
Identifying risk genes for embryo aneuploidy using ultra-low coverage whole-

genome sequencing  

 

Siqi Sun1, Mansour Aboelenain1,7, Daniel Ariad2, Mary E. Haywood3, Charles R. 

Wageman3, Marlena Duke1, Aishee Bag1, Manuel Viotti4,5, Mandy Katz-Jaffe3, Rajiv C. 

McCoy2, Karen Schindler1,6, Jinchuan Xing1,6* 

  
1 Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, 

NJ, USA. 
2 Department of Biology, Johns Hopkins University, Baltimore, MD, USA. 
3 CCRM Genetics, Lone Tree, CO, USA. 
4 Zouves Foundation for Reproductive Medicine, Foster City, CA, USA. 
5 Kindlabs, Kindbody, New York, NY, USA. 
6 Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, 

Piscataway, NJ, USA. 
7 Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, 

Egypt. 

 
* To whom correspondence should be addressed. 

Jinchuan Xing 

Department of Genetics, Human Genetics Institute of New Jersey 

Rutgers, The State University of New Jersey 

145 Bevier Road, Piscataway, New Jersey 08854 

Email: jinchuan.xing@rutgers.edu 

 

 

Keywords 
preimplantation genetic testing for aneuploidy; ultra-low-coverage whole-genome 

sequencing; egg aneuploidy; genome-wide association study, CCDC66

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 24, 2023. ; https://doi.org/10.1101/2023.07.22.23292618doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.07.22.23292618


Abstract 

Background 

Aneuploidy, the state of a cell containing extra or missing chromosomes, frequently 

arises during human meiosis and is the primary cause of early miscarriage and 

maternal age-related in vitro fertilization (IVF) failure. IVF patients exhibit significant 

variability in aneuploidy rates, although the exact genetic causes of the variability in 

aneuploid egg production remain unclear. Preimplantation genetic testing for aneuploidy 

(PGT-A) using ultra-low coverage whole-genome sequencing (ulc-WGS) is a standard 

test for identifying and selecting IVF-derived embryos with a normal chromosome 

complement. The wealth of embryo aneuploidy data and ulc-WGS data from PGT-A has 

potential for discovering variants in paternal genomes that are associated with 

aneuploidy risk in their embryos.  

Methods 

Using ulc-WGS data from ~10,000 PGT-A biopsies, we imputed genotype likelihoods of 

genetic variants in parental genomes. We then used the imputed variants and 

aneuploidy calls from the embryos to perform a genome-wide association study of 

aneuploidy incidence. Finally, we carried out functional evaluation of the identified 

candidate gene in a mouse oocyte system. 

Results 

We identified one locus on chromosome 3 that is significantly associated with maternal 

meiotic aneuploidy risk. One candidate gene, CCDC66, encompassed by this locus, is 

involved in chromosome segregation during meiosis. Using mouse oocytes, we showed 
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that CCDC66 regulates meiotic progression and chromosome segregation fidelity, 

especially in older mice.  

Conclusions 

Our work extended the research utility of PGT-A ulc-WGS data by allowing robust 

association testing and improved the understanding of the genetic contribution to 

maternal meiotic aneuploidy risk. Importantly, we introduce a generalizable method that 

can be leveraged for similar association studies using ulc-WGS data. 
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Background 

Cells containing an abnormal number of chromosomes, a condition called aneuploidy, is 

the most common genetic abnormality in human embryos and the leading genetic cause 

of miscarriage and in vitro fertilization (IVF) failure [1]. Maternal age is well documented 

as a risk factor for producing aneuploid gametes. However, the propensity to produce 

aneuploid embryos varies substantially even among mothers of a similar age [1-5]. 

Recently, variants in several genes related to control of chromosome segregation have 

been implicated in contributing to aneuploidy risk [5-8]. However, many identified 

variants only contribute to the aneuploidy risk in a small number of patients and most of 

these studies have limited sample sizes. Additional efforts are needed to fully 

understand the genetic contribution to the aneuploidy risk in populations.   

