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ABSTRACT 

Within the context of the standard SIR model of pandemics, we show that the asymmetry 
in the peak in recorded daily cases during a pandemic can be used to infer the pandemic R-
parameter. Using only daily data for symptomatic, confirmed cases, we derive a universal scaling 
curve that yields: (i) reff , the pandemic R-parameter; (ii) Leff, the effective latency, the average 
number of days an infected individual is able to infect others and (iii) α, the probability of infection 
per contact between infected and susceptible individuals. We validate our method using an 
example and then apply it to estimate these parameters for the first phase of the SARS-Cov-
2/Covid-19 pandemic for several countries where there was a well separated peak in identified 
infected daily cases. The extension of the SIR model developed in this paper differentiates itself 
from earlier studies in that it provides a simple method to make an a-posteriori estimate of several 
useful epidemiological parameters, using only data on confirmed, identified cases. Our results are 
general and can be applied to any pandemic. 
 
INTRODUCTION  

A pandemic occurs when a new pathogen enters a naïve population. The recent SARS-
Cov-2 pandemic was caused by a Coronavirus, one of a family of large, enveloped, single-stranded 
RNA viruses that are widespread in animals and usually cause only mild respiratory illnesses in 
humans [1-5]. In 2003, a new coronavirus emerged, and was named SARS-CoV (Severe Acute 
Respiratory Syndrome – Corona Virus). This virus caused a life-threatening respiratory disease in 
humans, with a fatality rate of almost 10% [6,7].  In fact, after an initial burst of interest in 
development of treatment options, interest in this virus waned. The emergence of the novel 
coronavirus SARS-CoV-2, identified in December 2019 in Wuhan, China, has since caused a 
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worldwide pandemic [8-13]. SARS-CoV-2 is the seventh known coronavirus to cause pathology 
in humans [1]. The associated respiratory illness, called COVID-19, ranges in severity from a 
symptomless infection [8], to common-cold like symptoms, to viral pneumonia, organ failure, 
neurological complications, and death [9-11]. While the mortality in SARS-CoV-2 infections is 
lower than in SARS-CoV [9-12], it has more favorable transmission characteristics, a higher 
reproduction number, a long latency period and an asymptomatic infective phase [13]. 

The governments of several countries took significant measures to slow the infection rate 
of Covid-19, such as social distancing, quarantine, identification, tracking and isolation. However, 
there was no uniform policy, some governments reacted later than others, and some (e.g. Sweden) 
decided to keep the country open, leaving counter-measures up to individuals. A large amount of 
consistent public data is now available on the number of tests performed, the number of confirmed 
infected cases, and the number of deaths in different contexts,  such as locations and health 
conditions [14]. These provide important sources of information for the development and testing 
of models to estimate pandemic characteristics,  guide public policy and assess the efficacy of 
interventions [15]. In this paper, we use data from the WHO website: 
https://covid19.who.int/WHO-COVID-19-global-data.csv.  

It is well known that in most pandemics, confirmed infected cases often seriously 
underestimate the actual number of infections [16,17]: not everyone who is infected is 
symptomatic, and not everyone who dies from the disease has been tested [18]. Even the number 
of reported deaths may be underestimated because of co-morbidities; i.e. COVID-19  increases 
susceptibility to other diseases and conditions [19]. Moreover, the virus can be transmitted by 
asymptomatic individuals, who can comprise a substantial portion of the infected population [20], 
militating against accurate estimates of total infection rates. In this context, as indicated in [21], 
analytical models can provide useful information. 

