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Abstract: In early 2020, the Coronavirus Disease 19 (COVID-19) rapidly spread across the United 1

States (US), exhibiting significant geographic variability. While several studies have examined the 2

predictive relationships of differing factors on COVID-19 deaths, few have looked at spatiotemporal 3

variation at refined geographic scales. The objective of this analysis is to examine this spatiotemporal 4

variation in COVID-19 deaths with respect to association with socioeconomic, health, demographic, 5

and political factors. We use multivariate regression applied to Health and Human Services (HHS) 6

regions as well as nationwide county-level geographically weighted random forest (GWRF) models. 7

Analyses were performed on data from three separate time frames which correspond to the spread of 8

distinct viral variants in the US: pandemic onset until May 2021, May 2021 through November 2021, 9

and December 2021 until April 2022. Multivariate regression results for all regions across three time 10

windows suggest that existing measures of social vulnerability for disaster preparedness (SVI) are 11

predictive of a higher degree of mortality from COVID-19. In comparison, GWRF models provide a 12

more robust evaluation of feature importance and prediction, exposing the value of local features 13

for prediction, such as obesity, which is obscured by coarse-grained analysis. Overall, GWRF results 14

indicate that this more nuanced modeling strategy is useful for determining the spatial variation in 15

the importance of sociodemographic risk factors for predicting COVID-19 mortality. 16

Keywords: COVID-19 Mortality; Social Vulnerability Index, Geographically Weighted Random 17

Forest Model 18

1. Introduction 19

The burden of COVID-19 in the United States from the onset of the pandemic through early 20

2022 was unevenly distributed throughout the population[1,2]. The elderly were identified 21

as being particularly vulnerable to severe disease and death from the outset of the pandemic 22

[3,4]. Co-morbid conditions such as obesity, diabetes, heart disease, and hypertension are 23

also significant risk factors for COVID-19 mortality [5,6]. However, these observations 24

are insufficient to explain the wide variation in COVID-19 burden. In this study, we 25

analyze the importance of social vulnerability, demographic and health parameters, and 26

political geography in predicting COVID-19 county-level death rates in the United States. 27

Specifically, we use a spatially-explicit modeling technique in order to improve the accuracy 28

of prediction at a geographically fine scale. 29

A potential explanation for the extreme variability in COVID-19 burden across the U.S. 30

is the high variability of social risk factors within the population [7–9], with one of the 31

most notable social divides being the urban/rural disparity in the U.S. In particular, rural 32

communities have been identified by the World Health Organization (WHO) as being 33

disproportionately elderly and having fewer healthcare resources [10]. Similarly, these 34
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communities have increased rates of poverty, with 15.4 percent of rural populations liv- 35

ing below the federal poverty line, versus 11.9 percent in urban areas [11]. The U.S. 36

urban/rural disparity is further evidenced by examining insurance access [12], telecommu- 37

nications/broadband access [13], housing [14], and political ideology [15]. We hypothesize 38

that modeling these social factors using cutting-edge fine-scale spatial models provides a 39

richer, more nuanced understanding of the association of these disparities with COVID-19 40

mortality. 41

Further complicating the epidemiology of COVID-19, political ideology has been identified 42

as an unexpectedly effective predictor for COVID-19 mortality [16]. Given the importance 43

of trust [17] in public health messengers in driving protective behavior, politicization of 44

the issue is particularly problematic. Specifically, political ideology has been tied to the 45

adoption of protective behaviors (i.e., masking, social distancing, vaccination) and created 46

a patchwork of federal, state, and local policies [18] combined with individual responses to 47

these policies [17]. The importance of political ideology may be explained in part by the 48

ability of groups to recruit followers and refine messaging via online platforms; this ability 49

to create “echo chambers” has increased due to the wide adoption of social media and the 50

increase of remote work, school, and social activities[19]. If group messaging reinforces 51

actions counter to recommended health behavior, populations which are most at risk bear 52

the brunt of these consequences (i.e., rural communities). We therefore include measures of 53

political leaning in our models. 54

Other researchers have also attempted to use spatial models to predict COVID-19 outcomes. 55