Currently, the most effective treatment of infertility is IVF, where eggs are 

surgically retrieved after controlled ovarian stimulation and fertilized in a petri dish, with 

subsequent embryo selection and transfer back to the uterus [9, 10]. Preimplantation 

genetic testing for aneuploidy (PGT-A) was developed as an approach to improve IVF 

outcomes by prioritizing euploid embryos for transfer, based on the inferred genetic 

constitution of an embryo biopsy [11, 12]. PGT-A with ultra-low-coverage whole-genome 

sequencing (ulc-WGS) performed on trophectoderm cells isolated from blastocyst-stage 

embryos has provided a rich resource of aneuploidy measurements. However, due to 

the low coverage of the genome (< 0.01x genome coverage per embryo biopsy), the 

genotype information encoded therein is rarely used for genetic studies in 

understanding infertility [12, 13]. 
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Genome-wide association studies (GWAS) have revolutionized the field of 

complex disease genetics over the past decade by identifying genotype-phenotype 

associations based on testing millions of genetic variants across the genomes [14, 15]. 

For genetic variants showing strong disease association, further fine-mapping and gene 

prioritization approaches proceed to identify variants that causally impact the traits [16, 

17]. This integrated approach has identified risk loci for many diseases and traits, such 

as susceptibility to viral infections and type 2 diabetes [18, 19]. Applying GWAS 

approach to PGT-A data would help identify additional genetic risk factors to embryo 

aneuploidy.   

Here we describe an integrative approach to identify candidate variants through 

retrospective analysis of ulc-WGS-based PGT-A data. After combining data from sibling 

embryos and imputing variant dosages, we conducted a GWAS to identify candidate 

genes. Our analysis identified one genomic region that is associated with embryo 

aneuploidy risk on chromosome 3. Functional interpretation of the variants suggested 

that the candidate variants are causal eQTLs for CCDC66. Validation experiments in 

mouse oocytes showed that CCDC66 depletion was associated with higher aneuploidy 

rates. 
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Methods 

Dataset description 

PGT-A data were obtained from IVF cases between 2017 and 2019 at CCRM Fertility. 

One IVF cycle with at least three embryos tested was included for each patient. IVF 

cycles with maternal age >=43 years were excluded from the analysis because eggs 

used in these cycles were from egg donors of unknown age. Embryos underwent 

trophectoderm biopsy on day 5, 6, or 7 postfertilization, followed by PGT-A using the 

Illumina VeriSeq PGS kit and protocol, which entails sequencing on the Illumina MiSeq 

platform (36-bp single-end reads) (Illumina, USA). Chromosome copy numbers from 

each embryo biopsy were inferred using the Illumina BlueFuse Multi Software suite in 

accordance with the VeriSeq protocol, as described before [20]. Each embryo was then 

noted as “euploid” or “aneuploid” based on the chromosome copy number.  

The aneuploidy rate for each IVF cycle was determined with the formula 

described previously [7, 8, 21]: 

aneuploidy rate = (no. of aneuploid embryos)/(total no. of embryos tested). 

Sequencing alignment and variant calling  

PGT-A sequencing files with < 150,000 reads were considered low quality and 

excluded. After filtering, sequencing files from each IVF cycle were combined into a 

single file for analysis. The sequencing reads were aligned to the human reference 

genome (GRCh38) with bwa-mem (v 0.7.17) [22] and converted to the BAM format 

using samtools (v 1.13) [23]. Ancestry inference was performed using LASER (V2.0) as 

previously described [20, 24, 25]. Briefly, principal component (PC) space was defined 

based on the 1000 Genomes project reference samples. Sequencing samples were 
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then projected onto the space using a Procrustes approach implemented in LASER. 

Samples were assigned to superpopulations (African [AFR], Admixed American [AMR], 

East Asian [EAS], European [EUR], and South Asian [SAS]) based on genetic similarity 

to the 1000 Genomes reference panel.  

Genotype likelihoods (GLs) were computed with bcftools (v 1.13) [26] for each 

sample at all variable positions of the reference panel (1000 Genomes 30x on GRCh38, 

https://www.internationalgenome.org/home). Imputation and phasing in the form of GLs 

were performed using GLIMPSE [27]. Specifically, GLIMPSE refines the GLs by 

iteratively running genotype imputation and haplotype phasing with a Gibbs sampling 

procedure to produce consensus-based haplotype calls and genotype posteriors at 

every variant position [27]. With imputed data, each variant site was filtered based on 

the following criteria: imputation score >= 0.2, minor allele frequency (MAF) >= 5%. 

After filtering, the imputed genotype dosages of each patient were calculated and used 

in the association test:  

genotype dosage of alternative allele = Σ!"𝐺𝐿!   ×  𝐴𝑙𝑡!. 

Given the known reference and alternative alleles, 𝐺𝐿! of three possible genotypes (i.e., 

homozygous reference, homozygous alternative, and heterozygous) were multiplied by 

the number of alternative alleles of each genotype (𝐴𝑙𝑡!). 

