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Abstract: 33 

Background: Emerging evidence suggested that the gut microbiota associated with 34 

the development of immune-related adverse effects (irAEs) among cancer patients 35 

receiving immune checkpoint inhibitors (ICIs), but their roles remain largely 36 

unknown, and the causal associations are yet to be clarified. 37 

Methods: Bi-directional two-sample Mendelian randomization (MR) approach was 38 

employed to examine the potential causal relationship between the gut microbiome 39 

and irAEs (high-grade irAEs and all-grade irAEs). Instrumental variables (IVs) for 40 

gut microbiota were retrieved from the MiBioGen consortium (18,340 participants). 41 

GWAS summary data for instrument-outcome associations were gathered from an 42 

ICIs-treated cohort with 1,751 cancer patients. Inverse variance weighted (IVW), MR 43 

PRESSO, maximum likelihood (ML), weighted median, weighted mode, and 44 

cML-MA-BIC were used in the MR analysis. Reverse MR analysis was performed on 45 

the identified bacteria that were causally associated with irAEs. 46 

Results: Fourteen gut bacterial taxa identified by IVW and MR PRESSO were 47 

causally associated with irAEs, among which Lachnospiraceae was shown to increase 48 

the risk of both high-grade and all-grade irAEs. Akkermansia, Verrucomicrobiaceae, 49 

and Anaerostipes were found to exert protective roles in high-grade irAEs. 50 

Nevertheless, Ruminiclostridium6, Coprococcus3, Collinsella, and Eubacterium 51 

(fissicatena group) predispose to the development of high-grade irAEs. For all-grade 52 

irAEs, RuminococcaceaeUCG004, and DefluviitaleaceaeUCG011 were shown to 53 

have protective effects. While on the contrary, Porphyromonadaceae, Roseburia, 54 

Eubacterium (brachy group), and Peptococcus were associated with an elevated risk 55 

of all-grade irAEs. 56 

Conclusion: Our MR analysis found that Lachnospiraceae and Akkermansia et al. 57 

were causally associated with the development of irAEs, which warrants further 58 

investigation. 59 

 60 
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1. Introduction 70 

Applications of immune checkpoint inhibitors (ICIs), especially those targeting 71 

CTLA-4 and PD-1/PD-L1, have revolutionized the treatment of various aggressive 72 

cancers (1). By blocking inhibitory signaling pathways and reinvigorating the natural 73 

anti-tumor immune response, these inhibitors have significantly prolonged the lives of 74 

numerous cancer patients (2–5). However, due to the inhibition of the systemic brake 75 

of immune activation, ICIs can cause off-target effects resulting in immune-mediated 76 

impairment of organs and non-malignant tissues. This newly emerging registry of 77 

iatrogenic effects, known as immune-related adverse effects (irAEs), usually resemble 78 

autoimmune disorders, such as colitis, dermatitis, and thyroiditis (6). Although the 79 

majority of irAEs manifest in a mild manner, still, up to 55% of patients develop 80 

serious irAEs in combined therapy (anti-CTLA-4 and anti-PD-1) (7). Notably, serious 81 

irAEs pose significant risks to patients’ well-being and may result in morbidity and 82 

mortality, not only due to the adverse event itself but also due to the need to suspend 83 

or terminate ICIs therapy and the potential impairment of the ICIs-induced immune 84 

response while using immunosuppressants (e.g. corticosteroids) (8–10). Therefore, 85 

effective management of irAEs is critical to optimize the safety and efficacy of ICIs 86 

therapy. 87 

The precise mechanisms underlying irAEs are not fully understood, but 88 

emerging evidence indicates that the gut microbiota, a complex and dynamic system 89 

of microorganisms colonizing the intestinal tract, may play a crucial role in the 90 

regulation of irAEs. Simpson et al. found a reduced alpha-diversity of intestinal 91 

microbiota in patients who developed severe irAEs (11). Furthermore, antibiotics 92 

commonly prescribed prophylactically to hospitalized patients have been shown to 93 

increase the risk of ICIs therapy-related irAEs that are not limited to the 94 

gastrointestinal tract (12–14). The gut microbiota is closely interacted with the host 95 

immune system and has been implicated in the regulation of various autoimmune and 96 

inflammatory disorders (15,16). However, consensus on the core microbial drivers or 97 

protective microbes of irAEs is still lacking, due to inconsistent findings reported in 98 

