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ABSTRACT 

Background: Patients with peripheral arterial disease (PAD) are at increased risk for 

major adverse cardiac (MACE), limb (MALE) events and all-cause mortality.  

Developing tools capable of identifying those patients with PAD at greatest risk for 

major adverse events is the first step for outcome prevention.  This study aimed to 

determine whether computer assisted analysis of a resting Doppler waveform using 

deep neural networks can accurately identify PAD patients at greatest risk for adverse 

outcome events.   

Methods: Consecutive patients (4/1/2015-12/31/2020) undergoing ankle brachial index 

(ABI) testing were included.  Patients were randomly allocated to training, validation and 

testing subsets (60%/20%/20%).  Deep neural networks were trained on resting 

posterior tibial arterial Doppler waveforms to predict MACE, MALE and all-cause 

mortality at 5 years.  Patients were then analyzed in quartiles based on the distribution 

of each prediction score. 

Results: Among 11,384 total patients, 10,437 patients met study inclusion criteria 

(mean age 65.8±14.8 years; 40.6% female).  The test subset included 2,084 patients.  

During 5 years of follow up, there were 447 deaths, 585 MACE and 161 MALE events.  

After adjusting for age, sex, and Charlson index, deep neural network analysis of the 

posterior tibial artery waveform provided independent prediction of death (Hazard ratio 

2.45 95% confidence interval 1.79-3.36), MACE (HR 1.98, 95%CI 1.50-2.62) and MALE 

(HR 11.65 95%CI 5.65-24.04) at 5 years with similar results at 1 year.   

Conclusion: An artificial intelligence enabled analysis of a resting Doppler arterial 

waveform enables identification of major adverse outcomes including all-cause 

mortality, MACE and MALE among PAD patients. 
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INTRODUCTION 

Atherosclerotic peripheral arterial occlusive disease (PAD) affects more than 8 

million Americans (1).  The clinical presentation of PAD ranges from asymptomatic 

disease to limb threatened ischemia (2).  Patients with PAD are at increased risk for 

both major adverse cardiac events (MACE) including mortality and major adverse limb 

events (MALE) including limb amputation.  Indeed, PAD is a well-recognized 

independent predictor for adverse outcomes beyond traditional atherosclerotic risk 

factors.  Despite this, PAD patients are infrequently provided guidelines endorsed risk 

factor modification (3-9).  Less than 20% of patients with PAD have all for major 

atherosclerotic risk factors addressed (3,4). Compared to coronary artery disease 

patients, PAD patients are often half as likely to receive statin therapy, antiplatelet 

agents, tobacco cessation management, or hypertension control to goal (3-6).  And yet, 

high-intensity statin and antiplatelet therapy are known to improve both amputation and 

5-year survival rates among patients with limb ischemia (10-12). 

Early disease identification with prompt initiation of guideline directed risk 

management is central to improving outcomes among patients with PAD (8).  PAD is 

often poorly recognized despite patient complaints of exertional leg discomfort and 

patients with asymptomatic disease are only rarely identified (9,15-17).   Delayed 

diagnosis results in missed opportunities to impact the natural history of disease.  In 

recent years, there has been a near doubling of young patients with PAD, age 18-64, 

where their first interaction with health care includes hospital admission with chronic 

limb threatening ischemia (14).  These patients had unattended modifiable risk factors 

including diabetes, nicotine addiction, dyslipidemia and hypertension.  By the time 

patients have presented with chronic limb threatening ischemia, the risk of limb loss, 

adverse cardiac events and death is substantial (18).  