Dynamical (mechanistic) models have been used for forecasting and for making 
projections. For example,  projections and forecasting models of various types were used as early 
as February 2020 to determine a reproductive number for SARS-CoV-2 [13]. More generally, 
multiple research groups have models to estimate Case Fatality Ratios (CFRs) [22], to forecast and 
project the need for hospital beds  [23] and to project and forecast mortality [24]. Among the many 
applications of models to COVID-19, four variable Susceptible-Exposed-Infective-Recovered 
(SEIR) models have been used to project the impact of social distancing on mortality [25],  three 
variable Susceptible-Infective-Recovered (SIR) models have been used to estimate case fatality 
and recovery ratios early in the pandemic [26], and a time delayed SIR has been used to evaluate 
the effectiveness of suppression strategies [27]. One of the most ambitious dynamical models, 
which includes 8 state variables, and 16 parameters, was fruitfully applied to evaluate intervention 
strategies in Italy, in spite of the fact that parameter identifiability could not be assured [28]. There 
is also some model based evidence that the transmission of the SARS-Cov-2 virus is regulated by 
temperature and humidity [29]. In this paper, we model the Covid-19 pandemic using an extension 
of the SIR model [30], which partitions the population into three compartments: Susceptibles (S), 
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Infectious (I) and Removed R. This and other models (using more variables) have been used in a 
variety of contexts to study the global spread of diseases (For some recent reviews, see [31-33]).    

In this paper, within the context of an extension of the standard epidemiological SIR model 
[30], using only daily recorded case data of symptomatic individuals, we develop a method to 
estimate: (i) the pandemic parameter reff , which is the average number of individuals infected by 
a single infected individual, (ii) the effective latency Leff,  which is the average time an infected 
individual is able to infect others, and (iii) the probability 𝛼 of infection from a single encounter 
between an infected and a susceptible individual. 

 
METHOD  

The spread of a virus depends on several factors, such as patterns of contacts among 
infectious and susceptible persons, the latency period between being infected and becoming 
infective and/or developing symptoms, the duration of infection/infectivity, immunity acquired 
by previous exposures, effects of vaccination,  etc. In spite of these complications, some of the 
features of the spread are well described by a simple epidemiological model, the so-called SIR 
model [30]. In this model, at any given instant in time, the population is divided into three 
compartments : susceptible (S), infected (I) and recovered (R) with S+I+R = N. The parameter N 
is assumed to be constant in time and is the number of individuals exposed to the virus in a given 
region. It is assumed that individuals in the S compartment are equally susceptible to being 
infected by individuals in the I compartment and individuals in the R compartment are both 
immune to further infection and unable to infect others. The R compartment also includes those 
who are “removed” (dead, quarantined etc.). 

At any given moment in time, the reported number of infected individuals is a subset of 
the actual number of infected individuals [16,17]. Let I0(t) and I1(t) be the number of individuals 
in the unidentifiable and identifiable compartments respectively, with I1(t) = 𝜔I(t) and I0(t) = (1- 
𝜔)I(t). Similarly, let R(t) = R0(t) + R1(t) where R0(t) are derived from I0(t), and R1(t) are derived 
from I1(t).  We assume that individuals in the I1 compartment, once identified, are no longer able 
to infect others because they would be isolated, confined, or quarantined. On the other hand, 
individuals in the I0 compartment, being asymptomatic and unaware of their infected state, 
would continue to infect others until they become non-infective.  Let L0 be the average number 
of days an asymptomatic individual is infective and L1 be the average number of days a 
symptomatic individual is infective.  Let γ1 = 1

L1
 and γ0 = 1

L0
 be the rates at which these two 

types of infected individuals leave the infective pool.  Under these assumptions, we propose the 
following simple extension of the SIR model for the pandemic dynamics:  

 
dS
dt

=  −(α
N

)SI         (1) 
dI
dt

=   dI1
dt

+ dI0
dt

=  (α
N

) SI − γeffI =  (α
N

) SI − (ωγ1 + (1 − ω)γ0) I   (2) 
dR
dt

=  dR1
dt

+ dR0
dt

=  (ωγ1 + (1 − ω)γ0) I = γeffI    (3) 
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α is the probability of infection in a single encounter between an infected and susceptible individual 
and  
 
γeff =  (ωγ1 + (1 − ω)γ0) =  (ω/L1 + (1 − ω)/L0)   (4a) 
 
is the rate at which an individual in the I compartment transitions to the R compartment. The 
reciprocal Leff of γeff is the average effective latency, the average number of days that an infected 
individual (symptomatic or not) is infective. Thus,  
 