previous studies (11,17–19). The discrepancies among previous studies may be 99 

attributed to limited sample sizes and susceptibility to confounding factors such as age, 100 

diet, and medication usage in observational designs (11,20).  101 

Mendelian randomization (MR), initially described by Katan in 1986 (21), is a 102 

novel method for inferring causal associations between modifiable risk factors and 103 

health outcomes using genetic variations as instrumental variables (IVs) (22). MR 104 

effectively addresses the limitations of confounding and measurement errors that 105 

often exist in observational studies, as the direction of causation is from the genetic 106 

polymorphism to the trait of interest, not vice versa (23). Therefore, we aim to utilize 107 
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MR, an increasingly popular method in drug discovery and epidemiology (24,25), to 108 

investigate the potential association between the gut microbiota and irAEs, providing 109 

further evidence for the management of irAEs through manipulating the human gut 110 

microbiota.  111 

 112 

2. Methods 113 

Study design and data source 114 

An overview of the study design was illustrated in Figure 1. In general, we 115 

performed a bi-directional two-sample Mendelian randomization, a genetic 116 

instrumental variable analysis that utilizes single nucleotide polymorphisms (SNPs) 117 

from summary-level data as genetic instruments for the risk factor under investigation. 118 

To ensure the validity of the MR results, three assumptions needed to be satisfied, as 119 

illustrated in Figure S1 (22): (1) the genetic variants should demonstrate a strong 120 

association with the exposure (relevance assumption); (2) the genetic variants should 121 

not be associated with any confounders that could affect the relationship between the 122 

exposure and outcome (independence assumption); and (3) the variants should not 123 

have an independent effect on the outcome aside from their impact through the 124 

exposure (exclusion restriction assumption). This study is based on publicly available 125 

GWAS summary statistics and ethical approvals were acquired in the original study. 126 

 127 

Gut microbiota: Genetic variations associated with the composition of gut 128 

microbiota were derived from the most comprehensive genome-wide meta-analysis 129 

conducted to date by the MiBioGen consortium (26). This study included a total of 130 

18,340 individuals from 24 cohorts worldwide, mainly of European descent (n = 131 

13,266). Fecal DNA was extracted, and targeted sequencing of variable regions in the 132 

bacterial 16S rRNA gene (V4, V3-V4, and V1-V2 regions) was performed to profile 133 

the gut bacterial composition. To account for sequencing depth differences across 134 

cohorts, all cohorts were rarefied to 10,000 reads per sample. Taxonomic 135 

classification was performed using direct taxonomic binning method (26). Following 136 

quality control, imputation, and post-imputation filtering procedures, gut bacterial 137 

taxa observed in over 10% of samples were included in the microbiota quantitative 138 

trait loci (mbQTL) mapping (26). This allowed us to identify host genetic variants 139 

associated with the relative abundance of bacterial taxa. Further details on microbial 140 

data processing can be found in the original study. Genus-level and family-level taxa 141 

were included in our analysis, resulting in a total of 131 genus-level and 35 142 

family-level taxa. 143 

 144 

irAEs: Summary-level data of irAEs was obtained from a recent GWAS 145 
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conducted in the Dana-Farber Cancer Institute (DFCI) cohort (27). The study included 146 

1,751 cancer patients of European ancestry who underwent ICIs treatments between 147 

2013 and 2020. The majority of patients (approximately 90%) received PD-1/PD-L1 148 

inhibitors, while the remaining 10% received combined immunotherapy (CTLA4 and 149 

PD-1/PD-L1 inhibitors). Among the 1,751 cancer patients, 259 cases that experienced 150 

high-grade irAEs (grade 3 to 5 events) were manually curated according to the 151 

National Cancer Institute (NCI) Common Terminology Criteria for Adverse Events 152 

v.5 guidelines. Additionally, algorithm-based autoimmune-like electronic health 153 

records were used to identify 339 patients who experienced any grade irAEs (referred 154 

to as all-grade irAEs). Most of these cases were grade 2 or higher events (27). The 155 

tumor tissue of these patients was sequenced using the targeted OncoPanel 156 

sequencing platform. After quality control steps, germline SNPs were imputed by 157 

utilizing ultra-low-coverage off-target reads. Then, the GWAS was conducted in the 158 

