medRxiv preprint doi: https://doi.org/10.1101/2023.07.21.23293009; this version posted July 24, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. 1 1 INFLAMMATORY MARKERS AND BODY MASS INDEX AMOUNG HISPANIC 2 **CHILDREN** 3 4 Henry Lang,¹ Elaine N. Loudermilk,² W. Andrew Clark,³ Jo-Ann Marrs,⁴ T. Andrew Joyner,⁵ 5 Liang Wang,⁶ Kathryn S. Gerber,⁷ Arsham Alamian⁷ 6 7 ¹Department of Exercise Physiology, University of Mary, Bismarck, ND, United States of 8 America 9 ²Public Health, 4th Medical Group, Seymour Johnson Air Force Base, NC, United States of 10 America. 11 ³College of Clinical and Rehabilitative Health Sciences, East Tennessee State University, 12 Johnson City, TN, United States of America 13 ⁴College of Nursing, East Tennessee State University, Johnson City, TN, United States of 14 America ⁵Department of Geosciences, College of Arts & Sciences, East Tennessee State University, 15 16 Johnson City, TN, United States of America 17 ⁶Robbins College of Health and Human Sciences, Baylor University, Waco, TX, United States of 18 America 19 ⁷School of Nursing and Health Studies, University of Miami, Coral Gables, FL, United States of 20 America 21 22 23 Corresponding Author: Arsham Alamian, PhD, MSc, FACE, FRSPH 24 Email: arsham.alamian@miami.edu 25 Table number: 3 26 Word Count: 2,343 27 Conflict of Interest: None declared

2

29 Abstract

30 Background and Objectives

Body mass index (BMI) is inversely proportional with adiponectin levels among adults, while insulin, C-reactive protein (CRP), interleukin 6 (IL-6), resistin, and tumor necrosis factor-alpha (TNF- α) have been linked with elevated BMI. The role and relation of these biomarkers with BMI among Hispanic pediatric populations are less known. Thus, the objective of this crosssectional study was to examine the association of inflammatory markers with the odds of overweight/obesity while controlling for several sociodemographic factors among a Hispanic youth population of Northeast Tennessee.

38 Methods

39 Height, weight, demographic information, and blood samples were collected from 107 Hispanic

40 children aged 2 to 10 years recruited at a large community health center in 2015-2016 in

41 Northeast Tennessee. Data for this research were accessed and analyzed in 2022. Multivariable

42 logistic regression was conducted to assess the relations between adiponectin, insulin, resistin,

43 CRP, TNF- α , and IL-6, and overweight/obesity vs. having a healthy (normal) weight.

44 **Results**

Adiponectin levels were significantly lower among overweight/obese Hispanic children (p = 0.0048) compared to healthy weight children. The odds of overweight/obesity decreased by 4% for every one-unit increase in serum adiponectin. Insulin levels were significantly higher among overweight/obese Hispanic children (p = 0.0048) compared to healthy weight children (p=0.0008). The odds of overweight/obesity increased by 7% for every one-unit increase in

3

- 50 serum insulin. Resistin, IL-6, TNF-α, and CRP were not significantly associated with
- 51 overweight/obesity in this population.

52 Conclusion

- 53 Adiponectin behaves similarly in Hispanic youth as it does in other pediatric populations,
- 54 possibly making it a valuable marker when examining metabolic health status in this population.

55

4

57 Introduction

58 The prevalence of obesity among youth ages 2 to 19 years old in the United States (U.S.) 59 increased from 17.7% in 2011-2012 to 21.5% in 2017-2020. [1] Hispanic populations and groups 60 identified as having a low socioeconomic status (SES) are at higher risk for obesity.[2-4] 61 Increasing prevalence of obesity in the children is concerning due to the shared relationship of 62 childhood and adult obesity; children with obesity are at a greater risk to have obesity during 63 adulthood than children with normal weight. [5,6] Obesity in turn increases risk for metabolic 64 conditions, atherosclerosis, stroke, sleep apnea, respiratory disorders, and certain cancers as an 65 individual ages.[5,6] The development of atherosclerotic lesions on vascular walls also leads to 66 atherosclerosis which is a major contributor to cardiovascular disease.[7] The atherogenic 67 process can begin in early childhood and remain throughout life.[7] Risk for developing 68 atherosclerosis and additional complications due to obesity can be monitored by tracking specific 69 physiological biomarkers.