Leff =  1

γeff
= 1/(ω/L1 + (1 − ω)/L0)     (4b) 

 
Let X(t)  be the observed rate at which daily cases are identified. From Eq. 3, 
 

X(t) =  dR1
dt

=  ωγ1I(t).       (5) 
 
The key relationship we exploit in this paper is Eq. 5, the fact that the number of daily observed 

cases X(t) = dR1
dt

, is proportional to I(t). This proportionality implies that the width and location (in 
units of time t) of the peak in X(t) and I(t) are the same. The location of the peak in I(t) or X(t) is 
difficult to estimate because it depends on identifying the “start” of the pandemic, i.e., the day 
when the first person was infected. However, other characteristics of the peak in X(t) are easier to 
measure. As we show below, scaling laws relating the pandemic parameter R can be inferred using 
dimensionless quantities from the form of X(t) using Eq. 1-5. In this paper, we will use the left and 
right half-widths at the peak in X(t) to estimate parameters.  
 
To do this, we rescale the time t  to τ =  γefft = t

Leff
  Eq. 1-3 can then be rewritten in terms of the 

fractions s = S/N, i = I/N, r= R/N, r1 = R1/N and x = X/N as follows: 
 
ds(τ)

dτ
=  − reff s(τ)i(τ)       (6) 

di(τ)
dτ

=  reff s(τ)i(τ) − i (τ)         (7) 
dr(τ)

dτ 
=   i(τ)         (8) 

x(τ) =  dr1(τ)
dτ

=  ωγ1i(τ)/γeff      (9) 

with reff =  α/γeff         (10) 
  
 Let WL and WR be the left and right half widths of the peak in X(t). From Eq. 5, we note 
that the dimensionless quantity WR/WL is the same for X(t), I(t). Furthermore, since x(𝜏) and 
X(t) are proportional and the relationship between 𝜏 and t is just a scale factor (τ =  γefft),  
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WR/WL is the same for x(𝜏) and X(t). Finally, from Eq 6-9, it is obvious that WR/WL depends 
only on reff. The functional relationship between WR/WL and reff, can be obtained by numerically 
solving Eqs 6-9 and is shown in Fig. 1 (detailed values in Supplementary Table 1). Note that the 
result of Fig. 1 is a universal scaling law in the SIR model which applies to any pandemic. We 
will now demonstrate with an example how the parameters reff, Leff and 𝛼 can be obtained using 
only the results in Fig. 1 and Supplementary Table 1 and data for X(t). We note that the fraction              
finf = 1- s(∞) of individuals infected at t=∞ can also be computed from reff using the relationship 

reff =  − (s(∞)) 
1−s(∞)

 (Appendix A, Eq. A8) 

Figs 2a, 2b, 2c show an example of the procedure we follow to find parameters from only 
X(t) data. Fig 2a shows X(t) from a numerical solution of Eqs. 1-4 for parameter values N = 
4.6×105, L0 = 10 days, L1 = 5 days, 𝜔 = 0.25, 𝛼 = 0.46875. These parameter values correspond 
to γeff = 0.125 (Eq. 4a), Leff = 8 (Eq. 4b) and reff = 3.75 (Eq. 10).  

The procedure we follow to estimate the parameters from just the data for X(t) (Fig 2a) and 
the universal scaling results in Figure 1/Supplementary Table 1 is as follows: 
● We first estimate the ratio WR/WL from the data for X(t) (Fig. 2a). We find WR = 10.65 days, 

WL = 6.83 days, and WR/WL = 1.56. We also obtain the maximum value of X(t) as  
MX(t)  = 8768.8 (shown as a blue dot in Fig. 2a).  

● The value of WR/WL is used to infer reff by interpolating the data in Supplementary Table 1. 
This yields the value reff(estimated) = rfit = 3.74.  

● Using rfit =3.74, we solve Eqs.  6-9 to generate i(τ), shown in Figure 2b. 
● The right and left widths wR and wL at half maximum are estimated from the data for i(τ).  

This gives wR = 1.33, wL = 0.85. Note that these quantities are dimensionless. Similarly, the 
maximum in i(τ) is measured to be mi() = 0.3859. These quantities are measured very 
accurately because they result from solving a set of equations. 

