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Computational pathology is revolutionizing the field of
pathology by integrating advanced computer vision and
machine learning technologies into diagnostic workflows. It
offers unprecedented opportunities for improved efficiency in
treatment decisions by allowing pathologists to achieve higher
precision and objectivity in disease classification, tumor
microenvironment description and identification of new
biomarkers. However, the potential of computational pathology
in personalized medicine comes with significant challenges,
particularly in annotating whole slide images (WSI), which is
time-consuming, costly and subject to inter-observer
variability. To address these challenges, Self-Supervised
Learning (SSL) has emerged as a promising solution to learn
representations from histology patches and leverage large
volumes of unlabelled WSI. Recently, Masked Image
Modeling (MIM) as a SSL framework has emerged and is now
considered to outperform purely contrastive learning
paradigms. In this work, we therefore explore the application
of MIM to histology using iBOT, a self-supervised
transformer-based framework. Through a wide range of 17
downstream tasks over seven cancer indications, both at the
slide and patch levels, we provide recommendations on the
pre-training of large models for histology data using MIM.
First, we demonstrate that in-domain pre-training with iBOT
outperforms both ImageNet pre-training and a model
pre-trained with a purely contrastive learning objective, MoCo
v2. Second, we show that Vision Transformers (ViT) models,
when scaled appropriately, have the capability to learn
pan-cancer representations that benefit a large variety of
downstream tasks. Finally, our iBOT ViT-Base model (80
million parameters), pre-trained on more than 40 million
histology images from 16 different cancer types, achieves
state-of-the-art performance in most weakly-supervised WSI
classification tasks compared to other SSL frameworks
available in the literature. This paves the way for the
development of a foundation model for histopathology. Our
code, models and features are publicly available at
https://github.com/owkin/HistoSSLscaling.
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1 Introduction
Histopathology plays a crucial role in disease diagnosis,
treatment planning, and medical research. In clinical routine
workflows, pathologists analyze histology slides manually to
identify cellular abnormalities, tissue patterns and disease

markers. Computational pathology has brought a paradigm
shift in how histology is approached, leveraging advanced
technologies such as Deep Learning to enhance accuracy,
efficiency, and reproducibility in the analysis of histological
images. The application of computational pathology is
revolutionizing pathology, transforming the way diseases are
detected, classified and treated (1). Additionally,
computational pathology offers the potential to quantify
tumor microenvironments, discover new biomarkers and
improve patient and disease stratification (2, 3).
In the last decade, Deep Learning has made significant
progress in medical image analysis. These advancements
have enabled researchers to leverage massive amounts of
annotated datasets to improve patient outcomes (4) and
integrate artificial intelligence-based solutions into clinical
workflows (5). However, labeling large amounts of data can
be challenging, especially when dealing with medical data.
Indeed, annotating WSI at the slide or pixel level can be
tedious and time-consuming for trained pathologists.
Moreover, the diversity of cancer types and tissue
preparation protocols further complicates the annotation task
as it likely introduces variability in color, texture, staining,
and cellular morphology.
Motivated by the lack of large-scale annotated datasets, the
field of computer-aided medical imaging has witnessed a
widespread adoption of transfer learning from ImageNet (6).
A number of studies have successfully applied transfer
learning to digital pathology (7–11). As a matter of
fact, convolutional neural networks (CNN) trained on the
ImageNet database have learnt robust visual representations
from natural images and serve as powerful feature extractors
for histology images. However, relying solely on
out-of-domain pre-training such as ImageNet has
limitations, particularly due to domain shift, lower color
variation and no canonical orientation (12). Histology
images exhibit complex and specific features, including
cellular structures, tissue morphology and staining patterns,
which may not be adequately captured by models
pre-trained on ImageNet (13).
In recent years, SSL methods have made spectacular
progress on ImageNet, bridging the gap with
fully-supervised methods and eliminating the need for
labeled data. SSL methods allow learning relevant
representations from unlabeled images by formulating and
solving a pretext task (14). Recently, these methods have
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Fig. 1. Nested cross-validation performance of our ViT-B model pre-trained with iBOT on slide-level downstream tasks against other self-supervised frameworks. We take
the best performance achieved among five multiple instance learning algorithms. A 5 × 5 nested cross-validation is applied without repetition. We report the average test
metrics and standard deviation on the outer folds. [MSI], [HRD], [Ctype], [Mol], [Hist] and [OS] denote respectively: MSI, HRD, Cancer Type, Molecular Subtyping, Histological
Subtyping classification, and Overall Survival prediction. ROC AUC score and Harrell C-Index ([OS] suffix) are shown for classification and survival tasks, respectively. Best
viewed in color.

