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Abstract 

Background: Air pollution has several negative health effects. Particulate matter (PM) is a 

pollutant that is often linked to health adversities. PM2.5 (PM with an aerodynamic diameter of 

≤2.5μm) exposure has been associated with negative cardiovascular (CV) outcomes. However, 

the impact of PM10 (PM with an aerodynamic diameter of ≤10μm) exposure is often overlooked 

due to its limited ability to pass the alveolar barrier. This study aims to assess the association 

between PM10 exposure and risk of myocardial infarction (MI) amongst adults (≥18 years of age) 

as this has been poorly studied.  

Methods: The study protocol was published on PROSPERO (CRD42023409796) on March 31, 

2023. Literature searches were conducted on 4 databases (OVID Medline, Embase, CINAHL, 

and Web of Science) for studies looking at associations between PM and MI. English studies 

from all time periods were assessed. Studies selected for review were time-series, case-

crossover, and cohort studies which investigated the risk of MI as an outcome upon PM10 

exposure. The quality of evidence was assessed using Cochrane’s GRADE approach. Data for 

different risk outcomes (risk ratio (RR), odds ratio (OR), hazard ratio (HR)) and 3 lags was meta-

analyzed using an inverse variance statistical analysis using a random effects model. The pooled 

effect sizes and the 95% confidence intervals (CIs) were reported in forest plots.  

Results: Among the 1,099 studies identified, 41 were included for review and 23 were deemed 

eligible for meta-analysis. Our analysis revealed that there is an increased risk (OR=1.01; 95% 

CI:1.00 - 1.02) of MI with a 10 μg/m3 increase in PM10 after a lag 0 and lag 1 delay. 

Conclusions: Our findings indicate that PM10 exposure is associated with an increased risk of 

MI. This can aid in informing environmental policy-making, personal-level preventative 

measures, and global public health action. 
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1. Introduction 

 Air pollution is a complex combination of gaseous and particle constituents, which are 

hazardous to human health [1]. In air pollution, particulate matter (PM) comprises carbonaceous 

particles containing adsorbed organic compounds and reactive metals [1]. Nitrates, sulfates, 

polycyclic aromatic hydrocarbons, endotoxin, and metals such as iron, copper, nickel, zinc, and 

vanadium are all common constituents of PM [1]. PM can be further classified relative to the 

particle size into coarse (PM10: diameter <10μm), fine (PM2.5: diameter <2.5μm), and ultrafine 

(PM0.1: diameter <0.1μm) [1]. Earlier scientific research has reported that PM2.5 is associated 

with adverse health outcomes, including poor cardiovascular (CV) health outcomes. PM10 is 

present in dust from roads, farms, construction sites, and mines [2]. However, the chemical 

composition and size distribution of PM10 varies widely depending on where it originates and 

how it forms in the environment [3]. Although PM10 is also associated with adverse impact 

health as it is an irritant for the nose, throat, and eyes; however, in general, this is not a major 

focus airborne pollutant of study [2].  

The short-term impacts of PM10 exposure on respiratory pathologies, such as chronic 

obstructive pulmonary disease and asthma, are well known and studied [3]. However, in CV 

health research, the effects of PM2.5 are more often researched as PM2.5 has been shown to pass 

the alveolar barrier and cause an inflammatory response in blood vessels [4]. This exacerbates 

atherosclerosis and increases the risk of myocardial infarction (MI), ischemic heart disease, and 

thrombotic stroke [4]. The risk of MI was chosen as it is one of the largest causes of death 

worldwide, with approximately three million deaths annually [4]. Different populations are also 

exposed to varying levels of PM, and understanding its health adversities is important for 

understanding subsequent health disparities. Interestingly, there is a lack of up-to-date research 
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regarding the impact of PM10 on the risk of MI despite instances being reported where exposure 

to PM10 has led to a surge in CV-related hospital admissions [3]. Although there is a higher 

probability of PM2.5 passing the alveolar barrier, it is still possible for PM10 to enter the 

bloodstream in smaller proportions [5]. When searching this topic on the PROSPERO database, 

only one matching systematic review and meta-analysis was found, and it solely assessed the 

impact of PM2.5 and not PM10 [6]. Past studies looked at MI risk due to short-term PM10 

exposure, or long-term PM10 exposure, or both but are missing up-to-date literature in their 

review [7-9]. The primary aim of this systematic review and meta-analysis is to assess the effect 

of PM10 on the risk of MI to better understand its burden of disease and update pre-existing 

literature looking at the CV impacts of PM exposure.  