For MAF correlation analysis, the population MAF for each variant was extracted 

from two reference panels, the 1000 Genomes Projects 

(http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage

/working/20201028_3202_phased/) and the Genome Aggregation Database (gnomAD) 
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(v3.1) [28]. Correlations of MAFs between our imputed data and reference panels were 

calculated with Pearson correlation coefficient (R).  

Association test and eQTL analysis 

For the association test, a quasibinomial generalized linear regression model (GLM) 

was iteratively fit for each variant using the function glm() in R as follows: 

glm(data, formula = cbind( aneuploid_embryos_numbers, euploid_embryos_numbers) ~ 

age + ancestry_PCs + single_SNP_dosage, family = "quasibinomial") 

At each iteration, a single nucleotide polymorphism (SNP) dosage was tested. 

Maternal age and top four ancestry PCs inferred using LASER were included as 

covariates. The resulting p values were visualized using a Manhattan plot and checked 

using a QQ plot with the R package GWASTools (version 1.44.0) [29]. The significant 

variants were determined using a significance threshold p value ≤ 2×10-8 and 

Benjamini-Hochberg false discovery rate (FDR) ≤ 0.05. Haplotype structure surrounding 

significant loci was visualized with Locuszoom (http://locuszoom.org/) [30].  

The Genotype-Tissue Expression (GTEx) project includes genotypes, gene 

expression, and histological and clinical data from 54 non-diseased tissue sites across 

nearly 1,000 individuals [31]. The eQTL information from GTEx 

(https://www.gtexportal.org/home/eqtlDashboardPage, access date: 06/30/2022) was 

used to determine the candidate variants’ potential association with expression of 

nearby (i.e., cis) gene. 

Mice and oocyte collection and maturation 

C57BL/6 mice (6–10 weeks and 9 months of age) (Jackson Laboratory, USA) were 

used. Mice were housed with a constant temperature and a standard 12 h light/12 h 
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dark cycle in the animal facility at Rutgers University (NJ, USA). All animal experiments 

performed in this study were approved by the Rutgers IACUC (protocol #201702497) 

and followed guidelines set by the National Institutes of Health. For oocyte collection, 

mice were primed with pregnant mare serum gonadotropin (PMSG, Lee Biosolutions, 

#493-10) two days before collection. Prophase I-arrested oocytes were collected as 

described before [32] in minimum essential medium (MEM) (Sigma, #M0268) with 2.5 

µM milrinone (Sigma, #M4659) to prevent spontaneous meiotic resumption. The 

oocytes were then incubated in Chatot, Ziomek, and Bavister (CZB) media without 

milrinone, in 5% CO2 at 37°C for the desired time of maturation, depending on the 

meiotic stages to be evaluated (0h for Prophase I, 5h for Pro-metaphase I, 7 h for 

Metaphase I, and 16 h for Metaphase II).  

Knockdown of CCDC66 in mouse oocytes 

To deplete CCDC66, we used the Trim-away strategy [7, 33, 34]. Rabbit anti-CCDC66 

antibody (Bethyl Laboratories, #A303-339A) and control IgG antibody (Merck Millipore, 

#12-370) were purified using Amicon Ultra 0.5-ml Centrifugal Filter (Merk Millipore, 

#UFC5003096). pGEMHE-Cherry-TRIM21 (Addgene, #105522) or pGEMHE-mEGFP-

mTrim21 (Addgene, #105519) were linearized with Asc I (New England Biolabs, 

#R0558S,) and in vitro transcribed using a T7 mMessage mMachine Kit (Ambion, 

#AM1340). Prophase I-arrested oocytes were co-microinjected with the fluorescently 

tagged Trim21 cRNA and with either rabbit anti-CCDC66 antibody (0.5 mg/ml) or IgG 

antibody (0.5 mg/ml) in the control group. Injections were performed using a Xenoworks 

digital microinjector (Sutter Instruments) in MEM supplemented with 2.5 μM milrinone. 

The oocytes were incubated in milrinione-containing CZB media for at least 3 hours in 
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5% CO2 at 37°C before starting meiotic maturation by washing out the milrinone and 

culturing in CZB medium. Oocytes were fixed at Metaphase I stage (7 h post milrinone 

washout) and immunostained to evaluate CCDC66 knockdown efficiency.  