For example, Anderson et al. [20] used cluster analysis to evaluate spatial patterns of 56

transmissibility and their relationships to social health parameters. They later combined 57

this approach with a three-stage regression technique, to explore impacts to mortality and 58

morbidity [21]. In another work, Sun et al. [22] looked at spatial lag aspects of COVID-19 in 59

the United States, compared to county-level demographic variables. Similarly, Mollalo et al. 60

[23,24] evaluated differing regression-based approaches to examine spatial heterogeneity, 61

while Xie et al. [25] applied exploratory spatial analysis methods to find associations with 62

demographic and social variables. A common theme for all of the above research efforts 63

were the difficulties in optimizing spatial interactions, in combination with time scales. 64

To address these concerns, we use a modeling strategy (Figure 1) which compares more 65

traditional (linear) regression to geographically weighted random forests (GWRF), and 66

study the spatial autocorrelation of these factors using a Moran’s I analysis. 67

A GWRF is a statistical model that combines the strengths of two well-established tech- 68

niques: Geographically Weighted Regression (GWR) and Random Forests (RF). GWR is 69

a type of spatial regression model that allows the estimation of regression coefficients 70

that vary spatially. This permits the model to capture local patterns in the data, which is 71

particularly useful when dealing with data that exhibit spatial heterogeneity [26]. However, 72

GWR is limited in its ability to handle complex nonlinear relationships between variables. 73

Comparatively, a RF is an ensemble machine learning model that can handle complex non- 74

linear relationships between variables and has the ability to capture variable interactions 75

[27]; RF models are a popular choice for large data sets due to low computational costs. The 76

GWRF modeling approach combines the strengths of GWR and RF by weighting the RF 77

model locally, allowing it to capture local patterns in the data while also handling complex 78

nonlinear relationships [28]. While GWRF modeling is not suited for hypothesis testing 79

or causal inference, the method has the ability to handle spatial heterogeneity in data and 80

to provide predictions that are locally accurate. The value of the GWRF approach lies in 81

its ability to provide accurate and locally relevant predictions for complex spatial data, 82

and is particularly useful for environmental and geographical applications where spatial 83

heterogeneity is a major concern, such as the COVID-19 pandemic data [29]. 84
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Figure 1. Analysis scheme. Our approach examines fifteen (15) different county-level independent
variables, in relationship to cumulative population adjusted deaths during a pandemic wave. We
regress our variables at the regional level, and subsequently use them for spatially weighted random
forest models. In total, thirty-three (33) models were run (a national regression model, nine regional
regression models, and a national GWRF model for each of the three time periods). We also evaluate
spatial heterogeneity at a county level by using local and global Moran’s I values, with Monte Carlo
simulations performed to minimize error [30,31].

2. Materials and Methods 85

We initially performed exploratory data analyses of fatality rates and deaths across time, for 86

the entire United States, as well as by region. Based on this review of the data, we developed 87

a set of modeling frameworks for three time frames, approximately corresponding to the 88

Alpha, Delta, and Omicron waves in the United States. For our analyses, we define: the 89

Alpha wave as the period from the beginning of the pandemic through the universal 90

availability of COVID-19 vaccines to adults in the United States (January 2020–April 2021); 91

the Delta wave as the period from May 2021–November 2021; and lastly, the Omicron 92

wave as the shortest period December 2021–April 2022. The response variable in all of our 93

analyses is the cumulative US county-level COVID-19 deaths, adjusted for population, for 94

the full time period of interest. Fifteen (15) predictor variables are evaluated as county-level 95

measures: socioeconomic status, household composition and disability, minority status and 96

language, housing type and transportation, voting percentage, vaccination rate estimates 97

as of April 2022, population density, obesity, unemployment, uninsured adults, social 98

associations, diabetes, food insecurity, broadband access, and the percentage of population 99

over 65. Correlations among these variables are provided in Table S4 of the supplemental 100

appendix. 101
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We first evaluate spatial autocorrelation of all variables, for all three time frames, using 102