DFCI cohort to investigate the association of all variants with the time from the start 159 

of ICIs treatment to the occurrence of the two phenotypes of irAEs. For more detailed 160 

information, please refer to the original publication (27). 161 

 162 

Selection of instrumental variables 163 

Several steps were followed in the selection of IVs. Firstly, for the gut 164 

microbiome, we selected SNPs associated with bacterial taxa with a p-value less than 165 

1 × 10-5 for further analysis (28,29). Secondly, potential SNPs were clumped for 166 

independence in the TwoSampleMR package in R software. We used the European 167 

1000 Genomes Project Phase 3 reference panel and set the linkage-disequilibrium 168 

threshold (r2) at 0.001 within a 10 Mb window size. Thirdly, we extracted SNPs from 169 

the outcome statistics and performed a harmonization procedure. SNPs that were not 170 

available in the outcome GWAS data were replaced with proxy SNPs (r2 > 0.8), and 171 

palindromic SNPs were removed for further MR analysis. Furthermore, F statistics of 172 

selected IVs, which indicate instrument strength, was calculated as [Beta/SE]2. 173 

Typically, F statistics > 10 suggest enough IVs strength to avoid weak instrument bias 174 

(30). Finally, All SNPs with positive results were re-examined using PhenoScanner 175 

package (version 1.0) in R software to investigate the presence of potential 176 

confounders. Bacterial taxa with less than 3 valid SNPs and unknown origin were 177 

excluded from the analysis to mitigate potential bias. Consequently, we included a 178 

total of 104 genus-level and 28 family-level bacterial taxa (n = 132) for further MR 179 

analysis.  180 

 181 
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Statistical analysis 182 

In this study, we employed several MR analysis methods to explore the potential 183 

causal relationship between gut microbiota and irAEs. The methods used included 184 

IVW, MR PRESSO, ML, weighted median, weighted mode, and a constrained 185 

maximum likelihood and model averaging based method (cML-MA-BIC). IVW and 186 

MR PRESSO were used in the primary analysis. In general, IVW provides maximum 187 

statistical power when all instruments are valid (31), while MR PRESSO identifies 188 

and removes genetic variants that deviate significantly from the variant-specific 189 

causal estimates of other variants, thereby increasing statistical power and addressing 190 

potential outliers (32). The ML method is similar to the IVW approach which assumes 191 

the absence of both heterogeneity and horizontal pleiotropy. If these assumptions hold 192 

true, the ML method yields unbiased results with smaller standard errors compared to 193 

the IVW approach (33). Considering the potential existence of IV pleiotropy, we also 194 

performed pleiotropy-robust methods including weighted median, weighted mode, 195 

and cML-MA-BIC in the sensitivity analysis. These methods relax the instrumental 196 

variable assumptions. Weighted median were introduced when the exclusion 197 

restriction assumption was violated (uncorrelated pleiotropy), which typically assume 198 

fewer than 50% of genetic variants are invalid (34). The weighted-mode method 199 

clusters genetic variants based on their similarity in causal effect and estimates the 200 

overall causal effect based on the cluster with the most number of IVs (35). The 201 

cML-MA-BIC method is a novel approach developed for MR analysis, specifically 202 

addressing the issue of invalid IVs exhibiting both uncorrelated and correlated 203 

pleiotropy (violation of the independence assumption) (36). By being robust to such 204 

violations, cML-MA-BIC improves the accuracy of MR analysis, reduces Type I error, 205 

and increases statistical power (36).  206 

Next, heterogeneity and directional pleiotropy were assessed using Cochran's Q 207 

statistics and MR Egger intercept. Leave-one-out (LOO) analysis was conducted to 208 

identify possible reliance on a specific variant, which involved excluding one SNP at 209 

a time for all valid SNPs in the IVW analysis. Additionally, reverse MR analysis 210 

between irAEs and the identified significant gut bacterial taxa was performed. We 211 

considered a Bonferroni-corrected p-value of 3.89 ×  10-4 (0.05/132) as the 212 

significance threshold for gut microbiota. Two-tailed p-values < 0.05 was considered 213 

suggestive of significance. All analyses were conducted using R packages 214 

"TwoSampleMR" (version 0.5.6), “MRPRESSO” (version 1.0), and “MRcML” 215 

(version 0.0.0.9) in R software (version 4.2.2). 216 

 217 
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3. Results 218 

3.1 Genetic instruments and primary MR analysis 219 

A total of 870 single nucleotide polymorphisms (SNPs) were selected as 220 

instrumental variables (IVs) for the 132 gut bacterial taxa (Table S1). The F statistics 221 

for each SNP ranged from 16.91 to 36.57, with a median value of 21.66. Using the 222 

