry had the most widespread impact on PGS accuracy: 70 of 72 traits had significant 138 

differences in PGS accuracy, with an average relative ΔR2 of -46% between top and bottom PC1 139 

quintiles (Figure S3). Socioeconomic contexts also significantly impacted PGS accuracy; PGS 140 

accuracy significantly differed for 62 traits, with an average relative ΔR2 of -23% between top and 141 

bottom deprivation index quintiles. The direction of context’s impact depended on the trait being 142 

studied. For example, age significantly impacted 19 traits; rather than consistently increasing or 143 

decreasing accuracy, an older age led to increased accuracies for 13 traits (e.g., high-density 144 

lipoprotein cholesterol and white blood cell count in Figure 3; HDL and WBC) and to decreased 145 

accuracies for 6 traits (e.g., low-density lipoprotein cholesterol; LDL). 146 

The widespread context-specificity retained even when testing data was matched to the training 147 

data by genetic ancestry (Figure 3). 22 (out of 72) PGSs had at least one context significantly 148 

impacting their prediction accuracies; 43 PGS-context pairs had significant variable accuracy (p 149 

< 0.05 / (72 × 11)). We replicated previously reported variable PGS accuracy in WB individuals 150 

for diastolic blood pressure, body mass index, education years across contexts of sex, age and 151 

deprivation index10. As an example, LDL was significantly impacted by six contexts in WB 152 

individuals, with age having the strongest impact (relative ΔR2 was more than 100% between top 153 

and bottom age quintiles). 154 

Next, we studied the unique impact of each context on variable PGS accuracy within CalPred 155 

model that jointly accounts for all contexts (Methods, Figure 3cd). Context contribution to variable 156 

accuracy conditional on all other contexts was quantified with 𝛽$ , where larger absolute 𝛽$ 157 

indicated more substantial variation in accuracy along a context variable (Methods). In general, 158 

the effects of contexts to traits were largely independent. For example, both PC1 and deprivation 159 

index significantly impacted PGS accuracy for a range of traits in the joint model, indicating both 160 
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had a unique contribution to variable PGS accuracy. We also found examples showing otherwise: 161 

the impact of “wear glasses” context on LDL accuracy can be explained by its correlation with age 162 

(Figure S4), while other contexts independently contributed to variable LDL accuracy. These 163 

results indicated the importance of jointly considering all measured contexts to correctly assess 164 

the unique contribution of each context. We found that contexts including sex, age, income, and 165 

deprivation index had comparable impact on accuracy as genetic ancestry (Figure 3ef). The 166 

distribution of estimated effects of 𝛽$  suggested predominantly higher prediction accuracy for 167 

individuals with higher income and lower deprivation indices; this can be partly explained by 168 

different context distribution PGS training data: WB individuals had higher income and lower 169 

deprivation indices compared to the rest of the UK Biobank35 (Figure S5). 170 

Context-specific accuracy in All of Us 171 

We next turned to All of Us, a diverse biobank across the US comprising more than 160K 172 

participants (Figure S3 and S6). Due to challenges in phenotype matching across biobanks, we 173 

restricted the analysis to 10 traits and 11 contexts matching the UK Biobank analyses (Methods). 174 

All traits had at least one context that impacted their accuracies (Figure 4, Table S3 and S4). 81 175 

PGS-context pairs were significant when considering all individuals, and 49 PGS-context pairs 176 

were significant when restricting to individuals with self-reported race/ethnicity (SIRE) as “White” 177 

(“White SIRE”) (p < 0.05 / (12 × 11); Methods). Prediction of cholesterol and LDL were similarly 178 

impacted by a broad range of contexts. Prediction of education years was impacted by contexts 179 

including age, BMI, employment, income, both when considering all individuals and considering 180 

“White SIRE” sample, consistent with evidence that socioeconomic contexts influence PGS of 181 

socio-behavioral traits such as education10,36,37.  182 

Interestingly, socioeconomic contexts had greater impact on context-specificity in All of Us as 183 

compared to UK Biobank. For example, years of education context significantly impacted 9 out of 184 

11 traits with average relative ΔR2=50%, as compared to 2 out of 71 traits with average relative 185 

ΔR2=0.2% in UK Biobank (averaging across traits other than education years itself). This may be 186 

explained by larger variation of education years in the US and/or education being more correlated 187 

with latent social determinants of health in the US as compared to the UK. 188 

For completeness we also evaluated PGSs for height38 and LDL39 derived from multi-ancestry 189 

meta-analyses from PGS Catalog40 (Figure 4). We found that multi-ancestry PGSs did not 190 

alleviate widespread context-specific accuracy. Higher income, education years, better 191 

employment, or lower BMI predominately led to higher prediction accuracy across traits (Figure 192 

4ef). We formally compared and determined an overall consistency for fitted 𝛽$  coefficients 193 

across populations and biobanks (Figure S7). We determined that variable R2 across contexts 194 

was not solely driven by differences of phenotype variance in context strata: context-specific R2 195 

can result from differences in either phenotypic variance or PGS predictiveness, and the extent 196 

attributed to either component varied by each context-trait pair (Figure S8). 197 

CalPred yields calibrated context-specific prediction in simulations 198 
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Having shown that context-specificity of PGS accuracy is pervasive across traits and biobanks, 199 

we next turned to CalPred, an approach to estimate context-specific prediction intervals 200 

accounting for context- and trait-specific variable accuracy (Methods). We first evaluated CalPred 201 

in simulations where prediction accuracy varies across contexts similar to real data5,6,10 (Figure 5; 202 

Methods). We assessed calibration of prediction intervals at both the overall level and within each 203 

context subgroup (Methods). First, we showed that generic prediction intervals without context-204 

specific adjustment had severe over-/under-coverage when evaluated within each context 205 

subgroup stratified by PC1, age, or sex. As expected, biases of coverage tracked closely with 206 

accuracy across contexts (Figure 5). Second, we showed that CalPred context-specific prediction 207 

intervals that were allowed to vary with each individual's context were calibrated across contexts 208 

(Figure 5). This was due to the incorporation of context-specific prediction accuracy in the interval 209 

estimation. CalPred performance depended on calibration sample size with Ncal>500 for accurate 210 

model fitting (Figure S9). Next, we investigated the impact of unmeasured context and found that 211 

CalPred was not calibrated across subgroups of individuals defined by the unmeasured context. 212 