70 Previous studies have shown body mass index (BMI) to be inversely proportional with 71 adiponectin levels among adults and children.[8,9] Increased levels of adiponectin have been 72 associated with a reduction in glycogenolysis, due to increased uptake of glucose by adipose 73 tissue,[10] and hepatic gluconeogenesis. The downregulation of hepatic gluconeogenesis is 74 coupled with an increase in fatty acid β -oxidation, suggesting an increase in energy 75 expenditure.[11] Insulin is a negative regulator of gluconeogenesis and chronically elevated 76 levels are associated with a reduction in adiponectin.[12] Treatment with adiponectin in rats 77 demonstrated an increase in insulin-stimulated glucose uptake in adipose tissue through the 78 upregulation of adenosine monophosphate protein kinase (AMPK), reducing the phosphorylation 79 of p70 S6 kinase, which acts as an inhibitor.[13] Conversely, C-reactive protein (CRP),

5

80	interleukin 6 (IL-6), resistin, and tumor necrosis factor-alpha (TNF- α) are associated with
81	elevated BMI and inflammation. These markers have also been linked to increased risk for
82	developing atherosclerotic lesions and have been found to be inversely proportional to
83	adiponectin.[14–16] The relationship between adiponectin and BMI among children has been
84	explored, highlighting a negative correlation between adiposity and adiponectin.[17,18]
85	However, there remains a gap in the literature regarding the relationship of adiponectin, CRP,
86	IL-6, resistin, and TNF- α with BMI among Hispanic children. Thus, the objective of this study
87	was to examine the association between inflammatory markers and the likelihood of being
88	overweight/obese while controlling for sociodemographic factors within Hispanic youth in
89	Northeast Tennessee.

90 Methods

91 **Participants**

92 Secondary analysis of height, weight, demographic information, and blood samples from 93 114 Hispanic children aged two to ten years recruited in 2015-2016 at a large community health 94 center in Northeast Tennessee, as part of a larger study on metabolic syndrome, [19] were 95 completed. Data for this article were accessed for research purposes and analyzed from 96 September to December 2022. Of the 114 children considered, 1 was excluded due to having a 97 BMI below the 5th percentile (i.e., underweight), 2 had missing data on maternal education, and 4 98 had missing information on TNF- α , resistin and adiponectin. The final analytic sample size 99 comprised of 107 children. Methods for the collection of data used are mentioned elsewhere in a 100 study conducted by Alamian et al.[19] The authors did not have access to information that could 101 identify individual participants during or after data collection.

6

	0
102	This study received approval from the East Tennessee State University Human Subject
103	Research Ethics Committee (IRB#: 0414.16s). Written consent was obtained from all study
104	participants.
105	Dependent variable
106	The outcome of interest, BMI status (obese defined as overweight/obese vs. healthy
107	weight, according to 2000 CDC growth charts),[20] was treated as a categorical variable.
108	Independent variables
109	The variables of interest included adiponectin (μ g/mL), insulin (uIU.L), resistin (pg/mL),
110	TNF- α (pg/mL), CRP (mg/dL), and IL-6 (pg/mL). Analysis for adiponectin (171A7002M),
111	insulin and resistin (171A7001M), and TNF- α and IL-6 (171A7002M) were performed using
112	Bio-Rad Bio-Plex Mag-Pix according to provider procedures. East Tennessee State University
113	Clinical Laboratory: an accredited reference lab (Center for Medicare & Medicaid Services
114	Clinical Laboratory, certification number 44D0659180) was utilized for analysis of serum CRP.
115	Covariates
116	Covariates included child age, child sex (male or female), maternal education level (high
117	school graduation or more vs. less than high school education), maternal marital status (married
118	versus other). Child age was reported as a continuous variable in years.
119	Statistical analysis
120	Descriptive statistics (frequencies and percentages for categorical variables, and means
121	and standard deviations for continuous variables) were performed to describe the data as
122	appropriate. Pearson chi-squared test and independent <i>t</i> -tests were conducted to examine