● An estimate Leff is now obtained as the ratio Leff =  (WR+WL)/(wR+wL) = 7.99 days. 
● To check whether the fit is good, we multiply i(τ) in Fig 2b by MX(t)/mi(), scale the  axis by 

a factor of Lfit and shift the location of the maximum in X(t) to coincide with the peak in 
X(t). This fit is shown in Fig . 2c.  

● In this example, we used a small time-step to generate accurate data for X(t). In reality, only 
daily data is available and there would be an error of approximately 0.5 days in estimates of 
WR and WL. Using this, we can estimate the error in the parameters. The final results for our 
example are: WR/WL =  1.56 +/-  0.14,  reff =  3.74 +/-  0.76, Leff =  7.99 +/- 1.42 days. 

 
Note that in the procedure described above, we used only the observed daily cases X(t) and the 
universal scaling results in Figure 1 and Table 1.  
 When we apply this procedure to pandemic data, we have to first contend with one 
additional issue, which is that the data shows a three, five, or seven day cycle, depending on the 
country. This is presumably due to the logistics of data collection and reporting, and requires 
smoothing before our method can be applied. In this paper, we averaged the raw data for each 
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country over five, seven and nine days; inferred reff for each averaging scheme and used the 
average of the values obtained as the final result. Finally, as our method is sensitive to the 
position of the peak in daily cases, and since  we are interested in the asymmetry near the peak, 
we fitted the data near the peak to a cubic to obtain the location (in time)  and height of the peak 
and used these values and the smoothed data points to find WR and WL.  
 
RESULTS: 

Worldwide data for confirmed Covid-19 cases and deaths from January 3, 2020 was 
downloaded from the World Health Organization (WHO) website:  https://covid19.who.int/WHO-
COVID-19-global-data.csv (Supplementary Table 2). The data for daily cases obtained from this 
source directly measures the function X(t) in our analysis. Before performing any analysis, the 
data for daily cases was smoothed/averaged as described above.  

Our model assumes a single circulating viral strain infecting a homogeneous set of 
individuals in a given region who were equally susceptible to infection (uniform immune 
response). The model also assumes that exposed individuals observed the same rules regarding the 
use of masks/isolation/quarantine, there was no significant variation in population density among 
them, little variation in their movements, equal vaccination status, and symptomatic cases once 
identified were quarantined. These requirements would most likely be valid, at least for some 
countries, for the first wave of the Covid-19 pandemic when the world population was naïve to the 
virus (no immunity) and everyone was equally susceptible. Furthermore, at least in some countries, 
many of the other assumptions of the model did apply, such as homogeneity of response, lack of 
vaccines resulting in no innate immunity, standard medical protocols, good testing  practices, and 
a single circulating strain of the virus. Such countries would show an initial exponential rise in 
daily cases at small times followed by a clear peak with no overlap with subsequent peaks. We 
applied our method to analyze the first peak in daily cases for twenty-one countries that satisfied 
these conditions.  

Supplementary Table 1 gives the scaling function data from solving Eq 6-9 for different 
values of reff. For each value of reff the columns show wL = WL/Leff, wR = WR/Leff, WR/WL,  mi(), 
finf = 1-s(), reff calculated from Eq. A8 and the ratio WR/WL  = wR/wL.  This data is universal and 
applies to all pandemics. Figs 3-5 show the fits for three countries from very different geographic 
regions Spain (Europe), Thailand (Asia) and Australia (Oceania). Results and figures for all 
twenty-one countries are in Table 1 and Supplementary Figures 1.   
 Using Eq A in Appendix A, we estimate the total fraction ftot of the exposed subset of the 
population that was infected (Table 1).Note that this represents both the cases that were counted 
(symptomatic and/or tested) as well as those  that were not identified. By our estimates, 50-100% 
of exposed individuals (fraction of N in the SIR model) in the countries we analyzed were 
infected.  
 Finally, we note that for the daily case data to be reliable, the total number of tests 
(including positives and negatives) should be sufficiently large. Using test data from 
(https://www.ecdc.europa.eu/en/publications-data/covid-19-testing) we checked that the number 
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of tests performed on each day were much higher than the number of cases for countries where 
test data was available for the time range of interest (Supplementary Figures 2).  
 