Antibodies and immunofluorescence  

The following antibodies were used: rabbit anti-CCDC66 antibody (1:50, Bethyl 

Laboratories, A303-339A), mouse anti-α-tubulin ((B-5-1-2) Alexa Fluor 488) (1:100, 

Invitrogen, 322588), and human anti-centromeric antigen (ACA) (1:30, Antibodies 

Incorporated, 15-234). These secondary antibodies (1:200) were used: donkey-anti-

rabbit Alexa Fluor 568 (Life Technologies, A10042) and goat-anti-human Alexa Fluor 

633 (Life Technologies, A21091).  

Immunofluorescence was performed as previously described [35]. Oocytes were 

fixed with 2% paraformaldehyde (PFA) (Sigma-Aldrich, P6148) in phosphate-buffered 

saline (PBS) at room temperature for 20 min. The fixative was then washed out by 

incubating the oocytes in blocking buffer (0.3% BSA containing 0.01% Tween-20 in 

PBS) three times for 10 min. Oocytes were then permeabilized in PBS containing 0.2% 

Triton-X-100 for 20 min and blocked in blocking buffer for 10 min. Primary antibody 

incubation was performed by incubating the oocytes overnight at 4°C (CCDC66) or 1h at 

room temperature (ACA) in dark, humidified chamber, followed by three washes of 10 

min each in blocking solution. Then oocytes were incubated in secondary antibody for 1 

h in a dark humidified chamber, followed by three washes of 10 min each in blocking 

buffer. Finally, oocytes were mounted in 10 μl of Vectashield containing 4, 6-Diamidino-

2-Phenylindole, Dihydrochloride (DAPI) (Life Technologies, D1306). 
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In situ chromosome counting 

As described previously [36, 37], the microinjected prophase I-arrested oocytes from 

young and old mice were matured in CZB media without milrinone in a humified 

incubator (5% CO2, 37°C) for 16 h until they completed meiosis I and arrested at 

metaphase of meiosis II. Then, eggs were cultured for at least 2 h in 100 µM Monastrol 

(Sigma #M8515) to collapse the spindle and facilitate the separation of the 

chromosomes. The eggs were fixed with 2% PFA in PBS for 20 min and permeabilized 

in PBS containing 0.2% Triton X-100 for 20 min. Eggs were stained with ACA antibody 

to detect centromeres and DAPI to detect DNA. Normal chromosome counts for a 

mouse egg is 20 pairs of sister chromatids; any deviation of this number was 

considered an aneuploid egg. Chromosome counting was performed with Image J 

software (NIH) using cell counter plugins. 

Imaging 

Images were acquired with Leica SP8 confocal microscopes equipped with a 40×, 1.30 

NA oil immersion objective or a 63×, 1.40 NA oil immersion objective. For each image, 

optical z-sections were obtain using 0.5µm step with zoom of 4.5. For comparison of 

pixel intensities, the laser power was kept constant for each oocyte in an experiment. All 

oocytes in the same experiment were processed at the same time.  
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Results 

Project overview, patient cohort, variant calling, and ancestry inference 

To identify genomic loci associated with aneuploidy in the embryos of IVF patients, we 

analyzed embryo biopsy sequences collected from the PGT-A procedure (Fig. 1). The 

dataset included 10,011 embryo biopsies from 1,467 IVF cycles. After removing data 

from egg-donors and low-quality (< 150,000 reads), 9,357 embryo biopsies from 1,373 

cycles remained, with maternal age ranging from 23 to 42 years (median = 35) (Fig. 

2A). To improve the coverage for analysis, we pooled all sequenced embryos from each 

IVF cycle. Because embryos in a cycle are equivalent of full siblings, this combined file 

captured both maternal and paternal genomes. After pooling, the median coverage of 

each patient was 0.056× (Fig. S1A). As expected, the mean coverage per patient was 

linearly associated with the number of sequenced embryo biopsies (Fig. S1B).  

 

Fig. 1 Overall strategy for PGT-A data analysis. For each IVF cycle, the number of 

aneuploidy and euploidy embryo biopsies were determined using PGT-A. ulc-WGS data 

from PGT-A for each IVF cycle were combined for analysis. Genotype likelihood and 

dosage were imputed for each variant and ancestry of the samples was inferred using 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 24, 2023. ; https://doi.org/10.1101/2023.07.22.23292618doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.22.23292618


the genotype likelihood. Association tests were performed between the imputed genetic 

variants and the aneuploidy rate. eQTL analysis was used to determine the candidate 

gene associated with the top variants from the association test. CCDC66 was selected 

for functional studies using a mouse oocyte model. 