 Public health strategies for improving outcomes among patients with PAD must 

include a system of early disease detection which is affordable, accurate, reproducible, 

noninvasive, and technically easy to perform.  Ideally, data from these testing platforms 

would go beyond disease detection and provide an assessment of risk for hard 

outcomes.  Noninvasive screening tests for peripheral arterial occlusive disease include 
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the ankle-brachial index (ABI) and Doppler arterial waveform assessment.  We have 

recently shown that artificial intelligence (AI) using deep neural networks can accurately 

identify patients with PAD based solely on Doppler waveform analysis of the posterior 

tibial artery (19).  Using the same approach, we sought to determine whether an AI 

algorithm assessment of posterior tibial arterial Doppler signal can accurately identify 

PAD patients at greatest risk for major adverse cardiac and limb events and all-cause 

mortality.  
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METHODS 

Study Design and patients.  Consecutive patients over 18 years of age 

undergoing clinically indicated lower extremity arterial testing at the Mayo Clinic Gonda 

Vascular Laboratory between April 8, 2015 – December 31, 2020 were analyzed.  

Subjects were excluded who lacked MN research authorization (Figure 1).  The study 

was approved by the Mayo Clinic Institutional Review Board.  

Lower extremity arterial test protocol.  Arterial disease severity was assessed 

as previously described (19).  Trained technicians dedicated to the Gonda Mayo Clinic 

Noninvasive Vascular Laboratory performed each evaluation.  

With the patient lying supine, continuous wave (CW) Doppler waveforms were 

recorded at the common femoral, superficial femoral, popliteal, posterior tibial, and 

dorsalis pedis arterial segments for both legs (Parks Vascular Flo-lab System, Sonova 

E 2100 SX).  Once the CW Doppler signal was identified, waveform sizes were adjusted 

starting at a gain of 20% until the waveform fit within the monitor display and then 

archived electronically.  Ankle brachial index measurement was performed as 

previously described (19). 

Outcome Measure.  The primary study outcome was the ability of the artificial 

intelligence (AI) enhanced analysis of resting posterior tibial arterial Doppler waveform 

to identify all-cause mortality.  Secondary outcomes included major adverse cardiac and 

limb events.  Clinical data were collected from a centralized digital data warehouse that 

contains complete records of all patients evaluated in all sites of the Mayo Clinic 

enterprise. The Mayo Clinic electronic medical record (EMR) contains details for every 

inpatient hospitalization, outpatient visit, radiology examination, laboratory and 

pathology result (including autopsy reports).   

A validated algorithmic medical record analysis for identifying patient 

comorbidities and adverse outcomes was employed using computational phenotyping 

algorithms which included procedural codes and ICD-9 and ICD-10 diagnosis codes 

found in the EMR prior to their index date (20-24).  Adverse outcomes occurred after the 

index date.  Major adverse cardiac events composite (MACE) included acute 

myocardial infarction, stroke, coronary revascularization, and all-cause mortality (25).  
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Major adverse limb event composite (MALE) included acute or chronic limb ischemia, 

limb revascularization, and major amputations.   

Artificial Intelligence Analysis.  The primary dataset consisted of consecutive 

patients undergoing vascular laboratory testing. For patients with repeat vascular 

testing, the first study was used.  The primary dataset was divided into three subsets, 

train (n=6266; 60%), validation (n=2087; 20%), and test (n=2084; 20%) via outcome 

stratified random sampling. Each patient was uniquely assigned to a single group. The 

validation set was used to monitor performance during training and for alternative 

classification threshold determination, while the test set was used for independent 

evaluation.   

Separate models were trained for each of the hard outcomes including all-cause 

mortality, MACE, MALE, and combined MACE plus MALE. These outcomes were 

assessed separately using events that occurred within one and five years of the index 

study date. For patients with multiple events, only the first event was considered.  For 

analyses of MALE and combined MACE and MALE, patients with prior limb events were 

excluded.  In order to take time into account, these analyses used weights based on the 

redistribute to the right algorithm (RTTR)(26).  Specifically, each subject was given a 

weight for each outcome and the model development dataset replicated patients 

proportionate to the RTTR weight for that particular analysis. 

A variety of deep neural network (DNN) architectures were explored; all trained 

as binary classifiers on the resting Doppler waveforms to predict hard outcomes. 