 
DISCUSSION:  
 In this paper we show that the asymmetry of the peak in recorded daily cases in any 
pandemic contains important information. In particular, for the standard epidemiological SIR 
model [30], this asymmetry can be used to relate the pandemic R-parameter to the ratio of right 
and left half widths of the peak, which in turn provides an a-posteriori estimate of several important 
pandemic parameters, including the effects of both recorded (symptomatic/tested) cases as well as 
unmeasured/asymptomatic cases, namely: reff,  the effective pandemic R-parameter, the effective 
latency Leff (the  average number of days an infected individual is able to infect others), and the 
infection probability α of transmission from an infected individual to a susceptible individual in a 
single encounter. These can be inferred using a universal scaling function (Figure 1 and 
Supplementary Table 1) that relates the ratio of the right and left half widths at full maximum of 
the peak in daily identified cases X(t) to the effective pandemic R-parameter (reff). Within the 
limits of the SIR model, our results are general and apply to any pandemic. We apply our method 
to worldwide country specific data to find reff, Leff and α for the first phase (first peak in daily 
cases) for the SARS-COV-2 pandemic for twenty-one countries which had a clear, well separated 
peak in daily cases (Table 1, Supplementary Figures 1). 
 A novel feature of this analysis is that our result for ftot, the fraction of the population that 
was infected, includes both those who were identified/counted as infected as well as those that 
were not identified/counted. Our results for ftot suggest that in the 2019-2020 SARS-COV-2 
pandemic, the original variant of the virus was highly effective in transmission. In some of the 
developed countries, we find that almost all exposed individuals were infected in the first phase of 
the pandemic (Table 1). The fact that ftot is close to unity for many countries means there was a 
large fraction of infected in the population who were not identified.  
 Using data from https://www.worldometers.info/world-population/population-by-country 
and https://en.wikipedia.org/wiki/List_of_cities_by_average_temperature (Supplementary Table 
3), we explored possible relationships among the values of the R parameter, the α coefficient and 
the latency period Leff with the population density, mean temperature during the first peak and the 
median age of the population (Sup. Figs. 3a-i). Although the results are too noisy to make definitive 
statements about these relationships, overall, across all the countries analyzed, from the linear fits, 
the weighted average values of  reff, α, and Leff are 2.18,  0.23, and 15.35 days respectively.   

Several countries, notably the United States, Canada, The Russian Federation, India, and 
Pakistan did not meet our criterion of a clear, well separated first peak in daily cases in 2020. This 
is most likely because they cannot be thought of as homogeneous in the sense of response from 
local authorities regarding the use of masks, quarantine etc. In the United States for example, the 
response was state and/or county specific. In principle, our method could be applied at the county 
or state level in the US or the province or sub-province level in Canada to determine parameters 
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from recorded case data, wherever these compartments had uniform rules for containment of the 
virus.  
 It would be interesting to apply our method to subsequent peaks in daily cases for the 
SARS-COV-2 pandemic, as the virus evolved into different variants across the globe. Comparing 
changes in the inferred parameters across countries would  provide a country specific estimate of 
the effects of preventive measures such as the effectiveness/efficacy of vaccination, changes in 
behavior (mask use, testing/quarantine, work-from-home, social distancing, travel restrictions) etc. 
Furthermore, this method could be applied to other viral pandemics, such as the SARS-COV 
pandemic of 2003, and Influenza pandemics of the past, such as the H1N1 Spanish Flu pandemic 
of 1918-19 which recurred in 1950 and 1977, the H2N2 Asian Flu pandemic of 1957, the H3N2 
Hongkong pandemic of 1968 and the more deadly H5N1 East Asian pandemic of 1997.  