Moran’s I. We then use two different modeling approaches in our analyses. The first 103

approach uses multilinear Poisson regression for nine (9) regional areas of the United States, 104

plus the entire United States as a singular model, for a total of ten (10) distinct county 105

groupings. Regional models are based on Health and Human Services (HHS) divisions, 106

which were selected as a generalized policy/funding separation (HHS, http://hhs.gov). 107

Regions 1 and 2 are combined into one region because of the small number of states in 108

Region 2. The second approach is a more novel geographically weighted random forest 109

modeling technique for the United States as a whole. Each model is evaluated for each of 110

the pandemic time periods, for a total of thirty-three (33) models (Fig.1). The full set of 111

these analyses can be seen in the associated supplemental materials. 112

Data Assembly 113

Predictor data are collected from a number of sources: variable descriptions and sources 114

are listed in Table 1. All data were normalized based on a 0 to 1 scaling structure. Figure 2 115

shows the spatial distributions of a select set of independent variables. Of particular note 116

are issues of missing data related to vaccinations. Early in the pandemic, a number of states 117

(Texas, New Hampshire) failed to report vaccination data: as such, assessing vaccination 118

rates early on (2020) is not possible for the entire United States. Because of this, we use 119

county-level vaccination rates (defined as the percentage of individuals receiving at least 120

one dose of a vaccine) as of April 2022; thus our vaccination measure reflects the portion 121

of the population willing to (eventually) seek out a vaccine, rather than the portion of the 122

population actually immunized at a particular time. Additionally, a number of sparsely 123

populated counties (<20) have reporting errors with regards to deaths and case counts. In 124

order to appropriately fit our models, these counties are excluded from our analyses. 125

Variable Name Description Source
Deaths Cumulative deaths in time period per population New York Times[32]
Socioeconomic Status Employment, Income, Education Standardized composite

measures calculated at the
census tract level for
emergency management

CDC SVI 2018 [33]Household Composition & Disability Age, Disability, Single Parent
Minority Status & Language Race, English Proficiency

Housing Type & Transportation Mobile Homes, Multi-Unit
No Vehicle, Crowding, Group

Obesity Incidence per population via CDC Behavioral Risk Factors Surviel-
lance System (BRFSS)

U Wisconsin
Population Institute
County Health
Ranking Model[34]

Diabetes
Unemployment Incidence per population via Bureau Labor & Statistics

Uninsured
Incidence per population via Census Small Area Health Insurance
Estimates Program (SAHIE)

Social Associations Incidence per population of membership in clubs, churches, etc.
Food Insecurity Relative index via Feeding America

Broadband Access
Incidence per population with no access via Census American
Community Survey 2020

Population Density Relative population per unit area, normalized 2020 US Census[35]
Voting Percent 2020 Presidential vote for Biden MIT Election Lab [36]
Vaccination Incidence per population of at least one vaccination by April 2022 CDC[37]
Age Over 65 County level population over age 65 US Census[35]

Table 1. Description and Sources of Model Variables
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(a) Socioeconomic Status (b) Household Composition

(c) Democratic Voting Pct (d) Vaccination Rate

(e) Food Insecurity (f) Uninsured Adults

(g) Age over 65 (h) Diabetes

Figure 2. Select predictor variables mapped for the entire United States. a) Socioeconomic status:
SVI representing income, poverty, employment, and education. b) Household composition: SVI
representing levels of single parent households, disabilities, or those with children or the elderly.
c) Democratic voting percentage: Percentage of democratic vote from the 2020 general presidential
election. d) Vaccination rate: Percentage of individuals in a county with at least one vaccine dose, as
of April 1, 2022. e) Food insecurity: Percentage of households with insufficient access to food, or food
of an adequate quality. f) Uninsured adults: Percentage of adults that are uninsured. g) Age over 65:
Percentage of individuals over age 65. h) Diabetes. Percentage of adults that have diabetes. Maps for
all fifteen predictor variables can be found in the associated supplemental materials.
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Spatial Autocorrelation 126