 

We next performed ancestry inference based on the sequence data using the 

program LASER. Our analysis revealed a diverse patient cohort, consistent with the 

demographic composition of the local population (Fig. 2B, 2C). Specifically, according to 

the superpopulation reference panel defined by the 1000 Genomes Project [38], 788 

samples (57.4%) have genetic similarity with European reference samples, 223 (16.2%) 

with Admixed American reference samples, 168 (12.2%) with African reference 

samples, 143 (10.4%) with South Asian reference samples, and 52 (3.8%) with East 

Asian reference samples.  

 

Fig. 2 Phenotypic characterization and ancestry inference of the patients. (A) 
Aneuploidy rate versus age. x-axis: patient age in years, y-axis: blastocyst aneuploidy 

rate. (B, C) Ancestry inference using the PGT-A data. Principal component axes (PC1 

and 2 in B, PC2 and 3 in C) were defined based on analysis of 1000 Genomes 

reference samples and colored according to superpopulation annotations (African 

[AFR], Admixed American [AMR], East Asian [EAS], European [EUR], South Asian 

[SAS]). PGT-A samples were then projected onto these axes using a Procrustes 

approach with LASER [24, 25]. 
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Using the program GLIMPSE, we identified variants and performed GL 

imputation across the sample cohort (see Methods for details). A total of 10,740,080 

variants were imputed, among which 4,353,993 variants had INFO scores >= 0.2 (Fig. 

S2A). After selecting variants with >= 5% MAF, 2,549,983 variants remained (Fig. S2B). 

After imputation, MAFs of imputed variants in our sample were highly correlated with 

large population databases: the 1000 Genomes (R = 0.95, p < 2.2e-16, Fig. S3A) and the 

gnomAD (R = 0.97, p < 2.2e-16, Fig. S3B). 

Genome-wide association analysis for aneuploidy 

To identify aneuploidy risk loci, we next investigated the association between 

aneuploidy rate and genotype dosage for each variant using a GLM, incorporating four 

ancestry PCs and the maternal age as covariates (see Methods for details).  

Three SNPs on chromosome 3 reached genome-wide significance for 

association with aneuploidy at the level of p <= 2×10-8 and FDR ≤ 0.05 (Fig. 3A; Table 

1, Table S1). The QQ plot did not show strong inflation of the test statistics (Fig. 3B), 

suggesting that confounding factors, such as population structure, were generally 

controlled. The three significant SNPs were located in ERC2 (ELKS/RAB6-

Interacting/CAST Family Member 2), which has not been reported as associated with 

maternally-derived aneuploidy (Fig. 3C). Within the locus, the three significant SNPs are 

in strong linkage disequilibrium with each other (Table 1). The top SNP, rs12495172 

(chr3-55959628-G-A), is located in intron 12-13 of ERC2. The mean depth of coverage 

of the 1 Mbp window covering the significant variants had a median of 0.066 among all 

samples, comparable to 0.055 for the entire chromosome (Fig. S3C, Table 1). As 
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indicated by the positive beta values (e.g., 0.079 for the rs12495172), the alternative 

allele of each significant variant in ERC2 is positively associated with aneuploidy rate.  

 

Fig. 3 Association test for aneuploidy. (A) Manhattan plot depicts p values of 

association tests of each SNP versus the aneuploid embryo count. The rs numbers of 

the three significant SNPs on chromosome 3 are labeled. (B) QQ plot describes the 

distribution of observed p values versus those expected under the null hypothesis. (C) 
Locus Zoom plot denotes lead SNP (rs12495172) and SNPs around the region of ERC2 

gene. The lead SNP is shown in purple diamond and the heat map shows the linkage 

disequilibrium (LD) between the lead and nearby SNPs. Recombination rates are 

plotted as blue lines. 

 
Next, we aimed to identify the candidate genes associated with the top variants. 

A previous study showed that variants discovered by GWAS are more likely to affect the 
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expression of nearby genes, (i.e., as expression quantitative trait loci, eQTLs) and the 

altered expression can ultimately influence the phenotypic trait [39]. Therefore, 

integrating GWAS with gene expression data can facilitate candidate gene prioritization 

[17]. To determine the effect of the top SNPs on nearby gene expression, we examined 

eQTL signals using GTEx project data. The GTEx data suggested that alternative 

alleles of the top variants were associated with reduced expression of a nearby gene 