 
Summary: In this paper, we propose a simple method to estimate the R parameter of epidemics 
using the asymmetry around the peak in daily reported cases. We quantify this asymmetry using 
the ratio WR/WL of the right half width WR to the left half width WL and show how this 
dimensionless ratio can be used to estimate pandemic parameters. The function that makes this 
possible is shown in Fig. 1 and Supplementary Table 1.  Within the SIR model, this relationship 
between reff and WR/WL is universal and can be used for any epidemic. The value of such estimates 
is of necessity limited by the accuracy and reliability of the available data. However, as we show 
using a simulated example (Fig. 2), given data of sufficient  accuracy, our method is an extremely 
simple and accurate way to estimate the R parameter, α, and the effective latency.  
   

 
 
Figure Captions: 
 
Figure 1: Universal curve in the SIR model for reff as a function of the ratio WR/WL, where WL 
and WR are the left and right half widths of the peak in X(t). Note that this scaling function is 
universal in the SIR model and applies to any pandemic.  
 
Figure 2 a-b: Results obtained by numerically solving the SIR equations (Eqs. 1-5)  for parameter 
values N = 4.6×105, L0 = 10 days, L1 = 5 days, 𝜔 = 0.25, 𝛼 = 0.46875, which corresponds to reff 
= 3.75. The red dots in Fig 2a show daily case data (X(t)) from a numerical solution of Eqs. 1-5 
using these parameter values. The blue line shows the location of the maximum and green dots are 
the locations of the right and left half width points. Using the values of WR and WL inferred from 
X(t), an estimate (rfit) of the pandemic parameter (reff) was obtained by interpolation from 
Supplementary Table 1. Fig 2b shows i(𝜏) by solving Eq. 6-9 for the value rfit = 3.74 obtained from 
Fig 2a. The solid line in Fig 2c shows the result of mapping this solution to the data for X(t) by 
matching the peak of X(t) to the peak of i(𝜏) and rescaling the 𝜏 axis to match the half width for 
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i(𝜏). The rescaling of the half width from 𝜏 to t provides the estimate Leff =  (WR+WL)/(wR+wL) = 
7.99 days.    
 
Figure 3 a-c:  Fit of our model to data for X(t) for Spain (data for X(t) from  Supplementary Table 
2) from the World Health Organization. Fig 3a is the raw X(t) data for Spain. Fig 3b shows the 
i(𝜏) curve for the rfit value obtained from its average value from analysis of X(t) for five, seven and 
nine day averaging applied to the raw data in Fig 3a.   Fig 3c shows the mapping of the i(𝜏) data 
to X(t) to match its peak location and height. The points plotted for X(t) are seven day averaged 
data. The scaling of the 𝜏 axis to the t axis allows an estimate of Leff as in the example in Fig 2.  
 
Figure 4 a-c: Analysis of X(t) data for Thailand as in Figure 3.  
 
Figure 5 a-c: Analysis of X(t) data for Australia as in Figure 3.  
 
 
 
 
Table Captions:  

 
Table 1 : Results for WR, WL, reff, Leff, ftot, and α  for twenty-one countries using the scaling law 
in Fig 1 and Supplementary Table 1. Here WL and WR are the left and right half widths of the peak 
in X(t), the number of recorded daily cases.  
 
Supplementary Figure Captions: 
 
Supplementary Figures 1: Raw data, i(𝜏) and fits of our model to data for X(t) for twenty-one 
countries. In addition to figures similar to Figs 3-5, we also include the fits to 5,7,9 day averaged 
data. These show that the reff values for these various averagings are in good agreement.  
 
Supplementary Figures 2: Data for total number of tests carried out in 3 countries of interest for 
the period of interest. Data for tests is from https://www.ecdc.europa.eu/en/publications-
data/covid-19-testing. The blue dots are the number of positive tests and the red dots are the total 
number of tests carried out (including both positive and negative cases). The positive fraction in 
all cases was sufficiently low for the testing to  be considered adequate. This means that the X(t) 
data we used here should be reliable. 
 