The Moran’s I statistic,

I =
n
W

(
n

∑
i=1

n

∑
j=1

wij(xi − x)
(
xj − x

))( n

∑
i=1

(xi − x)2

)−1

measures spatial autocorrelation[30,31,38]. Here n is the number of spatial units, wij are 127

spatial weights, x is the variable being tested for autocorrelation with mean x, and W = 128

∑i,j wij. The Moran’s I weight matrix specifies the degree of spatial proximity between pairs 129

of spatial units, and can be calculated using contiguity-based weighting, network-based 130

weighting, or distance-based weighting. Here we use contiguity-based weighting, which 131

can be described as a n × n positive symmetric matrix W, where the element of this matrix 132

is wij at location i, j for n locations. There are a number of contiguity weight approaches, 133

including linear contiguity, rook contiguity, bishop contiguity, and queen contiguity [39]. 134

Here we use queen contiguity, which creates a neighborhood list based on a common edge 135

or a common vertex. Queen contiguity is recommended when irregular polygons (e.g. 136

counties) are used [40]. This provides a method to evaluate spatial patterns in terms of 137

positive (clustering), negative (dispersion), or neutral (random) spatial autocorrelation, 138

with a range from -1 to 1. By examining Local Moran’s I values for each observation (in this 139

instance, an individual county), we can look at clustering in combination with other factors 140

(e.g. voting and mortality). Such comparisons across differing time frames give insight into 141

how COVID-19 deaths may be spatially correlating with covariates [41]. 142

Regression Analysis and Geographically Weighted Random Forest 143

We construct Poisson regression models applied to HHS regions (with population as an 144

offset) for each of the three time windows (Alpha, Delta, and Omicron), using all fifteen 145

variables, with cumulative county-level death counts as the dependent variable. Normality 146

assumptions are evaluated, including residual and partial residual/component residual 147

plots, as well as standardized beta coefficients. 148

To address some of the limitations of the regression analysis, a modified novel approach of 149

ensembled regression decision trees (random forest) were used. Regression decision trees 150

are a method of constructing a set of decision rules on a predictor variable [42–44] that is 151

continuous (versus categorical). These rules are constructed by recursively partitioning the 152

data into successively smaller groups with binary splits based on a single predictor variable, 153

with the goal of encapsulating the training data in the smallest possible tree [45]. Random 154

forest, or ensembled decision trees, are a combination of many decision tree predictors, 155

where each tree depends on the values of a random vector, sampled independently and 156

with the same distribution for all trees in the forest [27]. Random forest modeling reduces 157

the potential for over-fitting through the use of bootstrap aggregation, averaging across 158

many trees, and provides a level of feature importance for assessing predictor power[42,46]. 159

Geographically weighted random forest (GWRF) is a modified version of the classic random 160

forest approach, which incorporates spatial non-stationarity, as part of spatially weighted 161

regression (SWR) techniques [28]. GWRF fits a sub-model for each observation in space, 162

taking into account neighboring observations (in this instance, observations are represented 163

as counties), and is based on Fotheringham, Yang and Kang’s [26] work on spatially-explicit 164

coefficient modeling. The main difference between a traditional (linear) SWR and GWRF 165

is that we can model non-stationarity within a non-linear model, which minimizes over- 166

fitting and thus relaxes the assumptions of traditional Gaussian statistics. As part of our 167

GWRF construction, we utilized 10-fold cross validation, a model validation technique 168

used to assess the generalizability of the model. Model construction for this analysis used 169

the recursive partitioning and regression trees package (rpart), as well as the gfr package 170

within R [42,46]. For the three sets of models developed (Alpha, Delta, and Omicron wave 171

time periods), external cross validation was performed, using an adaptive kernel distance 172
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weighting function across a range of bandwidth values (number of surrounding counties, 173

which ranged from 3 to 30). 174

The adaptive kernel function as part of the GWRF model is defined as:

Wij = exp
(
−
|dij|
bw

)

where wij is the weight assigned to the observation j for the estimation of i, and dij is the 175

distance between j and i, and bw is the bandwidth (number of surrounding counties). Each 176

variant model was run for progressively larger bandwidths, in combination with inversely 177

varying global and local model weighting (local weighting at .25, .50, .75, and 1, combined 178

with global weighting at 1, .75, .50, .25), to evaluate both root mean square error (RMSE) as 179

well as mean absolute errors (MAE). Using this optimization method, we were able to select 180

the model parameters which minimized error for each variant window (Supplemental 181

Figures S23, S27, S31). 182

Delta Wave: Moran Scatterplots

(a) Population Adjusted Deaths (b) Household Composition

(c) Minority Status and Language (d) Diabetes

Figure 3. Select spatial autocorrelation Moran’s scatterplots for the Delta wave time window. Each
point represents an individual county value. a) COVID-19 Population adjusted deaths Moran’s
scatterplot. Color range depicts voting. b) Household Composition Moran’s scatterplot. Color range
depicts COVID-19 population adjusted deaths. c) Minority Status and Language Moran’s scatterplot.
Color range depicts COVID-19 population adjusted deaths. d) Diabetes Moran’s scatterplot. Color
range depicts COVID-19 population adjusted deaths. Below each Moran plot is a loess plot of
the main variable (x-axis) in comparison to the categorized variable (y-axis). Moran’s plots for all
variables are available in the supplemental materials.

3. Results 183

All timeframes (Alpha, Delta and Omicron) indicated an overall positive spatial clustering, 184

with moderate outliers, for COVID-19 deaths (localized Moran’s I, M = 0.462). By plotting 185

deaths vs spatially lagged values (Fig. 3a) we see a progression from negative spatial 186

autocorrelation for more liberal counties (blue counties, lower left quadrant) to positive 187
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spatial autocorrelation for more conservative counties (red counties, upper right quadrant). 188

Outliers were overwhelmingly conservative-voting counties, which suggests that conser- 189

vative counties are having a stronger influence over model fit. In addition, Monte Carlo 190

simulations confirmed strong positive spatial autocorrelation (spatial clustering), with a 191

density peak to the left of mean cumulative deaths values, for all three time windows. 192

When examining the clustering behavior for independent variables, we see varying degrees 193

of positive spatial clustering, as measured by the Moran’s I statistic. Fig. 3b shows that 194

household composition is spatially correlated and that increased death rates were observed 195

in poorer counties. Similar effects can be seen for the other SVI measures (Fig. 3c) as well 196

as known health risk factors, such as diabetes (Fig. 3d) A number of variables—uninsured 197

adults, social associations, unemployment—show no consistent pattern of deaths in relation 198

to spatial clustering. See Part 4 of the supplementary materials for Moran’s scatterplots for 199

each of the variables in all three waves. 200

Regression analysis results were performed for the coterminous United States, as well 201

as by region, with full results found in the provided supplemental materials. The R2
202

for regional US regression models varied across the differing variant windows (Alpha 203

R2 = 0.41 (Region 7) to R2 = 0.83 (Region 9); Delta R2 = 0.65 (Region 6) to R2=0.90 204

(Region 3); Omega R2=0.47 (Region 7) to R2 = 0.90 (Region 9). Overall, regional R2 were 205

moderately higher than national regression model values (US Alpha R2 = 0.416; US Delta 206

R2 = 0.675; US Omicron R2 = 0.505). Across all variant windows, region 10, regions 1 and 207