Feature scaling of the input Doppler data was accomplished by dividing by 128. All 

models used were 1-dimensional convoluted neural networks (CNNs) with an 

InceptionTime architecture (19). Doppler data from left and right posterior tibial (PT) 

arteries were fed into the InceptionTime network, and outputs prior to the final flobal 

average pooling layer were merged via simple addition then passed to a fully connected 

output layer.  The activation function of all neurons was the rectified linear unit (ReLU). 

The softmax function was used as the activation function of the output layer. Training 

was performed by minimizing the binary cross-entropy loss, with weights from both the 

InceptionTime and final output layers updated during each pass.  A batch size of 64 

samples was used and models were trained for 100 epochs. Best model weights from 
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checkpoints were chosen based on validation loss. Class weights were introduced to 

address the imbalance between classes (weights inversely proportional to class 

frequency). Additional hyperparameters such as dropout, and learning rate were also 

optimized using a grid search.   

Statistical Analysis.  Clinical measurements and descriptive characteristics 

were summarized using frequencies for categorical variables and mean and standard 

deviation, median and quartiles for continuous variables.   

After development of predictions for each outcome, patients were grouped into 

quartiles based on the distribution of the prediction score in the training dataset.  Thus, 

patient group assignment could vary by outcome of interest.  Kaplan-Meier analysis was 

used to plot survival free of each outcome by corresponding prediction quartile.  Cox 

proportional hazards regression was used to estimate the hazard ratios (HR) and 

associated 95% confidence intervals (CI) with and without adjustment for age, sex, and 

Charlson comorbidity index.  A measure of discrimination ability of each model, the 

survival concordance index (C-index) and 95% CI, was also estimated with and without 

adjustments.  These analyses were done separately for each dataset and each event 

type at 1 and 5 year time intervals. 

In all cases, a two-tailed p-value of less than 0.05 was considered statistically 

significant.  Statistical analysis was done using SAS statistical software (SAS version 

9.4; SAS Institute Inc.) and the R software package v3.6.2 (Team R. Core R: A 

Language and Environment for Statistical Computing, Version 3.5. 3. Vienna: R 

Foundation for Statistical Computing 2019).  Neural network development was 

performed using Tensorflow 2.2.0 and Python 3.6.12.  
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RESULTS 

Demographic Characteristics.  Of the original cohort of 11,384 patients being 

evaluated in this laboratory over the study dates, 110 were excluded due to age < 18 

years  (Figure 1).  An additional 837 subjects were excluded due to lack of research 

authorization.   

The final cohort included 10,437 patients with a mean age of 65.8 years (SD 14.8 

years); 40.6% were female (Table 1).  Cardiovascular risk factors were prevalent 

amongst this cohort including hypertension (49.5%), dyslipidemia (56.4%), diabetes 

mellitus (40.0%), and any history of tabacco use(63.2%).  Coronary artery disease, prior 

myocardial infarction, prior coronary artery bypass grafting, and heart failure were less 

frequent involving 20% or fewer patients.  Atrial fibrillation, prior stroke, emphysema, 

and chronic kidney disease were additional though less frequent clinical variables of 

interest. 

Model Development.  Model development was performed on the training set 

(N=6266) and the validation set (N=2087) was used for model tuning. For each 

outcome, the quartiles of the distribution of prediction scoes were extracted from the 

training set.  These quartile cutpoints were used to divide patients into groups in the 

training set as well as the validation and test sets (N=2084).  Each of the outcomes 

were plotted by quartile using the Kaplan-Meier method. Within the Train and Validation 

datasets, event rates varied based on prediction quartile.  When outcomes were 

evaluated in the Train dataset of 6,266 patients, the 5 year death rate in the first quartile 

was 14% (11-16) compared to 60% (56-64) in the fourth quartile (Figure 2A). The 1 and 

5 year rates (95% Confidence Intervals) of MACE, MALE, and MACE+MALE were 28% 

(24-32), 0% (0-0), and 35% (30-40) in the first quartile compared to 77% (73-81), 58% 

(48-66), and 82% (77-85) in the fourth quartile, respectively (Table 2). When evaluated 

in the validation set, similar differences in rates, HR, and C-Indices across quartiles 

were noted. 