CCDC66 (Coiled-Coil Domain Containing 66) in two tissues (thyroid and tibial nerve, 

see Fig. 4A as one example). There was no eQTL signal for other genes, including 

ERC2. Therefore, we selected CCDC66 as the candidate aneuploidy risk gene, whose 

reduction in expression may be associated with increased aneuploidy rate. As indicated 

by the positive beta values (e.g., 0.079 for the rs12495172), the alternative alleles of the 

significant variants were positively correlated with aneuploidy rate (see Fig. 4B as one 

example). 
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Fig. 4 Gene prioritization for casual variants and genes. (A) GTEx eQTL of the lead 

significant variants rs12495172 (chr3-55959628-G-A) on CCDC66 expression. The 

decreased expression of CCDC66 correlates with alternative alleles of rs12495172. (B)  
The genotype dosages of the alternative allele of rs12495172. The alternative allele 

genotype dosages in samples were divided into 3 bins of roughly equal size. The 

aneuploidy rates among the samples were positively correlated with the alterative allele 

genotype dosages.  

 

CCDC66 regulates meiotic progression and chromosome segregation fidelity 

CCDC66 encodes a microtubule-associated protein that regulates microtubule 

nucleation and organization during cell division [40, 41]. In mitosis, CCDC66 regulates 

centrosome maturation via recruitment of core pericentriolar material (PCM) proteins 

and microtubule organization via its cross-linking activity [40].  

To determine the role of CCDC66 in meiosis, we evaluated expression and 

localization of the protein during mouse oocyte meiotic maturation via immunostaining 

of oocytes fixed at different meiotic stages (Fig. 5A). We detected CCDC66 in Prophase 

I-staged oocytes with slight enrichment in the nucleus. In pro-Metaphase I and 

Metaphase I oocytes and in Metaphase II eggs, CCDC66 was enriched around the 

spindle (Fig. 5A). This localization pattern suggested a requirement of CCDC66 during 

mouse oocyte meiotic maturation.  

To evaluate a requirement for CCDC66 in oocyte meiotic maturation, we 

depleted the protein using the Trim away strategy [33] and confirmed ~95% depletion by 

subsequent immunocytochemistry (Fig. 5B, C). To determine the effect of CCDC66 

depletion on meiotic progression and meiosis I chromosome segregation, we calculated 

the percentage of oocytes that extruded polar bodies (PBE) and percentage of 
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aneuploid Metaphase II eggs, respectively. In reproductively young mice (6-10 weeks of 

age, equivalent to ~20 y of human age [42]), 73.18% of control-injected oocytes 

extruded a polar body. This rate decreased significantly to 66.16% in the CCDC66 

depletion group (p < 0.05) (Fig. 5D). In oocytes from young mice, the average rate of 

aneuploidy in Metaphase II eggs was 2.56% in the control group and increased 

significantly to 13.24% in the depletion group (p < 0.05). Therefore, decreased 

expression of CCDC66 increases the chances of chromosome segregation errors 

during meiosis I in oocytes from reproductively young mice. 

Elevated egg aneuploidy is associated with advanced maternal age (> 35 y) but 

some women experience higher egg aneuploidy rate at younger than average ages. To 

evaluate the interplay between genetics and maternal age, we also conducted the PBE 

and aneuploidy rate assessment experiments in reproductively older mice (9 m, 

equivalent to ~38 y in humans [42]). Control-injected oocytes from older mice had a 

reduced PBE rate (66.59%) compared to oocytes in the young control-injected group 

(73.18%). Furthermore, depletion of CCDC66 also significantly reduced PBE compared 

to older oocyte controls (57.07% vs 66.59%, respectively; p < 0.05) (Fig. 5D). Similar to 

having an age-related reduction in PBE rate, control-injected oocytes from 

reproductively old mice had an elevated aneuploidy incidence (8.83%). Depletion of 

CCDC66 in oocytes from old mice had a more severe phenotype with a higher 

incidence of aneuploidy compared to controls (24.85%, p < 0.01). Furthermore, oocytes 

from 9-month-old mice were statistically more likely to be aneuploid when CCDC66 was 

depleted than oocytes from young mice. Taken together, these data demonstrate that 
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decreased expression levels of CCDC66 is associated with increased egg aneuploidy 

rates, a phenotype which becomes more severe with reproductive aging.  
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Fig. 5 CCDC66 is required for meiotic progression and production of euploid 
eggs. (A) Expression and localization of CCDC66 in different stages of mouse oocyte 

meiotic maturation. Oocytes were stained with anti-CCDC66 antibody (gray) at (0, 5, 7, 

and 16) hours of maturation corresponding to Prophase I, Pro-metaphase I, Metaphase 

I and Metaphase II, respectively. Tubulin and DAPI was used to label the spindle and 