In simulations where we included excessive contexts that did not impact prediction accuracy, 213 

coverages of prediction intervals were associated with larger standard errors, highlighting the 214 

importance of selecting an appropriate set of contexts in calibration (Figure S9). We also 215 

determined that parameter estimations of 𝛃$  were accurate when the model was correctly 216 

specified and remained robust in model mis-specification scenarios (Figure S10). Overall, 217 

simulation results demonstrated that CalPred is able to produce well-calibrated and context-218 

specific prediction intervals when contexts are measured and present in the data, and highlighted 219 

the importance of comprehensive profiling of relevant context information. 220 

CalPred yields calibrated context-specific predictions in real data 221 

Next we applied CalPred to produce context-specific prediction intervals for a wide range of traits 222 

across UK Biobank and All of Us. We start by showcasing LDL, an important risk factor of 223 

cardiovascular disease39. Calibration by context is particularly important because accuracy of 224 

predicting LDL was impacted by many contexts, with largest impact from age (Figure 3 and 4). 225 

We modeled the prediction mean using PGS together with age, sex, and genetic ancestry, and 226 

modeled context-specific prediction intervals using the set of contexts investigated in Figure 3 227 

and 4 (Methods). Accuracy of LDL prediction decreased with age (R2=17% in youngest quintile 228 

vs. R2=11% in oldest quintile; Figure 6a). Generic prediction intervals were mis-calibrated with 229 

coverage of 93% and 86% for youngest and oldest quintiles instead of the nominal level of 90%. 230 

In contrast, context-specific prediction intervals had the expected 90% coverage across all 231 

considered contexts. This resulted from varying prediction interval length by context, with a wider 232 

interval compensating for lower prediction accuracy. For example, as the model estimated a 233 

positive impact of age to prediction uncertainty (𝛽$=0.15; p<10-30), individuals in youngest/oldest 234 

age quintiles had average prediction standard deviation (SD) of 27.9 vs. 34.5 mg/dL (24% 235 

difference; Figure S11; Methods). These findings were replicated in All of Us and in other traits 236 

(Figure S12 and S13), where R2 varied across contexts and context-specific prediction intervals 237 

achieved well-calibration. 238 

Next, we sought to examine the joint contribution of all considered contexts to variable prediction 239 

SD (instead of separately considering age, PC1 or sex; Figure 6b). Context-specific accuracy was 240 
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more pronounced by ranking individuals by prediction SD accounting for impact of all contexts 241 

(prediction SD ranged approximately from 20 mg/dL to 45mg/dL; Figure 6b): we detected a 39% 242 

difference comparing individuals in bottom and top deciles of prediction SD (26.0 mg/dL vs. 36.3 243 

mg/dL; Figure 6c; Figure S14 and S15). This implied that individuals in top prediction SD decile 244 

(characterized by contexts of male, increased PC1 and age; see LDL column in Figure 4c) needs 245 

to have their prediction interval widths increased by 39% compared to those in bottom decile. 246 

Extending analysis accounting for all contexts to all traits in UK Biobank and All of Us, we 247 

determined a widespread large variation of context-specific prediction intervals across traits 248 

(Figure 7). Average differences between top and bottom prediction SD deciles across traits were 249 

31% and 43%, respectively for UK Biobank and All of Us. The trait with the highest prediction SD 250 

difference was the average mean spherical equivalent (avMSE), a measure of refractive error, 251 

that was impacted the most by "wear glasses" context. Individuals who wore glasses had a much 252 

higher PGS-phenotype R2 (9.6%) than those who did not (2.2%), likely due to the reduced 253 

variation in avMSE phenotypes among individuals who did not wear glasses. Comparing across 254 

the two datasets, BMI, LDL, and cholesterol were more heavily influenced by context than 255 

average, while diastolic blood pressure and HDL were less impacted, suggesting trait-specific 256 

susceptibility to context-specific accuracy. Notably, there were also cases where context-257 

specificity of the same trait was drastically different across datasets. For example, prediction SD 258 

differences for predicting education years was 90% in All of Us versus 8% in UK Biobank. This 259 

disparity likely reflected the more diverse distribution of education years and other social 260 

determinants of health in the US population sampled in All of Us, in line with results in Figures 2 261 

and 3. Such differences between datasets also highlight that context-specificity can be population-262 

specific and the need to consider unique characteristics of different populations in calibration. 263 

Taken together, our findings emphasize the importance of incorporating context information into 264 

PGS-based models when applied in diverse populations. 265 

Discussion 266 

Our work adds to the literature of PGS-based prediction as follows. First, we show that context-267 

specific accuracy of PGS is highly pervasive across traits and biobanks with socioeconomic 268 

contexts often having larger impact than genetic ancestry5,10,12,23,41. Second, we introduce CalPred 269 

to estimate context-specific prediction intervals that maintain calibration for all individuals across 270 

contexts. Third, we show using real and simulated data how differential prediction intervals can 271 

be used to incorporate uncertainty in predictions. Although we focused primarily on PGS-based 272 

prediction, our approaches are general and can incorporate any other factors. Fourth, we focused 273 

on trait prediction as the main output of our approach motivated by genomic medicine applications. 274 

As PGSs are increasingly applied to diverse populations, we find it imperative to incorporate the 275 

context-specific accuracy into PGS downstream analyses to avoid bias against certain contexts 276 

due to differential prediction accuracy, especially for contexts that are correlated with 277 

socioeconomic status. CalPred provides a principled framework to quantify 278 

generalizability/portability of a given PGS and represent individualized context-specific accuracy 279 

to be leveraged in downstream analyses. The prediction intervals can be interpreted as a 280 

personalized reference range accounting for each individual’s contexts (including age, sex, and 281 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 27, 2023. ; https://doi.org/10.1101/2023.07.24.23293056doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.24.23293056
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

   

 

genetic variation via PGS). Such personalized reference range may prove useful in identifying 282 

individuals with outlier lab values in a personalized and equitable fashion to prevent under-/over-283 

diagonsis42.  284 

The observation that distribution of PGSs differs across genetic ancestry continuum41 motivates 285 

methods that regress out effects of variables representing genetic ancestry from PGS distribution 286 

to facilitate comparison across individuals locating at different positions in genetic ancestry 287 

continuum43,44. However, such approaches may unintentionally remove true biological differences 288 

of PGS distribution across genetic ancestry continuum (e.g., African Americans have reduced 289 

neutrophil count that can be explained by the large effect of a single Duffy-null SNP45) as they do 290 

not consider phenotype value distribution in calibration procedure; in addition, these approaches 291 

cannot represent different standard errors in PGS predictions of individuals across genetic 292 

ancestry continuum. Our method leverages a set of calibration data to properly adjust point 293 

predictions across contexts according to true phenotype distribution. Compared to other existing 294 

calibration methods34, our approach provides a framework to incorporate context information.  295 