123 differences in percentages (for categorical variables) and means (for continuous variables) by

7

weight status (overweight/obese versus healthy weight status). Simple and multiple logistic
regression analyses were then performed to assess the strength of association between variables
of interest and being overweight/obese versus healthy weight among participants in this
population. Multiple logistic regression models controlled for the potential effects of covariates
(age, sex, maternal education, maternal marital status). Statistical analysis was completed via
statistical analyst system (SAS, version 9.4; SAS Institute, Cary, NC).

130 **Results**

131 The majority of the study sample were female (54.21%) with an average age of 6.62

132 years (SD: 2.74 years) as seen in Tables 1 and 2. Almost half of the sample were classified as

133 overweight/obese (44.86%) with the remaining sample having a healthy weight status (55.14%).

134 Slightly over half of mothers had less than a high school education (56.07%) and most were

135 married (78.50%). A greater percentage of males (48.98%) were overweight/obese compared to

136 females (41.38%), although this difference was not statistically significant. There were no

137 statistically significant differences in weight status by maternal education or marital status (P >

138 0.05). Average levels of biomarkers were as follows: Adiponectin, 24.27 μ g/mL (SD=13.85);

139 insulin, 16.03 uIU.L (SD=17.46); resistin, 5510.23 pg/mL (SD=3817.13); TNF-α, 8.40 pg/mL

140 (SD=17.00); CRP, 2.35 mg/dL (SD: 4.86); and IL-6, 3.23 pg/mL (SD=8.68).

141 Table 1. Sociodemographic characteristics of the Hispanic pediatric sample by healthy and

142 overweight/obese weight status (n = 107).^a

	N (%)	Healthy	Overweight/Obese	P-
	Total	Weight		value ^b
n, %, Total	107	59 (55.14)	48 (44.86)	
	(100.00)			
Sex, n (%)				0.4310
Male	49 (45.79)	25 (51.02)	24 (48.98)	
Female	58 (54.21)	34 (58.62)	24 (41.38)	

8

Maternal education, n (%)				0.6711
Less than high school education	60 (56.07)	32 (53.33)	28 (46.67)	
High school graduate or	47 (43.93)	27 (57.45)	20 (42.55)	
more				
Maternal marital status, n				0.2044
(%)				
Married	84 (78.50)	49 (58.33)	35 (41.67)	
Other	23 (21.50)	10 (43.48)	13 (56.52)	

a. Data from a study of metabolic syndrome in Hispanic children in Johnson City, TN [19].

144 b. P-value from the chi-squared test.

145 Table 2. Mean (SD) for child age and selected biomarkers by healthy weight and

146 overweight/obese weight status among the Hispanic pediatric sample (N=107).^a

	Healthy W	eight (N=59)	Overweight/		
	Mean	Std. Dev.	Mean	Std. Dev.	P-value ^b
Child age (years)	6.39	2.75	6.90	2.73	0.3446
Adiponectin (ug/mL)	27.53	15.37	20.27	10.56	0.0048
Insulin (uIU.L)	10.61	9.94	22.70	22.00	0.0008
Resistin (pg/mL)	4916.50	2387.40	6240.00	4984.10	0.0961
TNF-alpha (pg/mL)	8.18	13.23	8.67	20.88	0.8877
C-reactive protein (mg/dL)	2.33	5.48	2.38	4.01	0.9626
Interleukin 6 (pg/mL)	3.73	10.47	2.62	5.84	0.4888

147 a. Data from a study of metabolic syndrome in Hispanic children in Johnson City, TN [19].