 

2. Methods 

2.1. Search strategy 

 Studies were obtained from a systematic search of the following databases: OVID 

Medline, Embase, CINAHL, and Web of Science. The literature searches were conducted on Jan 

17, 2023, and included studies from all time periods. See the specific search terms utilized (S1 

Table). The study protocol was published on PROSPERO (CRD42023409796) on March 31, 

2023, after completing the literature search.  

 

2.2. Inclusion/exclusion criteria 

 The inclusion criteria for this study were: (1) study design had to be time-series, case-

crossover, or cohort; (2) PM10 had to be an exposure; (3) risk of myocardial infarction had to be 
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an outcome (risk ratio/relative risk (RR), odds ratio (OR), hazard ratio (HR)); (4) population ≥18 

years of age. Cohort studies were included after the protocol to increase the data pool.  

 The exclusion criteria for this study were: (1) Other primary study designs (RCTs, 

clinical trials, cross-sectional designs, protocols, pilot studies, etc.); (2) secondary studies 

(narrative reviews, systematic reviews, meta-analyses, scoping reviews); (3) Risk outcome(s) 

only reported in graph(s) (4) studies that only look at PM2.5 or coarse particulate matter (PM2.5-

10); (5) population <18 years of age. 

 

2.3.  Lag periods 

 MI risk was stratified by exposure duration and lags were developed for the following 

reasons: (1) preservation of data validity and reliability and (2) lack of standardized short-term 

and long-term parameters for PM exposure. PM10 exposure lags were based on the following 

definitions: lag 0 = same day (0-24 hours); lag 1 = 1-3 day delay (24-96 hours); lag 2 = 3 day 

delay or more (>96 hours). If there were multiple data points, the value closest to the midpoint of 

the range was selected for meta-analysis for lag 0 and 1 (lag 0 = 12 hours; lag 1 = 60 hours). For 

lag 2, the value closest to >96 hours was selected for meta-analysis. 

 

2.4.  Study selection 

 Covidence was used to manage the screening phase of this study [10]. For the abstract 

screening, two authors (HM & NL) independently screened abstracts based on the 

inclusion/exclusion criteria, and another two (KS & SI) resolved conflicts. For full-text 

screening, two authors independently (KS & SI) screened the full manuscripts, and the same 

authors (KS & SI) discussed any conflicts and reached a consensus. The study drafting process 
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was recorded using “Preferred Reporting Items for Systematic Reviews and Meta-Analyses” 

(PRISMA) guidelines [11]. 

 

2.5. Data extraction 

 Two authors independently extracted data from one half of the included studies (KS & 

SI), while another two (HM & NL) independently extracted data from the other half of the 

included studies. Any discrepancies in data values were corrected cohesively amongst the two 

authors for their extracted data half, respectively. 

 Data extracted from studies included: study name, design, country, sample size, 

male/female ratio, participant characteristics, exposure increments for risk measure, risk scale, 

lag intervals, and effect size (risk outcomes). 

 For studies with multiple models, outcome data values adjusting for the greatest number 

of confounding variables were meta-analyzed to maintain data validity. Industrial values were 

used for studies reporting industrial and non-industrial location outcome values because they 

were more likely to report reliable PM10 exposure MI risk outcomes. For studies that reported 

data on multiple regions of a country, data was selected from the most central geographical 

region. 

 

2.6. Methodological risk of bias assessment 

 Risk of bias was assessed by two authors (KS & SI) using the NHLBI Quality 

Assessment Tool for Observational Cohort and Cross-Sectional Studies [12] which assesses 

methodological risk of bias through 14 criteria: (1) clear research question/objective; (2) clearly 

defined study population; (3) 50% participation rate of eligible persons; (4) all participants 
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selected from identical/similar populations in the same time period using pre-specified inclusion 

and exclusion criteria; (5) provision of sample size justification, power description, or variance 

and effect estimates; (6) exposure measured before outcome in analysis; (7) sufficient time frame 

to expect association; (8) examination of differing levels of exposure as related to the outcome; 

(9) clearly defined, valid, reliable, widely-applied exposure measures; (10) >1 exposure 

assessments; (11) clearly defined, valid, reliable, widely-applied outcome measures; (12) 

blinding of outcome assessors to participant exposure status; (13) <20% loss to follow-up after 

baseline; (14) measurement and adjustment of potential confounders affecting impact between 

exposure and outcome.  