We note several limitations and provide future directions of our work. First, we focused on 296 

modeling and analyzing quantitative traits in this work. Context-specific accuracies can be further 297 

incorporated in modeling case-control status and absolute risk of diseases, perhaps by modeling 298 

the underlying disease liability using methods proposed in this study. Second, we made several 299 

modeling assumptions, including the linear relationship between error terms and contexts, as well 300 

as quantile normalization procedure to phenotype values to fit in normal assumption of CalPred 301 

model. Future work may leverage models with fewer assumptions and calibration dataset with 302 

larger sample size to enable more flexible modeling. Third, CalPred requires calibration data that 303 

matches in distribution with the target data, including both the distribution of contexts and their 304 

effects to phenotypes (in terms of both prediction mean and variance). Otherwise, there may be 305 

bias in target samples that are underrepresented in the calibration data. The magnitude of bias 306 

due to mismatch between calibration and target data in realistic scenarios needs to be empirically 307 

examined in future work. As shown in our simulation studies, missing contexts will also limit proper 308 

calibration of PGS along such contexts; this observation advocates standardized and 309 

comprehensive profiling of contexts across biobanks to better quantify the role of contexts to PGS 310 

accuracy, especially for those related to social-economic status, to prevent further exacerbation 311 

of health disparity. Relatedly, these results indicate that GWAS data collecting process not only 312 

needs to prioritize diversity in genetic ancestry, but also promote diversity across social-economic 313 

contexts, because PGS may be estimated with different precision in different social-economic 314 

contexts. Fourth, CalPred prediction intervals will benefit from improved modeling of the prediction 315 

mean; this may be achieved by more fine-grained modeling of prediction factors to capture more 316 

phenotype variation (Supplementary Note). For example, sex-specific SNP-level effects can be 317 

estimated from individual-level GWAS data16 and CalPred coupled with sex-specific PGS is likely 318 

to produce more precise, and shorter, prediction intervals. 319 
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Figures  320 

 321 
 322 

Figure 1: Calibrated and context-specific prediction intervals via CalPred. (a) Calibration of 323 
prediction intervals. We consider a subset of individuals with the same point prediction (shaded area 324 
in the left panel, dashed horizontal line in the right panel). Each dot denotes an individual’s phenotype 325 
value. Intervals with proper-coverage cover the true phenotype at pre-specified probability of 90%; 326 
intervals with over-coverage are incorrectly wide; intervals with under-coverage are incorrectly narrow. 327 
(b) Context-specific calibration of prediction intervals. We consider two subpopulations in different 328 
contexts (e.g., female and male). Context 1 (blue dots) has lower prediction accuracy and therefore 329 
wider variation around the mean, while context 2 (red dots) has higher prediction accuracy and 330 
therefore narrower variation around the mean. Context-specific intervals vary by context, providing 331 
intervals with proper coverage in each context.332 
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 333 
 334 
Figure 2: Different approaches for prediction intervals of PGS-based models. All approaches 335 
start with a set of predefined PGS weights derived from existing GWAS. (a) prediction intervals can 336 
be calculated using analytical formula without calibration data. However, these intervals are not 337 
guaranteed to be well-calibrated. (b) Generic calibration methods do not consider context information; 338 
they produce generic prediction intervals that are constant across individuals. (c) Context-specific 339 
calibration leverages a set of calibration data to estimate the impact of each context to trait prediction 340 
accuracy; the estimated impact can then be used to generate prediction intervals for any target 341 
individuals matching in distribution with calibration data.   342 
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 343 
 344 
Figure 3: Widespread context-specific PGS prediction accuracy in UK Biobank. (a-b) Heatmaps 345 
for context-specific PGS accuracy for all and WB individuals. Each row denotes a context and each 346 
column denotes a trait; the squared correlation between PGS and residual phenotype (R2) is shown 347 

in parentheses. Heatmap color denotes the PGS-phenotype relative ΔR2 (defined as !!"#$%&
' "!!"#$%''

!())
' ), 348 

where 𝑅[$%&$'(]*  represents 𝑅*  computed in a given range of the context variable. For continuous 349 

contexts, relative ΔR2 denote differences of top quintile minus bottom quintile; for binary contexts 350 
(including sex, smoking, wear glasses, alcohol), relative ΔR2 denote differences of male minus female, 351 
smoking minus not smoking, wearing glasses minus not wearing glasses, drinking alcohol minus not 352 
drinking alcohol (these orders were arbitrarily chosen). Numerical values of relative R2 differences are 353 
displayed for PGS-context pairs with statistically significant differences (multiple testing correction for 354 
all 10×11 PGS-context pairs in this figure; p < 0.05 / (10×11)). ‘*’ are displayed for PGS-context pairs 355 
with nominally significant differences (multiple testing correction for 11 contexts; p < 0.05 / 11). (c-d) 356 
Heatmaps for effects to prediction accuracy in CalPred model (estimated 𝛽+ ). Colormaps were 357 
inversed to those of (a-b) to reflect that positive 𝛽+ corresponds to lower prediction accuracy and vice 358 
versa. (e) Distribution of estimated 𝛽+ in the CalPred model for each context across traits. (f) Number 359 
of significantly impacted traits by each context (p < 0.05 / (72×11)).  360 



   

 

   

 

 361 
 362 

Figure 4: Widespread context-specific PGS prediction accuracy in All of Us. (a-b) Heatmaps for 363 
context-specific PGS accuracy for all and white SIRE individuals. Each row denotes a context and 364 
each column denotes a trait; overall R2 is shown in parentheses. Heatmap color denotes relative ΔR2: 365 
differences of top quintile minus bottom quintile for continuous contexts and difference of male minus 366 
female for binary context of sex. Numerical values of relative R2 differences are displayed for trait-367 
context pairs with statistically significant differences (multiple testing correction for all 12×11 trait-368 
context pairs in this figure; p < 0.05 / (12×11)). ‘*’ are displayed for trait-context pairs with nominally 369 
significant differences (multiple testing correction for 11 contexts; p < 0.05 / 11). (c-d) Heatmaps for 370 
estimated 𝛽+ in CalPred model. (e) Distribution of estimated 𝛽+ in CalPred model for each context 371 
across traits. (f) Number of significantly impacted traits by each context (p < 0.05 / (12×11)).  372 