- 148 b. P-value from t-test.
- 149

150 Results from the independent *t*-tests for differences in biomarkers by weight status are 151 shown in Table 2. Adiponectin levels were significantly lower among overweight/obese children 152 compared to healthy children (p = 0.0048). Insulin levels were significantly higher among 153 overweight/obese children compared to healthy children (p=0.0008). No other significant 154 differences were observed between overweight/obese and healthy children when considering 155 other biomarkers or the child's age.

156	Simple logistic regression (SLR) and multiple logistic regression (MLR) results are
157	presented in Table 3. In SLR models, both adiponectin and insulin were significantly associated
158	with being overweight/obese. For every one-unit increase in serum adiponectin, the child's odds
159	of overweight/obesity decreased by 4% [Odds Ratio (OR): 0.96, 95% confidence interval (95%
160	CI): 0.93-0.99, P=0.0084). In contrast, every one-unit increase in insulin resulted in 7%
161	increased chance of overweight/obesity [OR: 1.07, 95% CI: 1.03-1.11, 0.0017. MLR results
162	corroborated the SLR findings: both adiponectin and insulin were found to be significantly
163	associated with overweight/obesity. For every one-unit increase in serum adiponectin, the odds
164	of overweight/obesity decreased by 4% (OR: 0.96, 95% CI: 0.93-0.99) while holding all other
165	variables constant. For every one-unit increase in insulin, the odds of overweight/obesity
166	increased by 7% (OR): 1.07, (95% CI): 1.02-1.13. Child age, child sex, maternal education and
167	marital status, and other biomarkers (resistin, IL-6, TNF- α , and CRP) were not significantly
168	associated with overweight/obesity.

Table 3. Simple and multiple logistic regression examining the relationship between biomarkers and overweight/obesity in a Hispanic pediatric sample from Northeast TN (N=107)

	SLR			MLR		
Variables	OR	95 % CI	P-value	OR	95 % CI	P-value
Adiponectin (ug/mL)	0.96	0.93-0.99	0.0084	0.96	0.93-0.99	0.0104
Insulin (uIU.L)	1.07	1.03-1.11	0.0017	1.07	1.02-1.13	0.0052
Resistin (ug/mL)	1.00	1.00-1.00	0.1000	1.00	1.00-1.00	0.0477
TNF-alpha (pg/mL)	1.00	0.98-1.02	0.8813	1.01	0.95-1.08	0.6748
C-reactive protein (mg/dL)	1.00	0.93-1.08	0.9632	0.99	0.90-1.09	0.8879
Interleukin 6 (pg/mL)	0.98	0.93-1.04	0.5235	0.91	0.75-1.09	0.2867
Child sex						
Female vs male	0.735	0.34-1.59	0.4314	0.71	0.28-1.82	0.3041
Child age (years, continuous)	1.28	0.58-2.83	0.3415	0.82	0.31-2.13	0.8268
Maternal education level						
High school education or less				Reference		

10

High school graduate or	0.85	0.39-1.83	0.6712	0.67	0.27-1.70	0.4310
more						
Maternal marital status						
Other vs married	1.82	0.72-4.62	0.2077	1.58	0.53-4.70	0.4592

169

170 **Discussion**

171 Results of this study indicate that both adiponectin and insulin levels are potentially 172 significant predictors of childhood overweight/obesity. Adiponectin is still protective against 173 increased weight even when accounting for insulin. Results from this study confirm findings 174 from similar studies that demonstrated significantly lower adiponectin levels in Italian and Pima 175 Native American children with overweight/obese classification using BMI.[17,18] The repeated 176 findings of low adiponectin in overweight/obese children may be related to the relationship 177 between adiponectin and insulin. Depressed adiponectin concentration and chronically elevated 178 insulin have been demonstrated in the pathogenesis of insulin resistance, and therefore metabolic 179 syndrome.[21.22] The depressed levels of adiponectin found in overweight/obese children. 180 coupled with participant age and the lack of significant differences between groups in the other 181 biomarkers examined, suggests adiponectin levels may be an early indicator to predict risk of 182 developing insulin resistance and metabolic syndrome in children. While BMI has also been used 183 as an early predictor of metabolic syndrome in children, [23] research output is increasing 184 regarding metabolically healthy (MHO) vs metabolically unhealthy (MUO) individuals with 185 obesity, shifting the focus of intervention trials towards improved metabolic health status as the 186 desired outcome rather than weight loss. Alterations in BMI are not required following life-style 187 intervention for metabolic health to improve.[24,25] Adiponectin may be a valuable variable to monitor when tracking the effects an individual's BMI may have on their metabolic health (i.e., 188 189 if an individual has high adiponectin and elevated BMI, there may be less of concern for weight-