 Each criterion was deemed to be satisfied or unsatisfied based on the author's rating. 

Overall quality ratings included: ‘good’, ‘fair’, and ‘poor’. The overall quality of each study 

began at ‘good’, and got demoted by one level per unsatisfied criteria. Conflicts in the 

methodological risk of bias assessment were resolved by the same two authors (KS & SI) 

through consensus. 

 

2.7. Meta-analysis 

 Meta-analysis was conducted using Review Manager 5.4.1. 

 

2.7.1. MI risk outcome measures 

 The primary outcome was MI risk. For the meta-analysis, data was included for studies 

reporting risk based on PM10 concentration increments of 10µg/m3. MI risk outcome measures 

included RR, OR, and HR with 95% confidence intervals (CIs). A RR, OR, or HR >1 indicates a 

higher PM10-associated MI risk. 
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 MI risk was stratified by MI risk outcome measure (RR, OR, HR) for the following two 

reasons: (1) to preserve data validity and (2) inherent distinctiveness of the outcome measures 

[13]. Data was also stratified by lags (0, 1, 2) as aforementioned. 

 

2.7.2. Data synthesis 

 The pooled risk outcome was considered if the following criteria were met: two or more 

studies reported the same MI risk outcome measure and lag, the I2 statistic for measuring 

statistical heterogeneity ≤60%. 

 An I2  >60% was considered heterogeneous on a statistically significant level. An inverse 

variance statistical analysis was conducted with a random-effects model when creating the forest 

plots, as there was heterogeneity, differences in study design, setting, and adjustment models. A 

P-value <0.05 was considered statistically significant. 

Publication bias was assessed through analysis of funnel plot symmetricity. Publication 

bias was not assessed for quantitative analyses with <5 studies due to a lack of statistical power. 

 

2.7.3. Quality of evidence evaluation 

 Quality of evidence was evaluated by two authors (KS & SI) independently using 

Cochrane’s GRADE approach (Schünemann et al., 2013), which assesses: (1) risk of bias; (2) 

inconsistency; (3) indirectness; (4) imprecision; (5) publication bias; (6) large magnitude of 

effect; (7) dose-response gradient; (8) residual confounding. Overall quality ratings include: 

‘high’, ‘moderate’, ‘low’ and ‘very low’. All resulting outcomes began with a rating of ‘high’ 

and were demoted one level for each unsatisfied criteria 1-5; upgrading could occur for 
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satisfying criteria 6-8. Any evaluation conflicts were resolved by the same two authors (KS & 

SI) through consensus. 

 

3. Results 

3.1. Study selection 

 A breakdown of study identification and screening can be found in the PRISMA 

flowchart (Figure 1). A systematic literature search from databases/registers identified 1,099 

potential studies viable for inclusion. After 396 duplicates were removed, 703 total studies were 

available for abstract screening. Five hundred sixty-nine studies were excluded following 

abstract screening, and 12 studies were not retrieved due to a lack of full-text availability. One 

hundred twenty-two studies remained for full-text screening, and 81 studies were excluded after 

the full-text screening: 64 for having the wrong outcome measure, 11 for having different study 

design (not meeting the inclusion criteria), 3 for analyzing PM2.5 exclusively and not PM10, 2 for 

having different patient population, and 1 study for not being in English. Forty-one studies were 

included for review, with 23 of 41 deemed eligible for meta-analysis. 
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Figure 1. PRISMA flow diagram.
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3.2. Study Characteristics 

 Table 1 provides the characteristics of studies included in the meta-analysis [14-36], adjusted confounding variables can be 

found for these respective studies (S2 Table). See study characteristics for other studies included in the review (S3 Table) (reference). 

 
Table 1. Study characteristics for studies included in the meta-analysis. 