   

 

   

 

 373 
 374 

Figure 5: Simulation studies of CalPred. Simulations were performed to reflect scenarios where 375 
individuals have variable prediction accuracy by genetic PC1, age, and sex. For each simulation, we 376 
first trained a calibration model using a random set of 5,000 training individuals and then evaluated 377 
resulting prediction intervals on 5,000 target individuals (Methods). (a) Prediction R2 between 𝑦 and 𝑦% 378 
in simulated data both at the overall level, and in each context subgroup. (b) Coverage of generic vs. 379 
context-specific 90% prediction intervals evaluated in each context subgroup. Generic intervals were 380 
obtained by applying CalPred without context information; context-specific intervals were obtained by 381 
applying CalPred together with context information. (c) Average length of generic vs. context-specific 382 
prediction standard deviation (SD) in each context. Each box plot contains R2/coverage/average length 383 
evaluated across 100 simulations (100 points for each box plot), the center corresponds to the median; 384 
the box represents the first and third quartiles of the points; the whiskers represent the minimum and 385 
maximum points located within 1.5× interquartile range from the first and third quartiles, respectively. 386 
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 387 
  388 
Figure 6: CalPred PGS calibration of LDL in UK Biobank. (a) Top panel: Prediction R2 between 389 
phenotype and point predictions (incorporating PGS and other covariates) both at the overall level, 390 
and in each subgroup of individuals stratified by context. Middle panel: Coverage of generic vs. 391 
context-specific 90% prediction intervals evaluated in each context subgroup. Generic intervals were 392 
obtained by applying CalPred without context information; context-specific intervals were obtained by 393 
applying CalPred together with context information. Bottom panel: Average length of generic vs. 394 
context-specific 90% prediction intervals in each context. Each box plot contains R2/coverage/average 395 
length across 30 random samples with each sample of 5,000 training individuals and 5,000 target 396 
individuals (30 points for each box plot) (b) Ordered LDL prediction SD in unit of mg/dL. Gray lines 397 
denote prediction SD obtained with random sample of 5,000 training and applied to 5,000 target 398 
individuals. Red line denote prediction SD obtained from all individuals. (c) Box plots of results in (b) 399 
from individuals of LDL prediction SD quantile of 0-10%, 45-55%, 90-100%; the center corresponds 400 
to the median; the box represents the first and third quartiles of the points; the whiskers represent the 401 
minimum and maximum points located within 1.5× interquartile ranges from the first and third quartiles, 402 
respectively.  403 
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 404 
 405 

Figure 7. Variation of prediction standard deviation (SD) accounting for all contexts. Relative 406 
difference of prediction SD between top and bottom prediction SD deciles (90-100% vs. 0-10%) for 407 
all traits in UK Biobank (a) and All of Us (b). Traits are ranked by prediction SD. The difference is 408 
calculated with the median prediction SD within decile of individuals with highest prediction SD s,- 409 

and decile of individuals with lowest prediction SD 𝑠,-. using (/*&"/*&+
/*&+

− 1+ × 100%.  410 
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Methods 411 

Constructing calibrated and context-specific prediction intervals 412 
We first provide an overview of CalPred framework. CalPred takes as input from pre-trained PGS 413 
weights, genotype, phenotype and contexts to train a calibration model to generate calibrated and 414 
context-specific prediction intervals for target individuals. We consider a calibration dataset with 415 
Ncal individuals. For each individual i=1, …, Ncal, we have measured genotype vector 𝐠! ∈ {0,1,2}. 416 
with M SNPs, and phenotype 𝑦! . With pre-trained PGS weights for a given trait 𝛃/ ∈ ℝ. , we 417 

calculate the PGS for everyone in the calibration data with 𝐠!#𝛃/. Each individual's PGS, together 418 

with other contexts, including age, sex, genetic ancestry and other socioeconomic factors, 419 
compose each individual i’s contexts 𝐜! 	(all ‘1’ intercepts are also included). Phenotypes are then 420 
modeled as  421 

𝑦! = 𝒩/𝜇(𝐜!), 𝜎"(𝐜!)1, 𝑖 = 1,… ,𝑁012	 422 

𝜇(𝐜!) = 𝐜!#𝛃3 , 𝜎"(𝐜!) = exp/𝐜!#𝛃$1. 423 

There are two main components in the model 424 
• 𝜇(𝐜!) = 𝐜!#𝛃3 models the baseline prediction mean. This term is commonly used to predict 425 

phenotypes using PGS together with other contexts. 426 

• 𝜎"(𝐜!) = exp/𝐜!#𝛃$1 models the context-specific variance of 𝑦 around prediction mean. 427 

Differential prediction accuracy across contexts can lead to variable variance around 428 
prediction mean across contexts. The use of exp	(⋅) is to ensure that the variance term >= 429 
0. 430 
 431 

Model parameters 𝛃3 , 𝛃$ can be estimated leveraging a set of calibration data using restricted 432 

maximum likelihood for linear model with heteroskedasticity46 implemented in statmod R 433 

package47. Then individual-level predictive distribution 𝒩/𝜇̂(𝐜!) = 𝐜!#𝛃53 , 𝜎"P(𝐜!) = exp	(𝐜!#𝛃5$)1	can 434 

be generated for any target individual 𝐜!  using the fitted 𝛃53 , 𝛃5$ . The corresponding 𝛼 -level 435 

prediction interval (e.g., 𝛼=90% for 90% prediction interval) is  436 

R𝜇̂(𝐜!) − Φ&4 T1 − 5
"
U 𝜎&(𝐜!), 𝜇̂(𝐜!) + Φ&4 T1 − 5

"
U𝜎&(𝐜!)V , where Φ&4  is the inverse cumulative 437 

distribution function of a standard normal distribution (e.g., Φ&4 T1 − 5
"
U = 1.645  for 90% 438 

prediction interval). Since we fit a simple linear model, the extent of parameter overfitting is 439 
minimal with moderate sample size for calibration data (e.g., Ncal>1,000 as validated in our 440 
simulation studies). 441 
 442 
Quantile normalization for non-normal phenotype distribution. In the above, we have 443 
assumed that prediction intervals can be properly modeled as a Gaussian distribution, which may 444 
not be always valid for every phenotype. To reduce the impact of this assumption to real data 445 
analysis, we apply a transformation function 𝑄(⋅)  to 𝑦  with ranked based inverse normal 446 
transformation such that 𝑄(𝑦) follow a normal distribution; 𝑄(𝑦) can then be modeled using the 447 
methods described above. Fitted prediction intervals can then be transformed back into the 448 
original 𝑦 space using 𝑄&4(𝑦). 449 
 450 