All-Cause Mortality.  For the primary outcome, 5 year all-cause mortality was 

evaluated in the test dataset comprised of 2,084 patients.  When patients were divided 

into quartiles determined from the distribution of the prediction score taken from the 

training set, results were similar to the train and validation sets (Table 3).  Within the 
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test dataset 447 patients died within 5 years and the 5 year mortality rates varied from 

22% (16-27) in the first quartile to 56% (49-61) in the fourth quartile (Table 3, Figure 
2C).  Similar to the training and validation datasets, cardiovascular risk factor 

prevalence and co-morbidities were noted and differed by patient quartile (Table 2S).  

After adjusting for age, sex, and Charlson Comorbidity Index, having an AI Doppler 

signal prediction in the fourth quartile remained a significant predictor of mortality (HR 

2.45, 95%CI 1.79 – 3.36) compared to patients in quartile 1.  The combined model C-

index improved from 0.64 (0.61-0.67) to 0.72 (0.70-0.75) with the inclusion of age, sex, 

and Charlson Comorbidity Index.    

Major Adverse Cardiac Events.  During 5 years of follow up, 585 patients  

experienced a major adverse cardiac event (MACE).  Events included 114 myocardial 

infarctions, 349 strokes, and 122 cardiac bypass graft procedures.  Five year event 

rates differed by patient quartile ranging from 36% (27-45) in the first quartile to 70% 

(62-75) in the fourth quartile (Figure 3A, Table 3).  After adjusting for age, sex, and 

Charlson Index, AI Doppler signal analysis remained a significant predictor of MACE 

(HR 1.98, 95%CI 1. 50 – 2.62; C-Index 0.67, 95% CI 0.65 – 0.70). 

   Major Adverse Limb Events.  During 5 years of follow up, 161 patients  had a 

major adverse limb event (MALE) in the subset of 1727 patients without prior major 

adverse limb events.   This included 1 major limb amputation, 158 acute limb ischemic 

events, and 2 limb revascularization procedures.  Five year event rates differed by 

patient quartile ranging from 6% (2-10) in the first quartile to 38% (29-45) in the fourth 

quartile (Figure 3B, Table 3).  After adjusting for age, sex, and Charlson Index, AI 

Doppler signal analysis remained a significant predictor of MALE (HR 11.65, 95%CI 

5.65 – 24.04; C-Index 0.78, 95% CI 0.73 – 0.83). 

Combined Major Adverse Cardiac plus Limb Events.  These combined 

events were assessed over 5 years (Figure 3C, Table 3).  After adjusting for age, sex, 

and Charlson Index, AI Doppler signal analysis remained a significant predictor of 

combined events (HR 2.64, 95%CI 1.97 – 3.54; C-Index 0.69, 95% CI 0.67 – 0.72).   

Outcomes at 1 year.  The hard outcomes including all cause mortality, major 

adverse cardiac and limb events were analyzed at one year from the index vascular 

laboratory test date.  These data are found in the Supplementary files (Figure 1S, 
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Table 1S).  After adjusting for age, sex, and Charlson index, the AI analysis remained 

significant for all-cause mortality (HR 1.68  [1.05 – 2.71]; C-index 0.73 [0.69-0.77]), 

MACE (HR 2.13 [1.50 – 3.03]; C-index 0.68 [0.65-0.71]),  MALE (HR  10.09 [4.06 – 

25.10]; C-index 0.79 [0.73-0.85]), and combined MACE+MALE (HR 3.41 [2.35-4.93]; C-

index 0.72 [0.69-0.75]).    
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DISCUSSION 
The main findings of the current study include the finding that a deep neural 

network can help predict hard outcomes including all-cause mortality, major adverse 

cardiac and limb events based solely on the resting arterial Doppler waveform analysis 

of the posterior tibial artery.   After adjusting for age, sex, and major co-morbidities 

encompassed in the Charlson index, the machine learning analysis of the Doppler 

waveform identified patients at risk for all-cause mortality at 5 years with a HR of 2.45.  