IVW and MR-PRESSO methods, eight gut bacterial taxa associated with high-grade 223 

irAEs were identified with p-values < 0.05. These taxa include Lachnospiraceae, 224 

Verrucomicrobiaceae, Ruminiclostridium6, Coprococcus3, Anaerostipes, 225 

Akkermansia, Collinsella, and Eubacterium (fissicatena group). For all-grade irAEs, 226 

seven gut bacterial taxa, including Lachnospiraceae, Porphyromonadaceae, 227 

Roseburia, RuminococcaceaeUCG004, DefluviitaleaceaeUCG011, Eubacterium 228 

(brachy group), and Peptococcus, were identified. Given previous studies suggest that 229 

pre-existing autoimmune conditions such as inflammatory bowel disease, psoriasis, 230 

and rheumatoid arthritis may predispose individuals to irAEs susceptibility (37,38). 231 

We further examined the SNPs associated with the significant bacterial taxa using 232 

PhenoScanner. Only one SNP (rs11597285) for the Collinsella genus was found to be 233 

associated with allergic disease (e.g. allergic rhinitis and eczema) (refer to Table S9). 234 

However, the results of Collinsella remained uninfluenced after removing rs11597285 235 

in the LOO analysis (described below). The complete results of the primary MR 236 

analysis can be found in Table S2 and Table S3. 237 

 238 

3.2 Main MR results and sensitivity analysis for high-grade irAEs 239 

As shown in Figure 2, the IVW estimate suggested the abundance of 240 

Lachnospiraceae family was associated with a shortened time to high-grade irAEs 241 

(Beta = -1.22, 95% CI: -1.99 to -0.44, p = 2.17 × 10-3), indicating Lachnospiraceae 242 

serves as a risk factor for the development of high-grade irAEs. The deleterious effect 243 

remained significant in pleiotropy-robust cML-MA-BIC estimation (Beta = -1.24, 95% 244 

CI: -2.45 to -0.02, p = 4.62 × 10-2). Surprisingly, Ruminiclostridium6 genus was 245 

significantly associated with an increased risk of high-grade irAEs in all MR 246 

approaches, including IVW (Beta = -2.11, 95% CI: -2.98 to -1.23, p = 2.47 × 10-6), 247 

cML-MA-BIC (Beta = -2.17, 95% CI: -3.49 to -0.86, p = 1.19 × 10-3), Weighted 248 

median (Beta = -2.43, 95% CI: -4.05 to -0.81, p = 3.29 × 10-3), and other methods. In 249 

addition, the IVW estimate indicated a protective effect of the Akkermansia genus on 250 

high-grade irAEs (Beta = 1.27, 95% CI: 0.28 to 2.25, p = 0.01), and this finding was 251 

confirmed by the IVW estimate of its paternal taxon Verrucomicrobiaceae (Beta = 252 

1.27, 95% CI: 0.29 to 2.25, p = 0.01). The IVW estimate of Anaerostipes genus also 253 

indicated a suggestive protective effect against high-grade irAEs (Beta = 2.1, 95% CI: 254 

0.85 to 3.35, p = 1.02 × 10-3), as well as cML-MA-BIC (Beta = 2.17, 95% CI: 0.57 to 255 
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3.77, p = 7.88 × 10-3). Moreover, significant effects of the Coprococcus3 (Beta = 256 

-2.04, 95% CI: -2.7 to -1.39, p = 8.93 × 10-10), Collinsella (Beta = -1.12, 95% CI: -1.7 257 

to -0.53, p = 1.7 × 10-4), and Eubacterium (fissicatena group) genus (Beta = -0.73, 95% 258 

CI: -1.01 to -0.46, p = 1.93 × 10-7) were all revealed by IVW estimate, indicating an 259 

increased risk of high-grade irAEs. Scatter plots reflecting the effect size of IVs on 260 

both bacterial taxa and high-grade irAEs are shown in Figure 4. 261 

In the subsequent analysis of heterogeneity and horizontal pleiotropy, Cochran's 262 

Q statistics revealed no significant heterogeneity (p-value> 0.05) among the IVs for 263 

the gut bacterial taxa in high-grade irAEs analysis (see Table 1). No significant 264 

evidence for directional horizontal pleiotropy was found in the MR-Egger regression 265 

intercept analysis and MR PRESSO global test (Table 1 and Table S4). Additionally, 266 

the LOO analysis identified no predominant SNP that influenced the results (Figure 267 