11

190	loss intervention).[26] Longitudinal studies controlling for BMI while monitoring insulin
191	sensitivity and adiponectin in children are needed to confirm this hypothesis.
192	The lack of significance of resistin, CRP, IL-6, and TNF- α between the normal BMI and
193	overweight/obese groups may be due, in part, to the pathological progression of obesity. The
194	infiltration of inflammatory cells into adipocytes is thought to occur after a decrease in
195	adiponectin,[27] suggesting that duration of overweight/obesity is a key factor in the progression
196	of chronic inflammation. The participants in the current study may not have had
197	overweight/obesity for a sufficient length of time to illicit the inflammatory consequences
198	typically associated with obesity in adulthood.[28] Previous research regarding resistin levels in
199	the adult population is mixed with some researchers finding greater values in individual's with
200	obesity compared to those with healthy weight, whereas other findings demonstrated
201	significantly greater resistin levels in populations with obesity.[29,30] Other literature has
202	demonstrated the capabilities of CRP, IL-6, and TNF- α to predict overweight/obesity.[31] The
203	findings from the current study indicates adiponectin may be an earlier predictor for the risk of
204	developing insulin resistance compared to CRP, IL-6, and TNF- α in a pediatric population.
205	Further research in the Hispanic pediatric population is required to confirm the findings of the
206	current study.
207	The adjusted analysis in this study suggests a negative association between maternal

The adjusted analysis in this study suggests a negative association between maternal education and BMI, however findings were not significant. Previous research has demonstrated parental education to be a predictor of child overweight/obese status in countries with a high economic status. Lê-Scherban and colleagues (2021) revealed childhood obesity prevalence to be greater among children whose parents did not obtain a high school education compared to children with parents who had a college degree.[32] Ogden and colleagues (2018) found

12

213 childhood obesity prevalence to be significantly lower in Hispanic US households when the head 214 of the household was a college graduate compared to a high school graduate or less. [33]The 215 current study examined the effect of childhood obesity between non-high school graduates to 216 high school graduates or higher, which may elicit a smaller effect on childhood obesity when 217 compared to the effect of non-high school graduates to college graduates. 218 This study is limited by a small sample size, possibly leading to a lack of statistical 219 power. However, significance was still found despite the limited sample size indicating the 220 relationships uncovered should be studied further. Furthermore, the cross-sectional study aided 221 in determining associations to allow for future studies to expand on the present findings. The 222 current study alone, however, is not enough to determine causation, thus longitudinal research 223 are warranted. Finally, the sample population is of a specific region in Tennessee where obesity 224 is known to be prevalent,[34] thus additional studies should seek to examine similar populations 225 in urban, suburban, and rural settings to improve external validity.

226 Conclusion

227 In summary, this study revealed adiponectin behaves similarly in Hispanic children as it 228 does among adults potentially making it a valuable marker when examining health status among 229 Hispanic pediatric populations. CRP, IL-6, and TNF- α may not be relevant markers to predict 230 overweight/obese status in Hispanic youth, as these markers may not become consistently 231 elevated until an individual has maintained overweight/obese status for an extended length of 232 time. Longitudinal studies are needed to confirm the findings relating Hispanic youth BMI to 233 adiponectin, CRP, IL-6, and TNF- α . Additional research using larger sample sizes is needed to 234 confirm the relationship between biomarkers and BMI among Hispanic youth.