Quantifying context-specific R2 of PGS 451 
We quantify context-specific prediction accuracy (R2) of PGS, that is, to what extent PGS have 452 
variable prediction accuracy across contexts (including age, sex, genetic ancestry, proxies for 453 
lifestyle, socioeconomic contexts that can influence traits48). Accurate quantification of contexts 454 
contributing to variable prediction accuracy is important in constructing calibration model. In detail, 455 
for each pair of context and trait in a population, we calculated the prediction accuracy R2 between 456 



   

 

   

 

PGS 𝑦&! and covariate-regressed phenotypes 𝑦! (phenotypes for each trait were regressed out of 457 
age, sex, age*sex and top 10 PCs; this adjustment is to better separate the contribution of PGS) 458 
across each subgroup of individuals defined by contexts. We summarized results using relative 459 
differences of R2 across context groups to baseline R2 calculated across all evaluated individuals 460 
(relative differences between two classes for binary contexts; differences between top and bottom 461 
quintiles for continuous contexts). We calculated the Spearman’s R2 between point predictions 462 
and covariate-regressed phenotypes 𝑅"(𝑦&, 𝑦) within each context subgroup. We also calculated 463 
the baseline Spearman’s R2 denoted as 𝑅122"  across all individuals regardless of contexts. We 464 
summarized the results for each pair of trait and context using the “relative ΔR2” defined as 465 
%/0"&#1+ &%/0"&#++

%.))
+ . We assessed statistical significance of Δ𝑅" across context subgroups by testing 466 

the null hypothesis 𝐻6: Δ𝑅" = 0 using 1,000 bootstrap samples of Δ𝑅" (in each bootstrap sample, 467 
the whole dataset was resampled with replacement and ΔR2 were then re-evaluated). Statistical 468 
significance was assessed using two-sided p-values comparing the observed ΔR2 to the bootstrap 469 
samples of ΔR2.  470 
 471 
Relationship between CalPred model and R2. Population-level metrics such as R2 can be 472 
derived from this model as a function of 𝛃$  and distribution of 𝐜! . Suppose 𝑦 = 𝑦& + 𝑒, 𝑒 ∼473 
𝒩(0, exp(𝐜#𝛃$)), where 𝑦, 𝑦&, 𝑒  denote the phenotypes, point predictions and residual noises, 474 
respectively. We have 475 

𝑅"(𝑦, 𝑦&) = 𝑅"(𝑦& + 𝑒, 𝑦&) =
Var[𝑦&]

Var[𝑦&] + Var[𝑒]
 476 

Holding Var[𝑦&] as fixed, 𝑅"(𝑦, 𝑦&) is a function of Var[𝑒], which is determined by the distribution of 477 
𝐜  and values of 𝛃$ . This indicates a correspondence between 𝛃$  and 𝑅"(𝑦, 𝑦&).  Therefore, 478 
estimated 𝛃$ can also be used as a metric to quantify context-specific accuracy (as used in Figure 479 
3-4). While relative ΔR2 is easier to interpret, it assesses the marginal contribution of each context 480 
separately and require binning for continuous contexts. Meanwhile, 𝛽$ in CalPred model jointly 481 
account for all contexts in parametric regression, and therefore can quantify the unique 482 
distribution of each context to variable accuracy. 483 
 484 
On the other hand, even with constant prediction interval length (constant Var[𝑒]), variable 𝑅" can 485 
still result from variable Var[𝑦&]  across context subgroups. While CalPred focus on modeling 486 
Var[𝑒] as a function of contexts to represent variable R2, Var[𝑦&] can also change as a function of 487 
contexts in certain scenarios. For example, Var[𝑦&] can vary with contexts if 𝑦& = PGS × 𝛽(278+ and 488 

the slope 𝛽 varies as a function of context. For example, ref.16 has reported 𝛽(278+ can be different 489 

across contexts. Such variable slope term can be handled by modeling variable slope terms in 490 
prediction mean 𝑦& (Supplementary Note). 491 
 492 

Real data analysis 493 
We analyzed a diverse set of contexts and traits in UK Biobank and All of Us (1) to quantify the 494 
extent of context-specific prediction accuracy and (2) to evaluate context-specific prediction 495 
intervals via CalPred. 496 
 497 
Training polygenic score weights. Polygenic scores were trained on 370K individuals in UK 498 
Biobank that were assigned to “white British” cluster and 1.1M HapMap3 SNPs. For each trait, 499 
we performed GWAS using plink2 --glm with age, sex and top 16 PCs as covariates. Then 500 
we estimated PGS weights using snp_ldpred2_auto in LDpred249 with input of GWAS 501 

summary statistics and in-sample LD matrix. These estimated PGS weights were then applied to 502 
target individuals in both UK Biobank and All of Us to obtain individual-level PGS. To train 503 



   

 

   