6). We further performed reverse MR analysis and demonstrated no reverse causation 268 

exists between high-grade irAEs and the abundance of gut bacterial taxa (Table S6). 269 

 270 

3.3 Main MR results and sensitivity analysis for all-grade irAEs 271 

Figure 3 presents the association between bacterial taxa and all-grade irAEs. It is 272 

noteworthy that the deleterious impact of the Lachnospiraceae family was also 273 

detected in all-grade irAEs, as revealed by IVW (Beta = -2.05, 95% CI: -3.27 to -0.82, 274 

p = 1.06 × 10-3), cML-MA-BIC (Beta = -2.21, 95% CI: -3.32 to -1.1, p = 9.16 × 10-5), 275 

and Weighted median estimates (Beta = -1.72, 95% CI: -3.2 to -0.24, p = 2.25 × 10-2). 276 

The IVW estimate of Roseburia genus also showed an increased risk of all-grade 277 

irAEs (Beta = -2.07, 95% CI: -3.21 to -0.93, p = 3.76 × 10-4). Consistent results were 278 

observed in ML (Beta = -2.07, 95% CI: -3.67 to -0.47, p = 1.14 × 10-2) and 279 

cML-MA-BIC (Beta = -2.08, 95% CI: -3.71 to -0.45, p = 1.23 × 10-2) estimates. On 280 

the contrary, RuminococcaceaeUCG004 (Beta = 1.07, 95% CI: 0.43 to 1.72, p = 1.05 281 

× 10-3) and DefluviitaleaceaeUCG011 (Beta = 0.82, 95% CI: 0.38 to 1.25, p = 2.15 × 282 

10-4) were identified to decrease the risk of all-grade irAEs according to the IVW 283 

approach. Subsequently, the results for RuminococcaceaeUCG004 were consistent 284 

with the cML-MA-BIC (Beta = 1.1, 95% CI: 0.04 to 2.15, p = 4.12 × 10-2) and ML 285 

method (Beta = 1.09, 95% CI: 0.04 to 2.14, p = 4.16 × 10-2). Moreover, the IVW 286 

estimates suggested that Porphyromonadaceae (Beta = -1.11, 95% CI: -1.83 to -0.39, 287 

p = 2.46 × 10-3), Eubacterium (brachy group) (Beta = -0.71, 95% CI: -1.14 to -0.27, p 288 

= 1.38 × 10-3), and Peptococcus (Beta = -0.71, 95% CI: -1.24 to -0.18, p = 8.82 × 10-3) 289 

may increase the risk of all-grade irAEs. Scatter plots reflecting the effect size of each 290 

IV on both bacterial taxa and all-grade irAEs are shown in Figure 5. 291 

Similarly, Cochran’s Q statistics indicated an absence of notable heterogeneity in 292 

the IVs of gut bacterial taxa (refer to Table 1). In addition, the results from the 293 

MR-Egger regression intercept analysis and the MR PRESSO global test 294 
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demonstrated no significant evidence of directional horizontal pleiotropy (Table 1 295 

and Table S4). Next, no significant single SNP was identified in the LOO analysis 296 

that influenced the results (Figure 7). Overall, these results provide evidence for the 297 

association between specific gut bacterial taxa and the development of high-grade and 298 

all-grade irAEs, and highlight the potential role of the gut microbiota in irAEs. 299 

 300 

4. Discussion 301 

In this study, we implemented the summary statistics of gut microbiota from the 302 

largest GWAS meta-analysis and the summary statistics of irAEs in the MR analysis. 303 

Fourteen gut bacterial taxa were identified to be causally associated with high-grade 304 

and all-grade irAEs. Among those bacterial taxa, Lachnospiraceae showed a strong 305 

causal association with an increased risk of both irAEs phenotypes. Additionally, we 306 

found robust evidence indicating that Ruminiclostridium6 predisposes ICIs receivers 307 

to the development of high-grade irAEs. Coprococcus3, Collinsella, and Eubacterium 308 