13

235 **References**

1. Hu K, Staiano AE. Trends in Obesity Prevalence Among Children and Adolescent	S Aged
---	--------

- 237 2 to 19 Years in the US From 2011 to 2020. JAMA Pediatr [Internet]. 2022 Oct 1 [cited
- 238 2023 Jul 3];176(10):1037–9. Available from:
- 239 https://jamanetwork.com/journals/jamapediatrics/fullarticle/2794534
- 240 2. Alexander AG, Grant WL, Pedrino KJ, Lyons PE. A prospective multifactorial
- intervention on subpopulations of predominately hispanic children at high risk for obesity.
- 242 Obesity [Internet]. 2014 Jan 1 [cited 2021 Jul 1];22(1):249–53. Available from:
- 243 www.obesityjournal.org
- 244 3. Hales CM, Carroll MD, Fryar CD, Ogden CL. Prevalence of Obesity Among Adults and
- 245 Youth: United States, 2015-2016 Key findings Data from the National Health and
- 246 Nutrition Examination Survey [Internet]. 2015 [cited 2021 Jan 5]. Available from:

247 https://www.cdc.gov/nchs/data/databriefs/db288_table.pdf#1.

- 248 4. Rogers R, Eagle TF, Sheetz A, Woodward A, Leibowitz R, Song M, et al. The
- 249 Relationship between Childhood Obesity, Low Socioeconomic Status, and Race/Ethnicity:
- 250 Lessons from Massachusetts. Child Obes [Internet]. 2015 Dec 1 [cited 2021 Jan
- 251 5];11(6):691–5. Available from: /pmc/articles/PMC4939441/?report=abstract
- 252 5. Bhadoria A, Sahoo K, Sahoo B, Choudhury A, Sufi N, Kumar R. Childhood obesity:
- 253 Causes and consequences. J Fam Med Prim Care [Internet]. 2015 [cited 2021 Jan
- 5];4(2):187. Available from: /pmc/articles/PMC4408699/?report=abstract
- 255 6. Wang Y, Lim H, Lim & H. International Review of Psychiatry The global childhood
- 256 obesity epidemic and the association between socio-economic status and childhood
- 257 obesity The global childhood obesity epidemic and the association between socio-

258		economic status and childhood obesity. 2012 [cited 2021 Jan 5]; Available from:
259		https://www.tandfonline.com/action/journalInformation?journalCode=iirp20
260	7.	Mangge H, Almer G, Truschnig-Wilders M, Schmidt A, Gasser R, Fuchs D.
261		Inflammation, Adiponectin, Obesity and Cardiovascular Risk. Curr Med Chem. 2011 Jan
262		8;17(36):4511–20.
263	8.	Asayama K, Hayashibe H, Dobashi K, Uchida N, Nakane T, Kodera K, et al. Decrease in
264		Serum Adiponectin Level Due to Obesity and Visceral Fat Accumulation in Children.
265		2003.
266	9.	Reinehr T, Roth C, Menke T, Andler W. Adiponectin before and after Weight Loss in
267		Obese Children. J Clin Endocrinol Metab [Internet]. 2004 Aug 1 [cited 2021 Jan
268		22];89(8):3790-4. Available from: https://academic.oup.com/jcem/article-
269		lookup/doi/10.1210/jc.2003-031925
270	10.	Achari AE, Jain SK. Adiponectin, a Therapeutic Target for Obesity, Diabetes, and
271		Endothelial Dysfunction. Int J Mol Sci 2017, Vol 18, Page 1321 [Internet]. 2017 Jun 21
272		[cited 2022 Jun 23];18(6):1321. Available from: https://www.mdpi.com/1422-
273		0067/18/6/1321/htm
274	11.	Fruebis J. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein
275		increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad
276		Sci [Internet]. 2001 Feb 13 [cited 2021 Jan 20];98(4):2005–10. Available from:
277		www.pnas.orgcgidoi10.1073pnas.041591798
278	12.	Zhou H, Song X, Briggs M, Violand B, Salsgiver W, Gulve EA, et al. Adiponectin
279		represses gluconeogenesis independent of insulin in hepatocytes. Biochem Biophys Res
280		Commun. 2005 Dec 16;338(2):793–9.