# 
Author/ 
publication year 

Study 
Design Country 

Sample 
size (n) # Male (%) 

Risk 
Measure Lag Intervals 

1 Argacha 2016 [14] 
Case- 
crossover Belgium 11,428 8,607 (75.3) OR Lag 0: 24hrs post-exposure 

2 Bard 2014 [15] 
Case- 
crossover France 2,134 1,642 (76.9) OR 

Lag 0: Same day 
Lag 1: 1-day delay 
Lag 0-1: Average of same day and 1 day previous 

3 Bhaskaran 2011 [16] 
Case- 
crossover 

United 
Kingdom 79,288 50,988 (64.8) RR 

Lag 0: 1-6hrs 
Lag 1: 7-12hrs 
Lag 2: 13-18hrs 
Lag 3: 19-24hrs 
Lag 4: 25-72hrs 

4 Buszman 2020 [17] 
Case- 
crossover Poland 1,957 NR OR 

Lag 0: Same day 
Lag 1: 1-day delay 

5 Cheng 2021 [18] 
Case- 
crossover Australia 3,307 2,162 (65.4) RR 

Lag 0: 1hr 
Lag 1: 2-6hrs 
Lag 2: 7-12hrs 
Lag 3: 13-24hrs 

6 Claeys 2015 [19] 
Time- 
series Belgium 15,963 11,995 (75.1) RR 5-day delay 

7 Collart 2017 [20] 
Time- 
series Belgium 21,491 14,377 (66.9) RR Single-day lags: Lag 0, 1, 2, 3, 4, 5, 6 
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8 
Davoodabadi 2019 
[21] 

Case- 
crossover Iran 319 238 (74.6) OR 

Lag 0: 24h post-exposure 
Lag 1: 48h post-exposure 

9 Downward 2018 [22] Cohort 
Netherlan
ds 33,381 7,846 (23.5) HR 1-year delay 

10 Huss 2010 [23] Cohort 
Switzerla
nd 4,580,311 NR HR Average exposure in the year 2000 

11 Kim 2020 [24] 
Time- 
series 

South 
Korea 196,167 

104,949 
(53.5) HR 5-year delay 

12 
Konduracka 2019 
[25] 

Time- 
series Poland 3,545 1,602 (45.2) OR Single-day lags: Lag 0, 1, 2, 3, 4, 5, 6 

13 Kuzma 2021 [26] 
Time- 
series Poland 9,046 5,692 (62.9) OR Single-day lags: Lag 0, 1, 2, 3, 4, 5, 6 

14 Lipsett 2011 [27] Cohort USA 124,614 0 (0) HR Median of 8.3-year delay 

15 Nuvolone 2011 [28] 
Case- 
crossover Italy 11,450 6,985 (61.0) OR 

Single-day lags: Lag 0, 1, 2, 3, 4, 5 
Multiple-day lags: Lag 0–2, 0–5, 3–5 

16 Puett 2008 [29] Cohort USA 66,250 0 (0) HR 

Lag 1: 1-month post-exposure average 
Lag 2: 3-month post-exposure average 
Lag 3: 12-month post-exposure average 
Lag 4: 48-month post-exposure average 

17 Roye 2019 [30] 
Time- 
series Spain 9,871 7,008 (71.0) RR 14-day delay 

18 Soleimani 2019 [31] Cohort Iran 6,425 3,652 (56.8) RR Single-day lags: Lag 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 

19 Vidale 2017 [32] Cohort Italy 4,110 2,672 (65.0) HR Single-day lags: Lag 0, 1, 2, 3, 4 

20 Yang 2022 [33] 
Case- 
crossover China 25,299 17,100 (67.6) RR Lag 1: 1-day delay 

21 Yen 2022 [34] 
Case- 
crossover China 979,979 

458,195 
(46.8) OR 

Lag 0: Same day 
Lag 1: 1-day delay 
Lag 0-1: Average of same day and 1 day previous 
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22 Zhang 2016 [35] 
Case- 
crossover China 2,749 1,612 (58.6) OR Single-day lags: Lag 0, 1, 2, 3, 4, 5 

23 Zhu 2019 [36] Cohort China 147,422 NR RR Single-day lags: Lag 0, 1, 2, 3, 4, 5, 6 

RR = Risk ratio; OR = Odds ratio; HR = Hazard ratio; NR = Not reported 
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3.2.1. Study design characteristics 

Amongst the 41 studies included in the systematic review, 22 studies (53.7%) had a case-

crossover design, 12 studies (29.3%) had an observational cohort design, and 7 studies (17.1%) 

had a time-series design. 