(fissicatena group) were also associated with an increased risk of high-grade irAEs, 309 

while Akkermansia, Verrucomicrobiaceae, and Anaerostipes exhibited protective roles 310 

in high-grade irAEs. For all-grade irAEs, Porphyromonadaceae, Roseburia, 311 

Eubacterium (brachy group), and Peptococcus were associated with an elevated risk, 312 

while RuminococcaceaeUCG004 and DefluviitaleaceaeUCG011 were associated with 313 

a reduced risk. 314 

Several observational studies have demonstrated associations between gut 315 

microbiota and irAEs (11,17–19,39,40). Lachnospiraceae species (such as 316 

Coprococcus and Roseburia), which are obligately anaerobic, variably spore-forming 317 

bacteria, were found to correlate with increased risk of various types of irAEs 318 

(17,18,41). In a more recent study, two species of the Lachnospiraceae family were 319 

specifically enriched in irAEs that occur in endocrine organs (42). Consistent with 320 

these findings, we identified the Lachnospiraceae family, and its two genera (i.e., 321 

Coprococcus3 and Roseburia) associated with an increased risk of irAEs. Importantly, 322 

the detrimental influence of the Lachnospiraceae family was observed in high-grade 323 

irAEs and all-grade irAEs, providing further validity and robustness to our study. 324 

Ruminiclostridium6 has been less studied in irAEs, but some studies have observed its 325 

accumulation in a mouse model of DSS-induced colitis. While treated with phloretin 326 

(a dihydrochalcone flavonoid) or sodium butyrate (one of the short chain fatty acids 327 

[SCFAs]), both of which alleviates DSS-induced colitis, the abundance of 328 

Ruminiclostridium6 was reduced (43,44). In addition, the Ruminiclostridium genus 329 

has also been associated with autoimmune-related diseases, such as experimental 330 

multiple sclerosis model and Alzheimer’s disease (45,46). Based on our strong 331 

association of Ruminiclostridium6 with increased risk of high-grade irAEs, it is 332 
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suggested that Ruminiclostridium6 may play a pivotal role in the development of 333 

autoimmune conditions and could be a potential target for relieving irAEs symptoms, 334 

although more evidence is needed.  335 

Akkermansia muciniphila, an anaerobic gram-negative species that belongs to 336 

Akkermansia genus, and Verrucomicrobiaceae family, has gained much attention in 337 

immunotherapy due to their association with a favorable response in ICIs therapy 338 

(47–49). Akkermansia muciniphila has also been shown to exhibit a protective role in 339 

ICIs-associated colitis (50). Mechanically, Wang et al. demonstrated that Akkermansia 340 

muciniphila and its purified membrane protein mitigated colitis by regulating 341 

macrophages and CD8+ T cells in the colon tissue (51). Our study further supported 342 

the protective role of Akkermansia in high-grade irAEs. Ruminococcaceae, a key 343 

family of bacteria producing short-chain fatty acids (SCFAs), has been observed to be 344 

enriched in ICIs responders without severe irAEs (11). Previous studies have found 345 

that Faecalibacterium prausnitzii, a species belonging to the Ruminococcaceae family, 346 

was decreased in non-responders and those experiencing severe irAEs (11,17,41). 347 

These findings suggest a potential role of Ruminococcaceae as protective bacteria, 348 

possibly through the facilitation of SCFAs accumulation, in the mitigation of irAEs. 349 

Collinsella and Anaerostipes have limited evidence in irAEs, but the Collinsella 350 

genus has been reported to increase the production of IL-17A and enhance rheumatoid 351 

arthritis severity (52). In contrast, Anaerostipes, which belongs to the 352 

Lachnospiraceae family, was conversely associated with the risk of high-grade irAEs 353 

in our study (11,18). These discrepancies observed in previous clinical studies might 354 

be attributed to several factors, including limited sample sizes in previous 355 

observational studies, heterogeneity among the samples, and inadequate exploration 356 

of the taxonomic classification at the genus level of the gut microbiota. Therefore, a 357 

more detailed taxonomy for gut microbiota is crucial in dissecting the underlying 358 

mechanisms.  359 

Gut microbiota plays a pivotal role in modulating human immune homeostasis, 360 

and an imbalance in gut microbial composition, known as gut dysbiosis, has been 361 

implicated in several autoimmune diseases (15,16,53). Notably, irAEs resemble 362 

autoimmune diseases in many aspects (37,54,55). Thus, despite the underlying 363 

mechanisms by which gut microbiota manipulates the development of irAEs remain 364 

poorly understood, we hypothesize that there might be some shared etiology of 365 

microbiota in autoimmune diseases and irAEs. These mechanisms include: (1) 366 

“Molecular mimicry”: Evidence has shown that exposure to homologous amino acid 367 

sequences or epitopes of microbiota and aberrant activation of autoreactive B or T 368 

cells leads to multiple autoimmune diseases, such as multiple sclerosis (56), 369 