2 and region 9 consistently performed best, with region 4, region 8 and region 7 having 208

the lowest R2 values (Fig. 4). Which predictors were significant varied considerably by 209

region and time window, but several patterns were seen. For example, uninsured adults 210

and housing composition were significant for all time windows for region 6; diabetes was 211

significant across all time windows for region 4; voting was significant for singular time 212

windows for a number of regions, with regions 9 and 10 having two time windows that 213

were significant; and vaccination rate, as a proxy for protective health behaviors, became 214

non-significant across most regions as the pandemic progressed, except for region 5. 215

Geographically weighted random forest outputs for the three models in question (Alpha, 216

Delta, Omicron), optimized for bandwidth selection using local/global model root mean 217

square errors (RMSE), performed well in tracking general spatial trends, while overesti- 218

mating extreme values (Fig. 5). Global out of bag (OOB) R2 for the three models were 0.40 219

(Alpha), 0.45 (Delta), and 0.34 (Omicron), while localized R2 by county indicated a clear 220

variation in predictive power, with values as high as 0.90. The R2 values in this instance 221

are generated by dividing the vector of mean square errors by the variance of y, then 222

subtracting from 1. Given that the GWRF model approach permutes across a large number 223

(500+) of decision trees based on an adaptive kernel function, there is the possibility of 224

models performing worse than a random outcome (resulting in some R2 values below 225

zero) [47]. Predictive strength for early in the pandemic (Alpha) was strongest in coastal 226

Eastern regions, the Southwest, as well as Pacific Northwest coastal regions. We see a shift 227

of model performance during the Delta wave, with the west coast regions, the Midwest, 228

and Colorado being highest in terms of predictive power. For Omicron, predictive strength 229

had a more varied spatial distribution, with clusters in Southern California and Arizona. 230

Optimized bandwidth selection (number of counties included in individual county RF 231

model runs) ranged from as high as 24 (Alpha), to 12 (Omicron). 232

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 28, 2024. ; https://doi.org/10.1101/2023.07.21.23292785doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.21.23292785
http://creativecommons.org/licenses/by-nc-nd/4.0/


Version February 28, 2024 submitted to Microorganisms 9 of 15

Figure 4. Significant variables for each regional model, as well as R2 values, per variant time window.
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For GWRF, mapped feature importance values (Fig. 6) provide spatial patterns for predictor 233

variables across all time variant models. For this analysis, feature importance is defined 234

as the average increase in squared residuals of the test dataset, as variables are randomly 235

permuted [42]. Higher values indicate a greater importance of the variable on the model 236

performance. Given this random permutation, there can be instances where the mean 237

square error of a random variable may be higher than a selected variable, generating 238

a negative value. Model results indicate that diabetes feature importances were highly 239

impactful for predicting COVID-19 death in the southwestern portion of the United States 240

across all three time windows; similarly, vaccination rates were impactful in the northern 241

Utah region, across both Alpha and Delta time windows. Household composition influence 242

were high in the Utah/Colorado region for Alpha and Delta time windows as well, while 243

voting was variable across all three variants, with small hotspots in many rural communities. 244

Obesity also provided interesting spatial patterns, with uniquely high feature importance 245

values in the northeastern portions of the United States (Maine). All feature importance 246

plots can be found in the attached supplemental materials (Supplementary Figures S26, 247

S30, and S34). 248

GWRF Model Results

(a) Alpha wave - local R2 (b) Alpha wave - global prediction (c) Alpha wave - actual values

(d) Delta wave - local R2 (e) Delta wave - global prediction (f) Delta wave - actual values

(g) Omicron wave - local R2 (h) Omicron wave - global prediction (i) Omicron wave - actual values

Figure 5. Geographically weighted random forest model results for Alpha, Delta, and Omicron wave
time windows. Each panel indicates localized R2 values, global prediction results, and observed
cumulative deaths by county (adjusted for population). a) thru c): Panel plot of Alpha wave results.
d) thru f): Panel plot of Delta wave results. g) thru i): Panel plot of Omicron wave results. Full model
results for all waves can be seen as part of the supplemental materials.