Similarly, the model retrained for other hard outcomes identified those at risk for major 

adverse cardiac events (HR 1.98) and major adverse limb events (HR 11.65).  The 

adjusted AI analyses were similarly strong for all-cause mortality at one year (HR 1.68), 

MACE (HR 2.13), and MALE (HR 10.09).   

These findings may have relevant patient management implications.  First, such 

findings may incentivize cardiovascular risk factor treatment implementation.  Alerting 

the patient, family members and health care provider regarding hard outcome risk may 

prompt early implementation and adherence to aggressive risk factor modification.  

Arguably, one of the biggest hurdles is compliance with smoking cessation programs.  

Knowledge of third or fourth quartile risk positioning may promote patient buy-in to 

participation.  Dietary and lipid management, hypertension control and improved 

diabetes management may all be facilitated with this knowledge.  Second, both the 

implementation and third party payment of aggressive lipid modification with drugs such 

as PCSK9 inhibitors, bempedoic acid, ezetimibe, or inclisiran added to maximally 

tolerated statins might be facilitated for those at highest risk (27).  Third, knowledge of 

patient risk for these outcomes may prompt a strategy of more aggressive clinical follow 

up and coaching in an effort to improve outcomes.  For these combined reasons, 

machine learning analysis of Doppler waveforms may offer a new tool for widespread 

evaluation and management of patients with PAD.         

These findings build on previous work using machine learning to identify patients 

with PAD and assess outcomes (28).  A deep neural network analysis of posterior tibial 

artery Doppler waveforms was used to identify PAD among a cohort of 3,432 patients 

undergoing rest and post-exercise ankle brachial index testing at Mayo Clinic Gonda 

Vascular Laboratory (19).  Artificial intelligence enabled analysis of resting Doppler 
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arterial waveforms identified patients with peripheral artery disease with an area under 

the receiver operating characteristic curve (AUC) of 0.94, sensitivity 0.83, specificity 

0.88, accuracy 0.85, positive predictive value (PPV) 0.90 and negative predictive value 

(NPV) 0.80.  In a second study using a validated electronic algorithm for PAD detection, 

a community-based inception cohort of 1676 Olmsted County residents with PAD was 

identified (23).  A prognostic model of clinical variables was used to stratify patients into 

risk categories for 5-year mortality outcomes. For the highest risk quartile, the hazard 

ratio was 8.44 (95%CI 6.66-10.70) compared to the lowest risk quartile with a hazard 

ratio of 0.35 (95%CI 0.21-0.58).  In a third study, demographic, clinical and genomic 

factors were used to construct a machine learning algorithm to identify PAD and predict 

risk of mortality (29).   

Among a cohort of 1047 participants of the Gene PAD study, a random forest 

model predicted mortality with an area under the curve of 0.76 (95% CI 0.68 – 0.84).  

Others have used machine learning to predict outcomes among patients with other 

cardiovascular phenotypes.  Weichwald et al. developed a novel scoring system for 

assessing one year outcomes following acute coronary syndromes among a cohort of 

2,168 patients (30).  This tool, coined the SPUM-ACS score, compiled 8 clinical and 

laboratory variables including a history of peripheral artery disease, predicted 1 year all-

cause mortality with area under the curve of 0.86 (95%CI 0.83-0.89) which 

outperformed the GRACE 2.0 score.   Similar tools have been developed for carotid 

disease and ischemic stroke (31,32).   

Beyond mortality and major adverse cardiac events, machine learning has been 

used to determine major adverse limb events following revascularization procedures.  