For the meta-analysis, ten studies (43.5%) had a case-crossover design, seven studies 

(30.4%) had an observational cohort design, and six studies (26.1%) had a time-series design. 

 

3.2.2. Participant characteristics 

 For qualitative synthesis, data was calculated from a total of 6,663,870 participants. 

For the meta-analysis, data was calculated from a total of 6,336,506 participants. All but three 

studies reported a male/female participant ratio [17, 23, 36]. Of 1,606,816 participants from the 

remaining studies with a reported male/female participant ratio, there were 707,322 male 

participants (44.0%) and 899,494 (56.0%) female participants. 

 

3.2.3. MI risk outcome measures 

 Amongst the 41 studies included in the review, 18 studies (43.9%) used OR as their 

effect size for MI risk outcome measure, 12 studies (29.3%) used RR, and 11 studies (26.8%) 

used HR. 

For the meta-analysis, studies most often utilized OR (n=9; 39.1%), followed by RR 

(n=8; 34.8%) and HR (n=6; 26.1%) for MI risk outcome measures. 

 

3.3. Methodological risk of bias analysis for included studies 
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 After the quality assessment was conducted (S4 Table), a large majority of studies were 

rated at a quality score of good (38/41), with the remainder of the studies rated at a quality of fair 

(3/41). No studies were rated at a poor quality score. All three studies demoted to a fair quality 

score were done so for the same reason: failure to adjust for confounders [17, 19, 42]. 

 

3.4. Primary MI risk outcomes – meta-analysis 

 See the meta-analysis summary of primary MI risk outcomes (Table 2). For lag 0 and lag 

1 HR outcomes, meta-analysis could not be conducted as there was only one associated study for 

each respective outcome [32] (S1, S2 Fig). Evidence assessment could also not be conducted due 

to one study (S11, S12 Table). 

 
Table 2. Summary of primary MI risk outcomes 

 Lag 0  
Effect Size (95% CI) 

Lag 1 
Effect Size (95% CI) 

Lag 2  
Effect Size (95% CI) 

Risk Ratio 1.02 (0.97,1.07) 1.01 (0.99,1.03) 1.01 (1.00,1.03) 

Odds Ratio 1.01 (1.00,1.02) 1.01 (1.00,1.02) 1.01 (0.99,1.02) 

Hazard Ratio 1.00 (1.00,1.01) 1.00 (1.00,1.01) 1.00 (0.99,1.01) 

 
3.4.1. Risk Ratio – Lag 0 (Same day [0-24hrs]) 

Three studies with three outcomes (n = 89,020) were reported for RR. Soleimani et al. 

[31] and Cheng et al. [18] reported an increased risk of MI with PM10 exposure, while Bhaskaran 

et al. [16] reported a decreased risk. Statistical pooling was appropriate due to statistical 

homogeneity (I2 = 60%) (Figure 2). Although there was an overall increased risk of MI (RR = 

1.02, 95% CI: 0.97-1.07) it was not statistically significant (P-value = 0.43). Evidence quality 

was rated high on the GRADE scale (S5 Table). 
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Figure 2. Lag 0 RR for MI after 10 μg/m3 increase in PM10 exposure. 
 
3.4.2. Risk Ratio – Lag 1 (1-3 days [24-96hrs]) 

Four studies with four outcomes (n = 132,503) were reported for RR. Statistical pooling 

was inappropriate for the lag 1 RR values because of statistical heterogeneity (I2 = 72%) (Figure 

3). Evidence quality was rated moderate on the GRADE scale due to inconsistency (S6 Table). 

 

Figure 3. Lag 1 RR for MI after 10 μg/m3 increase in PM10 exposure. 

 

3.4.3. Risk Ratio – Lag 2 (3+ days [96hrs+]) 

Four studies with four outcomes (n = 179,681) were reported for RR. Roye et al. [30] and 

Zhu et al. [36] reported an increased risk of MI with PM10 exposure, while Soleimani et al. [31] 

reported a decreased risk. Claeys et al. [19] reported no change in risk. Statistical pooling was 

appropriate due to statistical homogeneity (I2 = 60%) (Figure 3). Although there was an overall 

increased risk of MI (RR = 1.01, 95% CI: 1.00-1.03), it was not statistically significant (P-value 

= 0.10).  Evidence quality was rated high on the GRADE scale (S7 Table). 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 4, 2023. ; https://doi.org/10.1101/2023.07.21.23292792doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.21.23292792
http://creativecommons.org/licenses/by/4.0/


16 

 

 
Figure 4. Lag 2 RR for MI after 10 μg/m3 increase in PM10 exposure. 
 