281	13.	Wang C, Mao X, Wang L, Liu M, Wetzel MD, Guan KL, et al. Adiponectin sensitizes
282		insulin signaling by reducing p70 S6 kinase-mediated serine phosphorylation of IRS-1. J
283		Biol Chem [Internet]. 2007 Mar 16 [cited 2021 Jan 21];282(11):7991-6. Available from:
284		http://www.jbc.org/article/S0021925820638066/fulltext
285	14.	Choi HY, Kim S, Yang SJ, Yoo HJ, Seo JA, Kim SG, et al. Association of adiponectin,
286		resistin, and vascular inflammation: Analysis with 18F-fluorodeoxyglucose positron
287		emission tomography. Arterioscler Thromb Vasc Biol [Internet]. 2011 Apr [cited 2021 Jan
288		21];31(4):944–9. Available from:
289		https://www.ahajournals.org/doi/10.1161/ATVBAHA.110.220673
290	15.	Kobashi C, Urakaze M, Kishida M, Kibayashi E, Kobayashi H, Kihara S, et al.
291		Adiponectin inhibits endothelial synthesis of interleukin-8. Circ Res [Internet]. 2005 Dec
292		9 [cited 2021 Jan 21];97(12):1245-52. Available from:
293		https://www.ahajournals.org/doi/10.1161/01.RES.0000194328.57164.36
294	16.	Ouchi N, Kihara S, Funahashi T, Nakamura T, Nishida M, Kumada M, et al. Reciprocal
295		association of C-reactive protein with adiponectin in blood stream and adipose tissue.
296		Circulation [Internet]. 2003 Feb 11 [cited 2021 Jan 21];107(5):671-4. Available from:
297		https://www.ahajournals.org/doi/10.1161/01.CIR.0000055188.83694.B3
298	17.	Cambuli VM, Cristina Musiu M, Incani M, Paderi M, Serpe R, Marras V, et al.
299		Assessment of Adiponectin and Leptin as Biomarkers of Positive Metabolic Outcomes
300		after Lifestyle Intervention in Overweight and Obese Children. 2008; Available from:
301		https://academic.oup.com/jcem/article/93/8/3051/2598632
302	18.	Stefan N, Bunt JC, Salbe AD, Funahashi T, Matsuzawa Y, Tataranni PA. Plasma
303		Adiponectin Concentrations in Children: Relationships with Obesity and Insulinemia

304		Clinical Diabetes and Nutrition Section (N. 2002; Available from:
305		https://academic.oup.com/jcem/article/87/10/4652/2846679
306	19.	Alamian A, Marrs JA, Clark WA, Thomas KL, Peterson JM. CTRP3 and serum
307		triglycerides in children aged 7-10 years. PLoS One [Internet]. 2020 Dec 1 [cited 2021 Jun
308		8];15(12 December):e0241813. Available from:
309		https://doi.org/10.1371/journal.pone.0241813
310	20.	About Child & Teen BMI Healthy Weight, Nutrition, and Physical Activity CDC
311		[Internet]. [cited 2021 Jul 13]. Available from:
312		https://www.cdc.gov/healthyweight/assessing/bmi/childrens_bmi/about_childrens_bmi.ht
313		ml
314	21.	Erdmann J, Kallabis B, Oppel U, Sypchenko O, Wagenpfeil S, Schusdziarra V.
315		Development of hyperinsulinemia and insulin resistance during the early stage of weight
316		gain. Am J Physiol Metab [Internet]. 2008 Mar [cited 2021 Apr 28];294(3):E568-75.
317		Available from: https://www.physiology.org/doi/10.1152/ajpendo.00560.2007
318	22.	Balsan GA, Da Costa Vieira JL, De Oliveira AM, Portal VL. Relationship between
319		adiponectin, obesity and insulin resistance. Rev Assoc Med Bras [Internet]. 2015
320		Jan 1 [cited 2022 Jun 24];61(1):72–80. Available from:
321		http://www.scielo.br/j/ramb/a/SP5WL5B8N3fGcZqB4kFFXDg/abstract/?lang=en
322	23.	Ferreira AP, Ferreira CB, Brito CJ, Gondim Pitanga FJ, Moraes CF, Naves LA, et al.
323		Prediction of Metabolic Syndrome in Children through Anthropometric Indicators.
324	24.	Da Silva MAR, Baptista LC, Neves RS, De França E, Loureiro H, Lira FS, et al. The
325		Effects of Concurrent Training Combining Both Resistance Exercise and High-Intensity
326		Interval Training or Moderate-Intensity Continuous Training on Metabolic Syndrome.