Comparisons of regression results with random forest outputs suggest that regional bound- 249

aries in the linear model may be limiting predictive capabilities, given its artificial geo- 250

graphic structure. While a number of the regional outputs indicate moderately performing 251

models (region 10 (Pacific Northwest), region 1 and 2 (Northeast), region 9 (West), a major- 252

ity of the regional regression models had moderate to poor predictive power. Temporal 253

patterns of model performance show higher R2 values in the Alpha and Delta waves. This 254

suggests that early in the pandemic, typical sociological, economic, political, and health 255
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parameters had a greater effect on predicting deaths—yet over time, external effects became 256

more influential. Such effects might include: varying policy response, changing economic 257

factors, social media misinformation, and increasing population immunity either through 258

exposure to the virus, vaccination, or a combination. Conversely, our customized GWRF 259

nationwide model performed considerably better, with feature importance at a county 260

level indicating clustering patterns which do not conform to HHS regional boundaries. 261

Global model results had R2 values between 0.88 and 0.90. Out of bag R2 values for GWRF 262

outputs ranged from 0.34 to 0.45, suggesting that, while general trends can be seen, the 263

the model is not able to accurately predict the cumulative deaths for counties in the tails 264

of the distribution. Feature importance rankings displayed interesting spatial patterns 265

(See Supplementary Figs. S26, S30 and S34). Urbanized centers showed higher model 266

influence for minority status and language across all three time windows; socioeconomic 267

measures had the most effect on model performance in rural areas, particularly in the 268

western portions of the United States. Voting showed considerable heterogeneity in terms 269

of model influence, with small pockets of increase in rural regions as well. 270

Delta Wave: Random Forest Feature Importance

(a) Democratic Voting Percentage (b) Housing Composition

(c) Minority Status and Language (d) Diabetes

Figure 6. Delta wave random forest feature importance for housing composition, diabetes, minority
status and language, and democratic voting percentages (2020 US presidential election). Other feature
importance maps can be found in the associated supplemental materials.

4. Discussion 271

The United States recorded over 1.1 million excess deaths during the period of the COVID- 272

19 pandemic from January 2020 through March 2022 [48], with some communities experi- 273

encing much greater losses than others. While our regional regression models were able 274

to explain a large portion of the variation in many cases, our geographically weighted 275

approach applied with non-parametric random forest methods better captures variation 276

corresponding with geographic heterogeneity than the regional regression models. For 277

example, in Region 3 not a single variable was significant despite the high R2 values (Figure 278

4). Applying spatial modeling methods exposes spatial relationships among predictor vari- 279

ables which are not evident through more traditional modeling techniques which aggregate 280

effects across the modeled region. 281

Political ideology was identified early in the pandemic as an atypical predictor of deaths 282

due to COVID-19 [49]. Our work supports the finding that political ideology, as measured 283
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by voting data, serves as an important feature for predicting variation in COVID-19 deaths 284

in some areas and at certain time intervals, such as the western United States during 285

the Delta wave (Figure 6). Population adjusted deaths for all three time frames show 286

positive spatial autocorrelation—with conservative voting from the 2020 general election 287

aligned with higher deaths, and democratic voting aligned with lower deaths (Fig. 3a). 288

This reinforces previous research which indicates that stronger exposure to conservatism 289

corresponds to higher age-standardized COVID-19 mortality rates [50]. Results from our 290

GWRF modeling also indicate an increasing interaction between political ideology and the 291

changing COVID-19 climate over time as the feature importance of voting increased for the 292

Delta and Omicron waves (Figure 6). This effect, occurring after many local public health 293

restrictions were lifted and the vaccines were widely available, was especially notable in 294

areas of the western and northeastern United States. 295

We expected that measures of obesity and diabetes would be important for predicting 296

deaths, as these health factors are known to be strongly associated with increased risk of 297

morbidity and mortality from COVID-19 [51]. Indeed, spatial trends for both obesity and 298

diabetes in all waves indicate that increasing spatial autocorrelation corresponds to a higher 299