3.4.4. Odds Ratio – Lag 0 (Same day [0-24hrs]) 

Eight studies with eleven outcomes (n = 1,019,062) were reported for OR. Kuzma et al. 

[26] reported a reduced risk of STEMI with PM10 exposure, while all other studies reported an 

increased risk within their respective groups/subgroups (MI, STEMI, NSTEMI). Statistical 

pooling was appropriate due to statistical homogeneity (I2 = 60%) (Figure 4). There was an 

overall increased risk of MI (RR = 1.01, 95% CI: 1.00-1.02), and it was statistically significant 

(P-value = 0.01). Evidence quality was rated high on the GRADE scale (S8 Table). 
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Figure 5. Lag 0 OR for MI after 10 μg/m3 increase in PM10 exposure. 
 
3.4.5. Odds Ratio – Lag 1 (1-3 days [24-96hrs]) 

Seven studies with ten outcomes (n = 1,007,634) were reported for OR. Kuzma et al. [26] 

reported a reduced risk of STEMI with PM10 exposure, while all other studies reported an 

increased risk within their respective groups/subgroups (MI, STEMI, NSTEMI). Statistical 

pooling was appropriate due to statistical homogeneity (I2 = 50%) (Figure 5). There was an 

overall increased risk of MI (RR = 1.01, 95% CI: 1.00-1.02), and it was statistically significant 

(P-value = 0.02). Evidence quality was rated high on the GRADE scale (S9 Table). 
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Figure 6. Lag 1 OR for MI after 10 μg/m3 increase in PM10 exposure. 
 
3.4.6. Odds Ratio – Lag 2 (3+ days [96hrs+]) 

Five studies with seven outcomes (n =27,109) were reported for OR. Zhang et al. [35] 

reported a reduced risk of MI with PM10 exposure, while all other studies reported an increased 

risk within their respective group/subgroup (MI, STEMI, NSTEMI). Statistical pooling was 

appropriate due to statistical homogeneity (I2 = 41%) (Figure 6). There was an overall increased 

risk of MI (RR = 1.01, 95% CI: 0.99-1.02), but it was not statistically significant (P-value = 

0.28). Evidence quality was rated high on the GRADE scale (S10 Table). 
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Figure 7. Lag 2 OR for MI after 10 μg/m3 increase in PM10 exposure. 
 
3.4.8. Hazard Ratio – Lag 2 (3+ days [96hrs+]) 

Six studies with six outcomes (n = 4,913,615) were reported for HR. Nuvolone et al. [28] 

and Konduracka et al. [25] reported an increased risk of MI with PM10 exposure, while Zhang et 

al. [35] reported a reduced risk. Statistical pooling was appropriate due to statistical homogeneity 

(I2 = 6%) (Figure 8). There was no impact on risk of MI (RR = 1.00, 95% CI: 0.99-1.01), and the 

result was not statistically significant (P-value = 0.69). Evidence quality was rated high on the 

GRADE scale (S13 Table). 
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Figure 8. Lag 2 HR for MI after 10 μg/m3 increase in PM10 exposure. 

 

3.4.10. Sensitivity Analyses 

 Two sensitivity analyses were performed. The first sensitivity analysis was the exclusion 

of risk outcome values which had more than a 7-day post-exposure delay. This was done in order 

to eliminate values which had relatively long post-exposure delays lasting multiple weeks, 

months, or years. This sensitivity was conducted to all lag 2 forest plots and consisted of six 

excluded values: 1 for RR [30] and 5 for HR [22, 23, 24, 27, 29]. However, no significant 

differences were found in this sensitivity analysis. 

 The second sensitivity analysis was the exclusion of Buszman et al. [17] from the OR 

forest plots for lag 0 and lag 1. This was done in order to evaluate whether this study was a 

detrimental outlier and played a significant role in the overall risk outcome. However, no 

significant differences were found in this sensitivity analysis.  