	Front Physiol. 2020 Jun 11;11.
25.	Ortega FB, Lee DC, Katzmarzyk PT, Ruiz JR, Sui X, Church TS, et al. The intriguing
	metabolically healthy but obese phenotype: Cardiovascular prognosis and role of fitness.
	Eur Heart J. 2013;34(5):389–97.
26.	Smith GI, Mittendorfer B, Klein S. Metabolically healthy obesity: facts and fantasies. J
	Clin Invest [Internet]. 2019 Oct 1 [cited 2022 Jun 24];129(10):3978–89. Available from:
	https://doi.org/10.1172/JCI129186.
27.	Ohashi K, Parker JL, Ouchi N, Higuchi A, Vita JA, Gokce N, et al. Adiponectin promotes
	macrophage polarization toward an anti-inflammatory phenotype. J Biol Chem. 2010 Feb
	26;285(9):6153–60.
28.	Abdullah A, Stoelwinder J, Shortreed S, Wolfe R, Stevenson C, Walls H, et al. The
	duration of obesity and the risk of type 2 diabetes. Public Health Nutr [Internet]. 2011 Jan
	[cited 2022 Jun 24];14(1):119–26. Available from:
	https://www.cambridge.org/core/journals/public-health-nutrition/article/duration-of-
	obesity-and-the-risk-of-type-2-diabetes/3B2EB9BDB34582604AE3EFA7766A729C
29.	Silha J V, Krsek M, Skrha J V, Sucharda P, Nyomba BLG, Murphy LJ. Plasma resistin,
	adiponectin and leptin levels in lean and obese subjects: Correlations with insulin
	resistence. Eur J Endocrinol [Internet]. 2003 [cited 2021 Apr 29];149(4):331-5. Available
	from: www.eje.org
30.	Mabrouk R, Ghareeb H, Shehab A, Omar K, El-Kabarity RH, Soliman DA, et al. Serum
	visfatin, resistin and IL-18 in A group of Egyptian obese diabetic and non diabetic
	individuals. Egypt J Immunol. 2013;20(1):1–11.
31.	Dandona P, Aljada A, Bandyopadhyay A. Inflammation: The link between insulin
	 26. 27. 28. 29. 30.

18

350		resistance, obesity and diabetes. Vol. 25, Trends in Immunology. Elsevier Ltd; 2004. p. 4-
351		7.
352	32.	Lê-Scherban F, Moore J, Headen I, Utidjian L, Zhao Y, Forrest CB. Are there birth cohort
353		effects in disparities in child obesity by maternal education? Int J Obes [Internet]. 2021

- 354 Mar 1 [cited 2021 May 4];45(3):599–608. Available from:
- 355 https://doi.org/10.1038/s41366-020-00724-y
- 356 33. Ogden CL, Carroll MD, Fakhouri TH, Hales CM, Fryar CD, Li X, et al. Prevalence of
- 357 Obesity Among Youths by Household Income and Education Level of Head of Household
- 358 United States 2011–2014. MMWR Morb Mortal Wkly Rep [Internet]. 2018 Feb 16
- 359 [cited 2021 Jul 1];67(6):186–9. Available from: /pmc/articles/PMC5815488/
- 360 34. Inc P, Cecil Sheps Center for Health Services Research the G, Appalachian Regional
- 361 Commission the. Executive Summary About the Appalachian Region Measuring Health

362 Disparities in the Appalachian Region Key Findings Trends Next Steps.