COVID-19 death rate, as seen for the Delta wave in Figure 3d. However, the only region for 300

which one or both of these variables was significant in the Poisson regression models in 301

all waves was the southeast (Region 4). This demonstrates that important vulnerabilities 302

that may not be aggregated across the region can still be detected by our GWRF feature 303

importance plots. 304

All of the composite SVI measures, which were constructed for use by FEMA for responding 305

to disasters [52], showed a positive association with deaths in the Moran’s I plots in the 306

first two waves. This relationship was less marked for the Omicron period, with only the 307

measures corresponding to socioeconomic status and minority populations continuing the 308

pattern. This supports previous findings [53,54] that these measures are also useful for 309

predicting clusters of counties with high vulnerability to pandemic threat. Additionally, 310

spatial autocorrelation of both dependent and independent variables show clustering 311

patterns which suggest that particular factors may have differing spatial influences on 312

deaths on whole, see Part 4 of the Supplement. For example, for vaccination rates we see 313

decreasing spatial autocorrelation with increasing deaths, especially in the Delta Wave 314

(Figure S20), while for diabetes we see opposite relationship (Figure 3d). Overall, spatial lag 315

variations between independent variables is reflective of local socioeconomic and cultural 316

views which can dampen (or exacerbate) the effects of COVID-19 associated factors (e.g. 317

deaths) [55]. 318

Select regional analyses provide insights into the value of a spatially explicit modeling 319

approach. For example, variable importance values for obesity across the Delta and 320

Omicron waves show a unique hotspot for the state of Maine. Given Maine’s demographics 321

as older, rural, yet politically progressive, model results suggest that obesity has a uniquely 322

strong influence on predicting COVID-19 associated deaths, which have associations with 323

statewide policy or regulatory components [56]. Comparatively, older populations (over 324

65) had a moderately stronger influence on model performance in southeastern rural areas 325

(northeastern Georgia, northern Mississippi) across all three variant time windows. This 326

pattern was similar to other regions of the United States, where older populations in rural 327

regions showed higher levels of model influence (central Texas, northeastern Pennsylvania). 328

Such patterns reinforce understandings of rurality on health outcomes, which may be 329

related to poverty and preventative care access [4]. 330

One limitation of the GWRF models is their ability to predict extremes of both high and 331

low levels of deaths. This may be due to confounding variables which are not included in 332

the model which could include, but are not limited to, health parameters (hypertension, 333

cardiovascular disease) and hospitalization effectiveness. Limiting model time windows to 334

the three main variant waves could also be a concern. Future analyses could address these 335
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issues by incorporating autoreggressive integrated moving average (ARIMA) techniques, 336

in combination with spatially-focused random forest, or potentially other spatiotemporal 337

algorithms (or an ensemble of multiple algorithmic techniques) [57]. 338

Early in the pandemic, deaths were generally higher in more liberal, population dense 339

regions of the United States. Over time, we see a shift in deaths to more conservative, rural 340

communities, which is likely a combination of vaccination rates and the overall spread of 341

COVID-19 to lesser populated regions. We also see specific regions within the United States 342

(southern Mississippi Delta region, southwestern portions of Arizona, Colorado, and New 343

Mexico) that show variable clustering as well as high levels of model predictive power 344

(Fig. 5). These clusters span multiple HHS boundaries, which helps to explain the weaker 345

regression modeling performance for certain sections of the country. Given spatial and 346

temporal variation of deaths and the inability for linear modeling techniques to effectively 347

perform, policy decisions for future pandemic responses should consider spatially and 348

temporally sensitive modeling efforts to assess public need [29]. In particular, collaboration 349

across boundaries for health regions, which normally operate independently for funding 350

allocations and policy decision, may be necessary for successful interventions. Our GWRF 351

results indicate a considerable difference in spatial feature importance patterns between 352

all three wave events, which align with more qualitative examinations of the pandemic 353

response in the United States. 354
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