 
4. Discussion 

  This study aimed to evaluate the risk of MI after exposure to PM10 considering that 

small proportions of PM10 can pass the alveolar barrier, enter the blood, and contribute to 

cardiovascular adversities as aforementioned [5]. This was important considering that CV 
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disease is the leading cause of death in the world [55]. Assessing potential exacerbators is crucial 

to reducing the burden of disease. Notably, our analysis showed an increased risk (OR=1.01; 

95% CI:1.00 - 1.02) of myocardial infarction with a 10 μg/m3 increase in PM10 after a lag 0 and 

lag 1 delay. Considering the high prevalence of MI, the statistically significant risk increase of 

1% indicates the absolute risk of PM10 is high. 

Farhadi et al. [6] investigated short-term exposure to PM2.5 and its effects on the risk of 

MI. Our study and their study both looked at RR and OR as a risk outcome, and assessed studies 

with a case-crossover and time-series design. However, our study additionally looked at HR as a 

risk outcome, and assessed studies with a cohort design. Both studies also looked at the effects of 

lags, but lag definitions were different. Our study looked at lags with short delays (lag 0 = 0-24 

hours, lag 1 = 24-96 hours, lag 2 = >96 hours), whereas Farhadi et al. [6] looked at long delays 

(short follow-up period = <4 years, long follow-up period = >4 years). The results of their study 

are comparable to our findings as the RR and OR in our meta-analysis were similar. Their meta-

analysis reported a RR of 1.02 (95% CI: 1.01–1.03; P-value ≤ 0.0001) [6]. However, our results 

had more homogeneity, likely due to stratification of studies by risk outcome measures and 

smaller lag ranges. Our statistical analysis yielded ORs of 1.01 (95% CI 1.00–1.02; P-value 

<0.05) for lag 0 and lag 1. These results indicate that while the risk of MI from exposure to PM10 

is 1% less in comparison to PM2.5 exposure, there is a potential impact of PM2.5-10 pollutants on 

MI risk. This indicates that the risk of PM2.5-10 entering the bloodstream through the alveolar 

barrier and causing CV adversities, is similar to that of PM2.5.  

When assessing CV health concerns related to particulate matter, PM10 should not be 

discredited – especially in communities of low socioeconomic status, as these populations are 

most vulnerable to the health effects of air pollution [56]. 
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4.1. Strengths and Limitations 

This study had some limitations. The first one was the varying adjustment models utilized 

by included studies. There are multiple participant confounders (hypertension, diet, sleep, etc.) to 

consider since PM10 association to MI risk is observational, which could explain potential 

differences in MI risk outcomes. The retrospective nature of case-crossover and time-series 

designs is also a potential drawback considering the ambiguity of lag definitions. Another factor 

to consider is the heterogeneity of the studies. All studies varied in study design, population and 

age characteristics, and the exposure assessment methods. This review's studies included a 

variety of population sizes from various places, which can limit how the results can be applied to 

specific people or environments. The strength and direction of the relationship between PM10 

exposure and the risk of MI may be influenced by variables in air pollution sources, climate, and 

demographic factors.  

 

4.2. Next Steps 

To enhance the precision and applicability of the findings, certain measures can be taken 

in the future. The compatibility and consistency of studies assessing MI risk can be increased by 

standardizing a specific risk outcome measure. While conversion algorithms exist for RR and 

OR, they depend on an estimated incidence variable (P0) which can constrain data synthesis 

validity. Future research should seek to study the distinct risk of STEMI and NSTEMI. 

Understanding these MI subtypes’ diverse relationships with PM10 exposure can offer more 

specialized insights for prevention. Comprehensive adjustment models should also be more 

widely employed to ensure confounding variables are taken into account for all associative PM10 
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studies. This will allow for more robust and reliable risk estimates. By taking these additional 

actions, researchers can improve the accuracy and application of the findings, and clarify the link 

between exposure to PM10 and the risk of MI. 

 

5. Conclusions 

The results of this meta-analysis showed that there is an increased risk of MI with a 

10μg/m3 increase in PM10 exposure (OR=1.01; 95% CI:1.00 - 1.02). Risk of MI is also marginal 

between PM10 and PM2.5 exposure. It is important to recognize and assess the CV impacts of 

PM10 alongside other pollutants. This can help guide environmental policy, individual-level 

preventive measures, and global public health initiatives focused on lessening the disease burden 

of MI caused by PM10 exposure.  
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