ABSTRACT
This study aimed to develop a natural language processing algorithm (NLP) using machine learning (ML) and Deep Learning (DL) techniques to identify and classify documentation of suicidal behaviors in patients with Alzheimer’s disease and related dementia (ADRD). We utilized MIMIC-III and MIMIC-IV datasets and identified ADRD patients and subsequently those with suicide ideation using relevant International Classification of Diseases (ICD) codes. We used cosine similarity with ScAN (Suicide Attempt and Ideation Events Dataset) to calculate semantic similarity scores of ScAN with extracted notes from MIMIC for the clinical notes. The notes were sorted based on these scores, and manual review and categorization into eight suicidal behavior categories were performed. The data were further analyzed using conventional ML and DL models, with manual annotation as a reference. The tested classifiers achieved classification results close to human performance with up to 98% precision and 98% recall of suicidal ideation in the ADRD patient population. Our NLP model effectively reproduced human annotation of suicidal ideation within the MIMIC dataset. These results establish a foundation for identifying and categorizing documentation related to suicidal ideation within ADRD population, contributing to the advancement of NLP techniques in healthcare for extracting and classifying clinical concepts, particularly focusing on suicidal ideation among patients with ADRD. Our study showcased the capability of a robust NLP algorithm to accurately identify and classify documentation of suicidal behaviors in ADRD patients.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was supported by the National Institute on Aging, a part of the National Institutes of Health, under award number P30AG066506, and by internal funding from the 1Florida Alzheimer Disease Research Center.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This study used mimic-iii and mimic-iv datasets which are publicly available after acquiring the required certificate, and can be accessed through provided links: https://physionet.org/content/mimiciii/ https://physionet.org/content/mimiciii/
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.