Supplementary Figures 3: Exploring possible relationships among reff , α and  Leff (in days) and  
a the population density, average temperature and median age of population. Demographic data 
from https://www.worldometers.info/world-population/population-by-country  and temperature 
data from https://en.wikipedia.org/wiki/List_of_cities_by_average_temperature.  
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Supplementary Table Captions: 
 
Supplementary Table 1 : Detailed results from numerical solutions of Eq 6-9 for different values 
of reff. These were used in  Figure 1 and in inferring reff  from X(t) data. Within the context of the 
SIR model, the relationship between reff and WR/WL in this Table is universal and applies to any 
pandemic.  
 
Supplementary Table 2 : Data on recorded cases for the SARS-Cov2 pandemic from the World 
Health organization that was used in the analysis (from  https://covid19.who.int/WHO-COVID-
19-global-data.csv)  
 
Supplementary Table 3: Expanded version of Table 1 including demographic and temperature 
data from https://www.worldometers.info/world-population/population-by-country and 
https://en.wikipedia.org/wiki/List_of_cities_by_average_temperature.  
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Appendix A: Some useful results. 
 
 
The rescaled equations for the pandemic dynamics are: 
 
ds(𝜏)

d𝜏
=  − reff s(𝜏)i(𝜏)       (A1) 

di(𝜏)
d𝜏

=  reff s(𝜏)i(𝜏) − i (𝜏)         (A2) 
dr(𝜏)

d𝜏 
=   i(𝜏)         (A3) 

 
The scaled quantities s(𝜏), i(𝜏) are related to S(t), I(t) of the SIR model by: 
 
s(𝜏) = S(t)/N         (A4) 
i(𝜏) = I(t)/N          (A5) 
with, τ =  γefft = t

Leff
        (A6) 

 
Dividing (A2) by (A1) gives:  
 
di(τ)
ds(τ)

=  1
reffs

− 1        (A6) 
 
Using the large N boundary conditions s(0) = 1, i(0) = 0 generates the exact result: 
 
i(τ)  =  1 − s(τ) +  log(s(τ))/reff      (A7) 
 
At t=∞, i(τ) = 0. Hence, 
 
reff = − log(s(∞))

1−s(∞)
 = − log(1−ftot)

ftot
       (A8) 
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When s(∞) = 1 (no pandemic), L'Hôpital's rule gives reff(s(∞) = 1) = 1. 
 
It is easy to see that for 0 ≤ s(∞) < 1, reff> 1. Hence, a pandemic requires reff> 1. 
 
From (A2), the maximum in i(τ) happens when s(τ) = 1/reff. Hence: 
 
Maximum value of  i(τ) = 1 − [1+log(reff)]

reff
,  reff > 1    (A9) 

 
Note that because of (A5), this quantity is the same as the maximum of I(t)/N which is the quantity 
HI/N in Eq. 12c in the main text. Hence,  
 
HI/N = 1 − [1+log(reff)]

reff
, reff > 1      (A10) 

 
For small τ, s(τ)~1. Hence, we can expand the right-hand side of (A7) in powers of (1- s(τ)). 
To lowest order,  
 
log(𝑠(𝜏)) = log[1 − (1 − 𝑠(𝜏)) ]  ≅ − (1 − 𝑠(𝜏))     (A11) 
 
Substituted into (A7) this gives,  
 
i(τ) =  reff−1

reff
 (1 − 𝑠(𝜏))        (A12) 

 
Substituting from (A12) into (A1) gives the Logistic Equation: 
 
ds(𝜏)

dτ
=  − (reff − 1)s(𝜏)(1 −  𝑠(𝜏))      (A13) 

 
whose solution, with the boundary condition s(0) = 1-ε is: 
 
s(τ) = 1

[1+ε e(reff−1)τ]
        (A14) 

 
Hence, for  𝜏 ≤ log(𝜀)

(1−reff)
,  

  
s(τ) =  [ 1 − ε e(reff−1)τ],       (A15) 
 
Combining (A12) and A(15) shows that for 𝜏 ≤ log(𝜀)

(1−reff)
, 

i(τ) =  reff−1
reff

 ε e(reff−1)τ       (A16a) 
 
Hence, from Eq. 9, 
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x(τ) =  ωγ1i(𝜏)/γeff = (ωγ1
γeff