 

polygenic score weights to be used for individuals from All of Us, we overlapped 1.2M SNPs in 504 
All of Us quality-controlled microarray data to 12M SNPs in UK Biobank imputed data to obtain a 505 
set of 0.8M SNPs present in both datasets. Then we trained and applied polygenic scoring weights 506 
using these shared SNPs in UK Biobank to All of Us individuals. This procedure helps improve 507 
accuracy of the polygenic score in All of Us by ensuring all SNPs that have non-zero weights to 508 
present in the data. 509 
 510 
UK Biobank dataset. We analyzed 490K genotyped individuals (including both training and 511 
target individuals). We used 1.1M HapMap350 SNPs in all analyses. All UK Biobank individuals 512 
are clustered into sub-continental ancestry clusters based on top 16 pre-computed PCs (data-513 
field 22009 in ref.28 as in ref.6). This procedure assigned 410K individuals into “white British” 514 
cluster. A random subset of 370K “white British” individuals to perform GWAS and estimate PGS 515 
weights (see above); we trained PGS weights starting with individual-level data to avoid overlap 516 
of sample between training and target data. For evaluation, we used the rest of 120K individuals 517 
with genotypes, phenotypes and contexts (including individuals from both ~40K “White British” 518 
individuals and ~80K other individuals). We focused on analyzing 72 traits with R2>0.05 in 40K 519 
WB target individuals and/or biological importance). We followed https://github.com/privefl/UKBB-520 
PGS/blob/main/code/prepare-pheno-fields.R and ref.6 to perform basic preprocessing for trait 521 
values (e.g., log-transformation and clipping of extreme values). For each trait, we quantile 522 
normalized phenotype values; when performing calibration, phenotype quantiles were calculated 523 
based on calibration data and were then used to normalize target data. We analyzed 11 contexts 524 
representing a broad set of socioeconomic and genetic ancestry contexts, including binary 525 
contexts (sex, ever smoked, wear glasses, drinking alcohol) and continuous contexts (top two 526 
PCs, age, BMI, income, deprivation index, and education years). We note that income and 527 
education years have been processed into 5 quintiles in the original data of UK Biobank.  528 
 529 
All of Us dataset. We analyzed 165K genotyped individuals with diverse genetic ancestry 530 
contexts (microarray data in release v6). We retained 1.2M SNPs from microarray data after basic 531 
quality control using plink2 with plink2 --geno 0.05 --chr 1-22 --max-alleles 2 -532 

-rm-dup exclude-all --maf 0.001. We used microarray data because it contains more 533 

individuals and can be analyzed with low computational cost. All individuals with microarray data 534 
were used in the evaluation. We analyzed 10 heritable traits, including height, BMI, WHR, diastolic 535 
blood pressure, systolic blood pressure, education years, LDL, cholesterol, HDL, triglyceride; they 536 
are straightforward to phenotype and have large sample sizes. Physical measurement 537 
phenotypes were extracted from Participant Provided Information. Lipid phenotypes (including 538 
LDL, HDL, TC, TG) were extracted following https://github.com/all-of-us/ukb-cross-analysis-539 
demo-project/tree/main/aou_workbench_siloed_analyses, including procedures of extracting 540 
most recent measurements per person, and correcting for statin usage. For each trait, we quantile 541 
normalized phenotype values; when performing calibration, phenotype quantiles were calculated 542 
based on calibration data and were then used to normalize target data. We included age, sex, 543 
age*sex, and top 10 in-sample principal components as covariates in the model. We also quantile 544 
normalized each covariate and used the average of each covariate to impute missing values in 545 
covariates. We analyzed 11 contexts, including binary contexts (sex) and continuous contexts 546 
(top two PCs, age, BMI, smoking, alcohol, employment, education, income, number of years living 547 
in current address). 548 
 549 
Population descriptor usage. We explain our usage choices of population descriptor, including 550 
the use of top two PCs to capture genetic ancestry/similarity and the use of “white British” in 551 
analyses of UK Biobank and “white SIRE” in analyses of All of Us. We use the top two PCs 552 
computed across all individuals in UK Biobank or in All of Us, respectively, to capture the 553 
continuous genetic ancestry variation in each dataset. While these two PCs provide major axes 554 



   

 

   

 

of genetic variation (Figure S3), we acknowledge that top two PCs alone are not sufficient to fully 555 
capture all variation in the entire population. The discretized PC1 and PC2 subgroups used in 556 
Figure 2-6 is to enable calculation of population-level statistics such as 𝑅" while we acknowledge 557 
that the underlying genetic variation is continuous. In UK Biobank, we intended to analyze a set 558 
of individuals with relatively similar genetic ancestry to perform GWAS and derive PGS. We used 559 
a set of individuals previously annotated with “white British” that were identified using a 560 
combination of self-reported ethnic background and genetic information having very similar 561 
ancestral backgrounds based on results of the PCA28. In All of Us, we selected a set of individuals 562 
with self-reported race/ethnicity (SIRE) being “white”, to study how PGS have different accuracy 563 
across environmental contexts in such a sample defined by SIRE. Noting that SIRE is not 564 
equivalent to genetic ancestry, the contrast of results from UK Biobank and All of Us helps 565 
understand how the genetic, nongenetic factors impact PGS accuracy in a group of individuals 566 
defined by SIRE or genetic ancestry. 567 
 568 
Evaluating context-specific prediction intervals. Recall that the prediction mean and standard 569 
deviation are 𝜇̂(𝐜), 𝜎&(𝐜) for a target individual with contexts 𝐜. We evaluate the prediction intervals 570 
with regard to phenotypes 𝑦 using metrics of 571 

• Prediction accuracy: 𝑅"(𝜇̂(𝐜), 𝑦). 572 
• coverage of prediction intervals: evaluating  573 

Pr c𝑦 ∈ R𝜇̂(𝒄!) − 𝛷&4 T1 − 5
"
U𝜎&(𝒄!), 𝜇̂(𝒄!) + 𝛷&4 T1 − 5

"
U 𝜎&(𝒄!)Vf ≈ 𝛼, i.e., whether prediction 574 

intervals cover the true phenotypes with pre-specified probability of 𝛼. 575 
Both metrics are evaluated both at the overall level for all individuals, and for each subgroup of 576 
individuals defined by contexts. 577 
 578 
We generated and evaluated context-specific intervals in both UK Biobank and All of Us. For both 579 
datasets, we fit a model to simultaneously model the mean and variance where the mean term 580 
includes PGS, age, sex, age*sex, top 10 PCs so that this matches the baseline model that are 581 
commonly fitted, and the variance term includes age, sex, top 2 PCs, and other contexts of interest 582 
for each dataset (as shown in Figure 3-4 for UK Biobank and All of Us). For each trait, we 583 
performed the evaluation by repeatedly randomly sampling 5,000 individuals as calibration data 584 
to perform the calibration, and 5,000 individuals as target data to perform the evaluation (as 585 
described in “Constructing calibrated and context-specific intervals”). 586 
 587 