Guillain–Barré syndrome (57), Type 1 diabetes (58), Rheumatoid arthritis (59), and 370 

primary biliary cholangitis (60), which is referred to as “molecular mimicry” (61). It 371 
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is believed that the systematic activation of the immune system during ICIs treatment 372 

triggers irAEs by bypassing self-tolerance in normal organs. One intriguing fact is 373 

that most irAEs occur in barrier organs (e.g., the intestinal tract, skin, and lungs) 374 

(54,62). This implies that the activated immune response might target the commensal 375 

microbiome as antigenic targets, although this hypothesis has not been fully 376 

demonstrated. (2) Decreased accumulation of SCFAs: SCFAs, including acetate, 377 

propionate, and butyrate, are a group of organic compounds primarily produced by the 378 

gut microbiota during the fermentation of dietary fibers. These metabolites were 379 

shown to improve the anti-cancer function of effector T cells, but they also seem to 380 

exhibit anti-inflammatory characteristics (63,64). Butyrate, one of the well-studied 381 

SCFAs, was shown to inhibit the activation of NF-κB and its downstream pathway 382 

(65), thereby reducing the production of pro-inflammatory cytokines such as IL-8 (66), 383 

while increasing the levels of anti-inflammatory factors like IL-10 (67). Moreover, 384 

SCFAs serve as a key energy source for colonocytes and maintain intestinal barrier 385 

integrity (68). Thus, the reduced abundance of SCFAs-producing bacteria along with 386 

its metabolites may participate in the development of irAEs. (3) Other mechanisms: 387 

Stimulation of the immune response by microbial-associated molecular patterns (e.g., 388 

include lipopolysaccharides (LPS), lipoproteins, flagellin and bacterial DNA) (69) 389 

and compromised vitamin B and polyamine metabolism that associated with gut 390 

dysbiosis (19) may also contribute to irAEs.  391 

Taken together, the gut microbiota and the human immune system maintain a 392 

delicate balance under normal physiological conditions. Once the balance has been 393 

disturbed (e.g., ICIs treatment), the dysregulated microbiota might lead to the 394 

development of undesirable irAEs. The primary management strategy for irAEs (> 395 

grade 2) involves the suspension of ICIs and/or utilizing immunosuppressive therapy 396 

(70). Nevertheless, one concern is that discontinuing ICIs or using 397 

immunosuppressants may compromise treatment efficacy. Ideally, approaches to 398 

boost ICIs efficacy while reducing the accompanied irAEs are to be expected in the 399 

future. FMT, an approach to modulate gut microbiota, has been shown to increase 400 

ICIs efficacy in melanoma patients (71,72), and emerging evidence has demonstrated 401 

the mitigation of ICIs-related colitis through FMT in clinical practice (73). 402 

Interestingly, while irAEs and ICIs efficacy are often considered two sides of the 403 

same coin, certain gut bacteria, such as Akkermansia muciniphila and 404 

Faecalibacterium prausnitzii, have been shown to ameliorate irAEs and reinforce 405 

ICIs efficacy at the same time (74). This suggests that targeting gut microbiota could 406 

be an ideal approach to relieve irAEs symptoms and maintain ICIs efficacy, but 407 

further real-world evidence is needed to support this hypothesis. 408 

Our study possesses several strengths. Firstly, we applied the MR approach to the 409 

causal-association analysis between gut microbiota and irAEs, which effectively 410 
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mitigates the influence of confounding factors and provides robust causal inference. 411 

Secondly, we conducted reverse MR analyses, confirming the absence of reverse 412 

causation, thereby enhancing the validity of our study. Thirdly, the genetic variants 413 

associated with the gut microbiota were obtained from a comprehensive meta-analysis 414 

of GWAS, ensuring the reliability of the instrumental variables used in the MR 415 

analysis. Moreover, we incorporated several pleiotropy-robust methods such as MR 416 

PRESSO and cML-MA-BIC, further strengthening the robustness of our study. 417 

However, there are also certain inherent limitations in our study that should be 418 

considered when interpreting the findings. Firstly, our analysis is based on 419 

European-derived GWAS summary statistics, which might confine the generalization 420 

of the findings to other populations. Secondly, due to the utilization of summary 421 

statistics instead of raw data in the analysis, subgroup analyses based on ICIs regimes 422 