) reff−1
reff

 ε e(reff−1)τ    (A16b) 
 
This shows that,  
 
(i) x(τ) increases exponentially for small τ with exponent (reff − 1) (A17a) 
(ii) X(t) increases exponentially for small t with exponent (reff − 1)γeff  (A17b) 
 
Finally, using similar arguments, it is easy to show that, 
 
i(τ) →  e−(1−reffs(∞))τ   as τ →  ∞      (A18) 
Hence,  
(iii) x(τ) decreases exponentially for large τ with exponent −(1 − reffs(∞))  (A19a) 
(iv) X(t) decreases exponentially for large t with exponent −(1 − reffs(∞))γeff (A19b) 
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Figure 1
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Figure 2c
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Figure 3a Figure 3b

Figure 3c
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Figure 4a Figure 4b

Figure 4c
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Figure 5c
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Table 1 
 
 
 

Country WR_av 
(days)

WL_av 
(days) WR/WL r_fit from 

WR/WL L_fit (days) alpha
f_tot 

(infected 
fraction)

Australia 8.84 6.49 1.362 2.74+/- 0.41 5.14 +/- 0.88 0.53 +/- 0.12 0.92
Austria 7.96 4.70 1.694 4.59 +/- 0.47 6.83 +/- 0.52 0.67 +/- 0.09 0.99
Belgium 17.37 15.63 1.111 1.48 +/- 0.23 3.91 +/- 1.67 0.38 +/- 0.17 0.57

Egypt 30.29 23.71 1.278 2.26 +/- 0.21 14.22 +/- 1.81 0.16 +/- 0.03 0.86
France 17.96 11.70 1.535 3.62 +/- 0.48 13.14 +/- 1.59 0.28 +/- 0.05 0.97

Germany 17.35 12.31 1.409 2.93 +/- 0.43 10.72 +/- 1.70 0.27 +/- 0.06 0.94
Ireland 14.68 11.32 1.297 2.35 +/- 0.15 7.23 +/- 0.60 0.33 +/- 0.03 0.87
Israel 19.05 8.95 2.128 7.05 +/- 0.09 19.99 +/- 0.15 0.35 +/- 0.01 1.00
Italy 28.95 12.38 2.338 8.32 +/- 0.22 32.19 +/- 0.42 0.26 +/- 0.01 1.00

Japan 15.21 9.79 1.554 3.78 +/- 0.76 11.51 +/- 2.03 0.33 +/- 0.09 0.98
Netherlands 18.53 17.81 1.040 1.16 +/- 0.09 1.58 +/- 0.83 0.73 +/- 0.39 0.27

New Zealand 9.25 6.42 1.441 3.14 +/- 0.30 6.07 +/- 0.58 0.52 +/- 0.07 0.95
Portugal 25.54 13.80 1.851 5.42 +/- 0.38 23.89+/- 1.13 0.23 +/- 0.02 1.00

Qatar 31.52 22.15 1.423 3.00 +/- 0.05 19.84 +/- 0.37 0.15 +/- 0.00 0.94
Republic of  Korea 7.41 5.59 1.326 2.54 +/- 0.40 3.99 +/- 0.77 0.64 +/- 0.16 0.90

South Africa 21.64 21.69 0.998 1.05 +/- 0.03 1.00 +/- 0.33 1.00 +/- 0.35 0.09
Spain 15.60 8.73 1.787 5.05 +/- 0.18 14.07 +/- 0.35 0.36 +/- 0.02 0.99

Switzerland 15.01 10.66 1.408 2.97 +/- 0.46 9.39 +/- 1.54 0.32 +/- 0.07 0.94
Thailand 11.99 8.67 1.383 2.82 +/- 0.25 7.14 +/- 0.70 0.39 +/- 0.05 0.93
Turkey 18.31 13.02 1.406 2.91 +/- 0.07 11.22 +/- 0.31 0.26 +/- 0.01 0.93

UK 33.43 20.90 1.600 3.98 +/- 0.27 26.17 +/- 1.51 0.15 +/- 0.01 0.98
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