Simulations assessing coverage of context-specific prediction intervals 588 
We simulated PGS point predictions 𝑦& and phenotype values 𝑦 to simulate traits with variable 589 
prediction accuracy across genetic ancestry continuum, age, and sex. We started with real 590 
contexts from 76K UK Biobank individuals not used for PGS training (see section “Real data 591 
analyses”). We used 3 contexts (PC1, age, and sex) in simulations. We quantile normalized each 592 
context so they had mean 0 and variance 1. Such simulations preserved the correlation between 593 
contexts. Given these processed contexts, we simulated point predictions 𝑦&  using a normal 594 
distribution 𝑦& ∼ 𝒩(0,1), and we simulated phenotypes 𝑦 with: 595 

𝑦 ∼ 𝒩(𝑦&, exph𝛽$,6 +i𝛽$,: × 𝑐
:

k, 596 

where 𝛽$,6 denoted the baseline variance of 𝑦, and 𝛽$,: was the effect of context 𝑐 to the variance 597 

of 𝑦. “Σ:” enumerated over PC1, age, sex. This procedure simulated different variance of 𝑦 around 598 
𝑦& for individuals with different contexts, as observed in real data. 599 
 600 
In details, we first selected 𝛽$,6 such that 𝑅"(𝑦, 𝑦&) = 30% for individuals with average contexts 601 

(such that ∑ 𝛽$,: × 𝑐: = 0 ). We simulated data with variable variances: we set 𝛽$,1;+ =602 



   

 

   

 

0.25, 𝛽$,(+< = 0.2, 𝛽$,=>4 = 0.15. These parameters were manually chosen to roughly reflect the 603 

observed variable R2 in real data. In each simulation, we randomly sampled Ncal=100, 500, 2500, 604 
5000 individuals used for estimating the calibration model and Ntest = 5000 individuals for 605 
evaluating the predictions from the set of 76K individuals. New point predictions and phenotypes 606 
𝑦&, 𝑦 were simulated in each simulation. Then we quantified the prediction accuracy and coverage 607 
of prediction intervals in these simulations. 608 

Data availability 609 
UK Biobank individual-level genotype and phenotype data are available through application at 610 
http://www.ukbiobank.ac.uk. AoU individual-level genotype and phenotype are available through 611 
application at https://www.researchallofus.org. 612 
 613 

Code availability 614 
Software implementing CalPred and code for replicating analyses: 615 
https://github.com/kangchenghou/CalPred. 616 
 617 

Acknowledgements 618 
We thank Molly Przeworski for helpful suggestions. This research was funded in part by the 619 
National Institutes of Health under awards R01HG009120, R01MH115676, and U01HG011715. 620 
This research was conducted using the UK Biobank Resource under applications 33127. We 621 
thank the participants of UK Biobank for making this work possible. The All of Us Research 622 
Program is supported by the National Institutes of Health, Office of the Director: Regional Medical 623 
Centers: 1 OT2 OD026549; 1 OT2 OD026554; 1 OT2 OD026557; 1 OT2 OD026556; 1 OT2 624 
OD026550; 1 OT2 OD 026552; 1 OT2 OD026553; 1 OT2 OD026548; 1 OT2 OD026551; 1 OT2 625 
OD026555; IAA #: AOD 16037; Federally Qualified Health Centers: HHSN 263201600085U; Data 626 
and Research Center: 5 U2C OD023196; Biobank: 1 U24 OD023121; The Participant Center: 627 
U24 OD023176; Participant Technology Systems Center: 1 U24 OD023163; Communications 628 
and Engagement: 3 OT2 OD023205; 3 OT2 OD023206; and Community Partners: 1 OT2 629 
OD025277; 3 OT2 OD025315; 1 OT2 OD025337; 1 OT2 OD025276. In addition, the All of Us 630 
Research Program would not be possible without the partnership of its participants.  631 



   

 

   

 

References 632 
 633 
1. Chatterjee, N., Shi, J. & García-Closas, M. Developing and evaluating polygenic risk prediction 634 

models for stratified disease prevention. Nat. Rev. Genet. 17, 392–406 (2016). 635 

2. Torkamani, A., Wineinger, N. E. & Topol, E. J. The personal and clinical utility of polygenic risk 636 

scores. Nat. Rev. Genet. 19, 581–590 (2018). 637 

3. Li, R., Chen, Y., Ritchie, M. D. & Moore, J. H. Electronic health records and polygenic risk 638 

scores for predicting disease risk. Nat. Rev. Genet. 21, 493–502 (2020). 639 

4. Kullo, I. J. et al. Polygenic scores in biomedical research. Nat. Rev. Genet. 23, 524–532 (2022). 640 

5. Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health 641 

disparities. Nat. Genet. 51, 584–591 (2019). 642 

6. Privé, F. et al. Portability of 245 polygenic scores when derived from the UK Biobank and 643 

applied to 9 ancestry groups from the same cohort. Am. J. Hum. Genet. 109, 373 (2022). 644 

7. Weissbrod, O. et al. Leveraging fine-mapping and multipopulation training data to improve 645 

cross-population polygenic risk scores. Nat. Genet. 54, 450–458 (2022). 646 

8. Ruan, Y. et al. Improving polygenic prediction in ancestrally diverse populations. Nat. Genet. 54, 647 

573–580 (2022). 648 

9. Bitarello, B. D. & Mathieson, I. Polygenic Scores for Height in Admixed Populations. G3  10, 649 

4027–4036 (2020). 650 

10. Mostafavi, H. et al. Variable prediction accuracy of polygenic scores within an ancestry group. 651 

Elife 9, (2020). 652 

11. Jiang, X., Holmes, C. & McVean, G. The impact of age on genetic risk for common diseases. 653 

PLoS Genet. 17, e1009723 (2021). 654 

12. Hui, D. et al. Quantifying factors that affect polygenic risk score performance across diverse 655 

ancestries and age groups for body mass index. Pac. Symp. Biocomput. 28, 437–448 (2023). 656 

13. Ding, Y. et al. Large uncertainty in individual polygenic risk score estimation impacts PRS-based 657 

risk stratification. Nat. Genet. 54, 30–39 (2022). 658 



   

 

   

 