Among 327 patients with PAD undergoing endovascular therapy, a deep neural network 

algorithm including clinical, demographic, and imaging variables predicted major 

adverse limb events with an area under the receiver operator curve of 0.80 (95%CI 0.68 

– 0.89) which significantly outperformed logistic regression analysis models (33).  These 

findings add to other risk assessment tools for early and 1-year outcomes following 

revascularization procedures (34-37).   
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The artificial intelligence tool described in this manuscript has several unique 

advantages whereby both the 1 and 5 year risk for major adverse limb events can be 

estimated well before chronic limb threatening ischemia occurs based solely on deep 

neural assessment of a posterior tibial arterial waveform Doppler signal.  The 1-year 

time projection provides an opportunity for timely vascular subspecialty interactions, 

while ideally preventing major limb loss.  The 5-year horizon provides sufficient time for 

risk modification to potentially alter disease trajectory.  With automated harvesting of 

clinical variables from the electronic health record, a future state might be envisioned 

where best practice clinical decision support systems can be triggered real-time upon 

Doppler waveform acquisition to a prediction model.  Combined with guideline risk 

modification recommendations to inform clinical decision making, prescribing patterns 

might be facilitated to improve outcomes for these patients. 

This study is best understood in the context of its limitations.  First, the analysis 

requires a careful recording of the posterior tibial artery Doppler signal.  Improper 

collection of this tracing by untrained personnel may limit the utility of this methodology.  

Future studies to assess the tolerance of such signal acquisition would be important.  

Second, limited racial diversity of our patient population may limit generalizability. Third, 

the retrospective nature of the study may also limit generalizability.  Fourth, referral bias 

likely influenced subject inclusion.  Only patients referred to the Gonda Vascular Center 

for ankle brachial index assessment were enrolled.  This restricts generalizability to the 

general population.   

In conclusion, applying artificial intelligence via deep neural networks to an easy 

to perform, non-invasive ultrasound measure, may enable the Doppler signal to serve 

as a potential risk assessment tool for future adverse outcomes including all-cause 

mortality, major adverse cardiac and limb events.  Further validation studies are 

required to assess test accuracy and reproducibility in community settings outside of a 

large volume academic vascular laboratory.   
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FIGURE LEGENDS 

Figure 1. Patient selection and exclusion flow diagram.   

In the primary study group (2015 – 2020), 11,384 patients had lower extremity arterial 

study performed.  Of these, 110 were excluded due to age cutoff, 837 lacked MN 

research authorization. The final study group consisted of 10,437 patients which were 

then divided into train (n=6,266), validation (n=2,087) and test (n=2,084) subgroups. 

Figure 2. Model train, validation, and test performance for all-cause mortality at 5 
years.  Patients were divided into quartiles based on the distribution of the prediction 

score taken from the training set. Over the 5-year follow up, there were 2,033 deaths.  

Survival plots are provided for each quartile for the train (panel A), validation (panel B), 

and test subsets (panel C).  

Figure 3. Model performance for major adverse cardiac and limb events at 5 
years.  The 5 year outcomes are provided for major adverse cardiac events (MACE, 
panel A), major adverse limb events (MALE, panel B), and combined major adverse 

events (MACE plus MALE, panel C).  
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Table 1. Patient Demographics 

Variable  Train 

(n=6,266) 

Validation 

(n=2,087) 

Test 

(n=2,084) 

Total 

(n=10,437) 

Age years, Mn (SD)  65.9 (14.7)  65.2 (15.2)  66.1 (15.0)  65.8 (14.8) 

Female Gender, n (%)  2515 (40.1%)  877 (42.0%)  836 (40.1%)  4228 (40.5%) 

Hypertension, n (%)  3157 (50.4%)  1028 (49.3%)  1032 (49.5%)  5217 (50.0%) 

Dyslipidemia, n (%)  3557 (56.8%)  1174 (56.3%)  1170 (56.1%)  5901 (56.5%) 

Diabetes Mellitus, n (%)  2524 (40.3%)  831 (39.8%)  856 (41.1%)  4211 (40.3%) 

Tobacco History, n (%) 

(n=10,086) 

3847 (63.7%)  1277 (63.2%)  1280 (63.2%)  6404 (63.5%) 

Coronary Artery 
Disease, n (%) 

1295 (20.7%) 440 (21.1%) 442 (21.2%) 2117 (20.9%) 