DNA (green and blue, respectively). (B) Prophase-I arrested oocytes were co-

microinjected with Trim21 cRNA and either CCDC66 antibody or IgG. Oocytes were 

fixed at metaphase I and stained to detect CCDC66 (gray). Tubulin (green) and DAPI 

(blue) were used to label the spindle and DNA. (C) Relative CCDC66 intensity from B, 

two-tailed unpaired Students t-Test (***p < 0.001). (D) Quantification of percentage of 

polar body extrusion (PBE). (E) Percentage of aneuploid Metaphase II eggs after 

knockdown of CCDC66 in young and old mouse oocytes (One-way ANOVA, * p <0.05; 

** p < 0.01, *** p < 0.001). Number of oocytes examined: young IgG: 34, young 

CCDC66: 37, old IgG: 29, old CCDC66: 31. These experiments were repeated 3 times. 

Scale bars: 15 and 4 μm (insets). 
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Discussion 

The key to reproductive success lies in faithful chromosome segregation in meiosis to 

create a euploid zygote upon fertilization [1, 43]. The error-prone nature of meiosis often 

results in low quality gametes, leading to spontaneous abortion or infertility [3, 4, 44]. 

Recent studies suggest oocyte meiotic maturation is susceptible to dysregulation by 

maternal genetic variants that contribute to infertility, such as CEP120 and AURKB 

(reviewed in [43, 45, 46]). These maternal genetic variants are strong candidates for 

clinical validation as predictive biomarkers of IVF outcomes. Identifying and validating 

additional genetic variants will contribute to a complete panel of infertility biomarkers. 

This can be used to complement existing clinical approaches to infertility, and genetic 

evaluations as the prognostic indicator of conception success could substantially 

improve pregnancy outcomes. 

A major hurdle in identifying aneuploidy biomarkers is the lack of patient samples 

with both egg aneuploidy phenotypes and genome sequencing information. To 

overcome this limitation, we developed an integrated method for analyzing PGT-A data 

and illustrated the utility of these data for maternally-derived aneuploidy studies. We 

show that by leveraging the power of imputation and GLs, even ulc-WGS data are 

sufficient to identify common variant associations with aneuploidy risk, especially when 

aggregating sibling embryo sequences from the same patient. We discovered one novel 

locus associated with aneuploidy on chromosomes 3. Further eQTL analysis suggests 

that CCDC66 is a novel candidate gene for embryo aneuploidy risk.  

Through functional studies, we found that CCDC66 is important for the 

completion of meiotic progression and the production of euploid eggs. In mouse 
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oocytes, the protein is expressed at all meiotic stages, and we observed a significant 

reduction of PBE in young and old mice after depleting endogenous CCDC66. Depletion 

of the protein also increased the incidence of aneuploidy, a phenotype that is 

exaggerated in aged mice. When the age and aneuploidy rate interaction was included 

as a co-variate in our association analysis, it did not show significant association with 

the aneuploidy rate variation. However, our limited sample size might have contributed 

to the result. In mitotic cells, CCDC66 function indicates that it is a microtubule-

associated protein that localizes to centrosomes, centriolar satellites, and the primary 

cilium throughout the cell cycle [40, 41]. To our knowledge, this study is the first 

research on the function of CCDC66 in meiosis. Additional studies are needed to better 

understand its function in both mitosis and meiosis.  

Our current study has a few limitations. First, in addition to errors of maternal 

meiotic origin, aneuploidy detected by PGTA could also arise from chromosome mis-

segregation during early embryonic mitotic divisions. These mitotic errors could cause 

mosaicism in the embryos and potentially confound the meiotic aneuploidy phenotype of 

interest [47-50]. To circumvent this limitation, we recently developed a haplotype-based 

approach to isolate the subset of aneuploidies with characteristic signatures of meiotic 

error [20]. In the future when the sample size is sufficiently large, we can apply this 

method to disentangle the genetic underpinnings of mitotic versus meiotic errors. 

Analysis of these sub-phenotypes will allow us to evaluate whether certain alleles 

predispose to meiotic errors, mitotic errors, or both. Second, to increase the sequencing 

coverage, we combined embryo biopsy sequences from the same IVF cycle. 