(e.g. PD-1/PD-L1 group, CTLA-4 group, and combined therapy group) could not be 423 

performed. Thirdly, the gut microbiota is shaped by multiple environmental factors, 424 

which confines the number of the identified significant gene loci in the GWAS (26). 425 

Thus, we relaxed the significant threshold of IVs to 1×10–5 (29) and employed 426 

Bonferroni correction to mitigate potential false positive results. 427 

 428 

5. Conclusion 429 

In summary, our findings suggest that Lachnospiraceae and Akkermansia et al. 430 

were causally associated with the development of irAEs. However, whether the FMT 431 

or probiotics could be used as interventional approaches to mitigate irAEs while 432 

reserving ICIs efficacy, additional randomized clinical trials (RCTs) are warranted. 433 

Furthermore, in-depth investigations are needed to elucidate the precise mechanisms 434 

through which the gut microbiota influences the development of irAEs. 435 
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Table 1. Results of heterogeneity and horizontal pleiotropy analysis. 

bacterial taxta (exposure) irAEs (outcome) 
Heterogeneity test Horizontal pleiotropy results 

Cochran's Q df p-value Egger intercept SE p-value 
Lachnospiraceae High-grade irAEs 5.18 12 0.95 0.04 0.11 0.73 
Verrucomicrobiaceae High-grade irAEs 4.18 7 0.76 0.36 0.61 0.57 
Eubacterium (fissicatena group) High-grade irAEs 0.33 4 0.99 0.07 0.53 0.9 
Akkermansia High-grade irAEs 4.18 7 0.76 0.37 0.61 0.56 
Anaerostipes High-grade irAEs 4.13 6 0.66 0.38 0.2 0.11 
Collinsella High-grade irAEs 0.82 6 0.99 -0.19 0.23 0.43 
Coprococcus3 High-grade irAEs 0.47 4 0.98 -0.28 0.46 0.59 
Ruminiclostridium6 High-grade irAEs 3.54 7 0.83 -0.17 0.18 0.38 
Lachnospiraceae All-grade irAEs 17.3 12 0.14 0.09 0.11 0.43 
Porphyromonadaceae All-grade irAEs 0.66 4 0.96 0.05 0.28 0.87 
Eubacterium (brachy group) All-grade irAEs 1.41 5 0.92 -0.11 0.29 0.73 
DefluviitaleaceaeUCG011 All-grade irAEs 0.48 4 0.98 -0.03 0.25 0.92 
Peptococcus All-grade irAEs 1.87 5 0.87 -0.12 0.24 0.66 
Roseburia All-grade irAEs 3.75 7 0.81 -0.31 0.22 0.21 
RuminococcaceaeUCG004 All-grade irAEs 2.73 7 0.91 -0.23 0.3 0.47 
df, degree of freedom; SE, standard error. 
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 714 

Figure legends: 715 

Figure 1. Overview of the study design.  716 

Initially, IVs were selected from the summary GWAS data pertaining to the gut 717 

microbiota and irAEs. Subsequently, by employing thresholds of p-value (IVW) < 718 

0.05 and p-value (MR PRESSO) < 0.05, the identified gut microbiota that exhibited 719 

statistically significant associations were taken into further analysis (Created with 720 

BioRender.com). 721 

Figure 2. Forest plots of MR results for the causal association between the identified 722 

eight gut microbial taxa and high-grade irAEs. NSNP = number of SNPs; Beta = 723 

effect size from the exposure to the outcome; CI = confidence interval. 724 

Figure 3. Forest plots of MR results for the causal association between the identified 725 

seven gut microbial taxa and all-grade irAEs. NSNP = number of SNPs; Beta = effect 726 

size from the exposure to the outcome; CI = confidence interval. 727 

Figure 4. Scatter plots of MR analysis between the gut microbial taxa and high-grade 728 

irAEs. 729 

Figure 5. Scatter plots of MR analysis between the gut microbial taxa and all-grade 730 

irAEs. 731 

Figure 6. Leave-one-out plots of MR analysis between the gut microbial taxa and 732 

high-grade irAEs. 733 

Figure 7. Leave-one-out plots of MR analysis between the gut microbial taxa and 734 

all-grade irAEs. 735 

 736 

Figure S1. Illustration of MR assumptions 737 

 738 
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