Prior Myocardial 
Infarction, n (%) 

877 (14.0%)  301 (14.4%)  288 (13.8%)  1466 (14.0%) 

Prior Coronary Bypass 
Surgery, n (%) 

1058 (16.9%)  355 (17.0%)  340 (16.3%)  1753 (16.8%) 

Heart Failure, n (%)  1237 (19.7%)  427 (20.5%)  387 (18.6%)  2051 (19.7%) 

Atrial Fibrillation, n (%)  1193 (19.0%)  400 (19.2%)  397 (19.0%)  1990 (19.1%) 

Prior Stroke, n (%)  801 (12.8%)  262 (12.6%)  285 (13.7%)  1348 (12.9%) 

Emphysema, n (%)  1065 (17.0%)  365 (17.5%)  356 (17.1%)  1786 (17.1%) 

Chronic Kidney 
Disease, n (%) 

1238 (19.8%) 389 (18.6%) 383 (18.4%) 2010 (19.3%) 

Charlson Index, median 
(IQR) 

3.0 (1.0, 6.0)  3.0(1.0, 6.0)  3.0 (1.0, 6.0)  3.0 (1.0, 6.0) 
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Table 2. Tain and Validation Dataset 5 year Outcomes 

Dataset,  

1/5 year KM 
event rate (%) 

Quartile based on 5 year prediction Hazard Ratio 

(95% CI) 

Q4 vs. Q1 

C-Index 

(95% CI) 1 2 

 

3 4 

Train 

Overall 
Mortality 

2 

14 

5 

30 

9 

42 

17 

60 

5.88  

(4.84-7.14) 

0.67 

(0.65-0.69) 

Major Adverse 
Cardiac Events 
(MACE) 

10 

28 

13 

46 

21 

63 

31 

77 

3.90 

(3.33-4.55) 

0.63 

(0.62-0.65) 

Major Adverse 
Limb Events 
(MALE) 

0 

0 

0 

0 

5 

11 

21 

58 

226 

(56-909) 

0.83 

(0.80-0.86) 

MACE plus 
MALE 

11 

35 

13 

47 

22 

60 

37 

82 

3.72 

(3.19-4.35) 

0.65 

(0.63-0.66) 

Validation 

Overall 
Mortality 

3 

25 

6 

32 

10 

40 

18 

57 

3.19 

(2.40-4.23) 

0.63 

(0.60-0.66) 

Major Adverse 
Cardiac Events 
(MACE) 

10 

32 

15 

54 

21 

55 

27 

71 

2.82 

(2.17-3.66) 

0.60 

(0.57-0.62) 

Major Adverse 
Limb Events 
(MALE) 

1 

4 

2 

9 

7 

21 

21 

42 

15.9 

(7.4-34.3) 

0.76 

(0.71-0.81) 

MACE plus 
MALE 

11 

39 

15 

45 

24 

59 

37 

79 

3.22 

(2.47-4.19) 

0.64 

(0.61-0.66) 
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Table 3. Test Dataset 5 year Outcomes 

Test Dataset,  

1/5 year KM 
event rate (%) 

Quartiles Hazard Ratio 

(95% CI) 

Q4 vs. Q1 

C-Index 

(95% CI) 1 2 

 

3 4 

Overall 
Mortality 

5 

22 

6 

31 

11 

43 

19 

56 

3.56 

(2.64-4.81) 

0.64 

(0.61-0.67) 

Major Adverse 
Cardiac Events 
(MACE) 

10 

36 

13 

48 

23 

58 

31 

70 

2.81  

(2.15-3.68) 

0.62 

(0.59-0.64) 

Major Adverse 
Limb Events 
(MALE) 

1 

6 

3 

10 

6 

18 

21 

38 

11.71 

(5.91-23.21) 

0.75 

(0.71-0.80) 

MACE plus 
MALE 

10 

35 

13 

48 

26 

65 

39 

65 

3.27 

(2.46-4.35) 

0.65 

(0.62-0.68) 
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Figure 1. Patient Flow Diagram 
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