Genetically, these embryos are equivalent of full siblings and the combined sequences 
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contain genomic variation from both maternal and paternal genomes. Therefore, some 

parts of the genome could be tetraploid, rather than diploid. However, given the low 

coverage in the combined samples (median coverage 0.056×), we expect most of the 

sites are not affected. Third, using the PGT-A data from embryos, our analysis does not 

preclude paternal risk factors. Because embryonic aneuploidy is primarily derived from 

mistakes in female meiosis [51], we expect most of the association signals will be 

maternal risk factors. Nevertheless, functional studies in model organisms, where we 

knock-in mutations to mimic the human genetic condition, can help elucidate the role of 

the candidate genes in relation to their parental origin.  

Conclusion 

Sufficient large sample size is fundamentally important in addressing biological 

questions in population and medical genetics. Large low-coverage sequencing datasets 

have become more accessible for analyses, as costs of sequencing continue to 

plummet. Given the same sequencing depth, low-coverage sequencing of many 

individuals tends to be more powerful than deep sequencing of fewer individuals [52, 

53]. Recent studies have demonstrated the application of low-coverage sequencing 

data in GWAS [18, 54], polygenic risk score calculation [55], and population genomics 

[56, 57]. In addition, computational tools that are specialized for low-coverage 

sequencing data are also being actively developed [27, 58, 59]. These developments 

allow for future applications of low-coverage sequencing data. 

Recently, a large number of ulc-WGS data have been generated from different 

sources, such as PGT-A [60], non-invasive prenatal testing (NIPT) [18], cell-free DNA 

(cfDNA) [61], and off-target sequencing reads from targeted sequencing experiments 
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[62]. These sequences have not been fully investigated due to the difficulties in 

interpreting the sparse genotype observations. Our results show that when applied to 

large datasets, global patterns emerge even at the very low depth of coverage and can 

provide insight into the biological origins of aneuploidy. We believe that our method, 

with the consideration of genotype uncertainty in a probabilistic framework, will be 

applicable to other ulc-WGS datasets and will help improve the overall utility of the ulc-

WGS data in the genetics field. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 24, 2023. ; https://doi.org/10.1101/2023.07.22.23292618doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.22.23292618


List of abbreviations 

IVF: in vitro fertilization 

PGT-A: preimplantation genetic testing for aneuploidy 

ulc-WGS: ultra-low-coverage whole-genome sequencing 

GWAS: genome-wide association studies 

PC: principal component 

GL: genotype likelihood 

MAF: minor allele frequency 

GLM: generalized linear regression model 

SNP: single nucleotide polymorphism 

FDR: false discovery rate 

MEM: minimum essential medium  

CZB: Chatot, Ziomek, and Bavister 

PFA: paraformaldehyde 

PBS: phosphate-buffered saline 

DAPI: 4, 6-Diamidino-2-Phenylindole, Dihydrochloride 

eQTLs: expression quantitative trait loci 

PBE: extruded polar bodies 

NIPT: non-invasive prenatal testing 

cfDNA: cell-free DNA 
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Table 1. SNPs associated with embryo aneuploidy. 

ID Chr Position INFO AF AF 
gnomAD 

AF 
1KG p FDR beta LD Distance 

3:55959628:G:A 3 55959628 0.237 33.8% 39.4% 40.8% 5.48E-09 8.67E-03 0.079 - - 
3:55952031:C:T 3 55952031 0.244 32.8% 38.9% 39.4% 6.80E-09 8.67E-03 0.084 0.563 7597 
3:55959515:A:G 3 55959515 0.234 35.0% 42.3% 44.1% 1.41E-08 1.20E-02 0.085 0.567 113 
3:55967692:G:C 3 55967692 0.242 34.8% 41.6% 43.0% 6.23E-08 3.10E-02 0.082 0.559 8064 
3:55962557:C:T 3 55962557 0.245 34.2% 41.8% 43.1% 6.30E-08 3.10E-02 0.078 0.613 2929 
3:55955490:C:G 3 55955490 0.239 35.0% 42.8% 44.4% 7.29E-08 3.10E-02 0.079 0.621 4138 
3:55965325:A:G 3 55965325 0.247 32.8% 38.1% 38.8% 9.96E-08 3.63E-02 0.080 0.559 5697 
3:55962257:T:C 3 55962257 0.235 34.7% 39.8% 41.0% 1.20E-07 3.83E-02 0.083 0.618 2629 
INFO: IMPUTE info quality score                  
AF: alternative allele frequency         

 
AF gnomAD: alternative allele frequency in the gnomAD project           
AF 1KG: alternative allele frequency in the 1000 Genomes project           
beta: regression coefficient          
LD: linkage disequilibrium (r2) between the SNP and the top SNP (3:55959628:G:A)           
Distance: the distance (bps) between the SNP and the top SNP (3:55959628:G:A)             
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