14. Wray, N. R. et al. Pitfalls of predicting complex traits from SNPs. Nat. Rev. Genet. 14, 507–515 659 

(2013). 660 

15. Ge, T., Chen, C.-Y., Neale, B. M., Sabuncu, M. R. & Smoller, J. W. Phenome-wide heritability 661 

analysis of the UK Biobank. PLoS Genet. 13, e1006711 (2017). 662 

16. Zhu, C. et al. Amplification is the primary mode of gene-by-sex interaction in complex human 663 

traits. Cell Genom. 3, 100297 (2023). 664 

17. Brown, B. C., Ye, C. J., Price, A. L. & Zaitlen, N. Transethnic genetic-correlation estimates from 665 

summary statistics. Am. J. Hum. Genet. 99, 76–88 (2016). 666 

18. Shi, H. et al. Population-specific causal disease effect sizes in functionally important regions 667 

impacted by selection. Nat. Commun. 12, 1098 (2021). 668 

19. Patel, R. A. et al. Genetic interactions drive heterogeneity in causal variant effect sizes for gene 669 

expression and complex traits. Am. J. Hum. Genet. 109, 1286–1297 (2022). 670 

20. Weine, E., Smith, S. P., Knowlton, R. K. & Harpak, A. Tradeoffs in modeling context 671 

dependency in complex trait genetics. bioRxiv 2023.06.21.545998 (2023) 672 

doi:10.1101/2023.06.21.545998. 673 

21. Wang, Y. et al. Theoretical and empirical quantification of the accuracy of polygenic scores in 674 

ancestry divergent populations. Nat. Commun. 11, 3865 (2020). 675 

22. Lambert, S. A., Abraham, G. & Inouye, M. Towards clinical utility of polygenic risk scores. Hum. 676 

Mol. Genet. 28, R133–R142 (2019). 677 

23. Ding, Y. et al. Polygenic scoring accuracy varies across the genetic ancestry continuum in all 678 

human populations. bioRxiv 2022.09.28.509988 (2022) doi:10.1101/2022.09.28.509988. 679 

24. Johnson, R. et al. Leveraging genomic diversity for discovery in an electronic health record 680 

linked biobank: the UCLA ATLAS Community Health Initiative. Genome Med. 14, 104 (2022). 681 

25. Wiley, L. K. et al. Building a vertically-integrated genomic learning health system: The Colorado 682 

Center for Personalized Medicine Biobank. bioRxiv (2022) doi:10.1101/2022.06.09.22276222. 683 

26. Belbin, G. M. et al. Toward a fine-scale population health monitoring system. Cell 184, 2068-684 

2083.e11 (2021). 685 



   

 

   

 

27. Abul-Husn, N. S. & Kenny, E. E. Personalized medicine and the power of electronic health 686 

records. Cell 177, 58–69 (2019). 687 

28. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 688 

562, 203–209 (2018). 689 

29. Ramirez, A. H. et al. The All of Us Research Program: Data quality, utility, and diversity. 690 

Patterns (N Y) 3, 100570 (2022). 691 

30. Wand, H. et al. Improving reporting standards for polygenic scores in risk prediction studies. 692 

Nature 591, 211–219 (2021). 693 

31. Wei, J. et al. Calibration of polygenic risk scores is required prior to clinical implementation: 694 

results of three common cancers in UKB. J. Med. Genet. 59, 243–247 (2022). 695 

32. van Houwelingen, H. C. Validation, calibration, revision and combination of prognostic survival 696 

models. Stat. Med. 19, 3401–3415 (2000). 697 

33. Van Calster, B. et al. Calibration: the Achilles heel of predictive analytics. BMC Med. 17, 230 698 

(2019). 699 

34. Sun, J. et al. Translating polygenic risk scores for clinical use by estimating the confidence 700 

bounds of risk prediction. Nat. Commun. 12, 5276 (2021). 701 

35. Schoeler, T. et al. Participation bias in the UK Biobank distorts genetic associations and 702 

downstream analyses. Nat. Hum. Behav. (2023) doi:10.1038/s41562-023-01579-9. 703 

36. Selzam, S. et al. Comparing within- and between-family polygenic score prediction. Am. J. Hum. 704 

Genet. 105, 351–363 (2019). 705 

37. Okbay, A. et al. Polygenic prediction of educational attainment within and between families from 706 

genome-wide association analyses in 3 million individuals. Nat. Genet. 54, 437–449 (2022). 707 

38. Yengo, L. et al. A saturated map of common genetic variants associated with human height. 708 

Nature 610, 704–712 (2022). 709 

39. Graham, S. E. et al. The power of genetic diversity in genome-wide association studies of lipids. 710 

Nature 600, 675–679 (2021). 711 



   

 

   

 

40. Lambert, S. A. et al. The Polygenic Score Catalog as an open database for reproducibility and 712 

systematic evaluation. Nat. Genet. 53, 420–425 (2021). 713 

41. Martin, A. R. et al. Human demographic history impacts genetic risk prediction across diverse 714 

populations. Am. J. Hum. Genet. 107, 788–789 (2020). 715 

42. Van Driest, S. L. et al. Association between a common, benign genotype and unnecessary bone 716 

marrow biopsies among African American patients. JAMA Intern. Med. 181, 1100–1105 (2021). 717 

43. Hao, L. et al. Development of a clinical polygenic risk score assay and reporting workflow. Nat. 718 

Med. 28, 1006–1013 (2022). 719 

44. Khera, A. V. et al. Whole-genome sequencing to characterize monogenic and polygenic 720 

contributions in patients hospitalized with early-onset myocardial infarction. Circulation 139, 721 

1593–1602 (2019). 722 

45. Reich, D. et al. Reduced neutrophil count in people of African descent is due to a regulatory 723 

variant in the Duffy antigen receptor for chemokines gene. PLoS Genet. 5, e1000360 (2009). 724 

46. Smyth, G. K. An Efficient Algorithm for REML in Heteroscedastic Regression. J. Comput. 725 

Graph. Stat. 11, 836–847 (2002). 726 

47. Giner, G. & Smyth, G. K. statmod: Probability Calculations for the Inverse Gaussian Distribution. 727 

arXiv [stat.CO] (2016). 728 

48. Yousefi, P. D. et al. DNA methylation-based predictors of health: applications and statistical 729 

considerations. Nat. Rev. Genet. 23, 369–383 (2022). 730 

49. Privé, F., Arbel, J. & Vilhjálmsson, B. J. LDpred2: better, faster, stronger. Bioinformatics 36, 731 

5424–5431 (2020). 732 

50. The International HapMap 3 Consortium. Integrating common and rare genetic variation in 733 

diverse human populations. Nature 467, 52–58 (2010). 734 