been used to leverage vast amounts of unlabeled WSI and
perform unsupervised feature learning (13, 15–24). Recent
studies have successfully applied and tailored existing SSL
frameworks to histology images; see (25) for an extensive
review. However, the majority of these studies have focused
on small ViT (26) or CNN models pre-trained with
self-distillation and contrastive learning (CL), especially
through DINO (27) or MoCo v2 (28). In this work, we show
that leveraging more recent advances in SSL, especially
masked image modeling with ViT models, is beneficial for
histopathology and outperforms both ImageNet pre-training
and a model pre-trained with a purely contrastive learning
objective, e.g., MoCo v2. Notably, we train a large ViT with
more than 300M parameters, which is to the best of our
knowledge the largest model ever trained on histology
images.

Inspired by BERT (29) and Masked Language
Modeling (MLM), MIM (26, 30) is another recent
emerging SSL paradigm which has become popular due to
its impressive fine-tuning performance on a variety of
downstream computer vision tasks (30–33) and its
robustness against image artifacts (33). Despite its potential
in digital pathology, the application of MIM to histology
data remains largely unexplored. Indeed, despite high
fine-tuning capabilities, models pre-trained with MIM also
exhibit poor linear probing performance (34), which is
critical in digital pathology where most applications involve
the aggregation of pre-extracted features for outcome

prediction. By combining MIM and CL, the iBOT
framework (image BERT pre-training with Online
Tokenizer, (33)) addresses this limitation. iBOT takes
advantage of the architecture of ViT, their effectiveness on
computer vision tasks and performs self-distillation both on
masked image patches to capture low-level details and on
the class token to acquire high-level visual semantics. In
addition to achieving state-of-the-art results in downstream
tasks like classification or semantic segmentation, iBOT
exhibits high fine-tuning and linear probing performance in
low data regime, and robustness properties against various
perturbations such as background change and occlusion.
Those properties are highly relevant for digital pathology.
Additionally, recent studies (35) have shown promising
results regarding the scalability of MIM on ImageNet. Still,
to the best of our knowledge, no previous study has
investigated whether MIM pre-training on histology data can
benefit from larger architectures and larger pre-training
datasets, thereby establishing the possibility of a foundation
model specifically for histology.
In this paper, we investigate the application of MIM to
histology images using the ViT-based iBOT framework and
provide insights on how to select the model architecture
based on the amount of data available. Our main
contributions can be summarized as follows:

• We assess the representation capability of iBOT
through a large panel of 17 downstream tasks over
seven cancer indications, covering both
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2.1 Self-Supervised Learning for Digital Pathology

weakly-supervised WSI classification and supervised
patch classification. These downstream tasks consist
in predicting genomic alterations such
as Microsatellite Instability (MSI) or Homologous
Recombination Deficiency (HRD), histological and
molecular subtypes classification, or overall
survival (OS) prediction; See figure 1. All slide-level
experiments were conducted through nested
cross-validation;

• We demonstrate that in-domain pre-training with
iBOT outperforms ImageNet pre-training on
comparable model architectures;

• We show that iBOT is beneficial for histopathology,
outperforming other in-domain pre-trained SSL
networks on weakly-supervised tasks;

• We analyze the scalability of MIM through three axes:
pre-training dataset size (4M1 to 43M patches),
pre-training dataset diversity (colon-specific and
pan-cancer cohorts) and architecture (22M to 307M
parameters). Based on our experiments, we provide
off-the-shelf guidelines on MIM pre-training with
histopathology images;

• We provide slide-level features of our iBOT
pre-trained models along with detailed code, weights,
and documentation to reproduce our results2.

2 Related Work
2.1 Self-Supervised Learning for Digital

Pathology
In recent years, the field of digital pathology has remarkably
benefited from advances in self-supervised learning. SSL
has allowed researchers to pre-train large neural networks
from massive databases of unlabeled WSI, such as The
Cancer Genome Atlas (TCGA) which includes nearly
30,000 WSI from 25 anatomic sites and 32 cancer subtypes
along with associated clinical, genomic, and radiomic data.
In particular, CL methods such as SimCLR (36) and MoCo
v2 have become quite popular. These methods rely on the
idea of bringing closer, in an embedding space, pairs of
similar images (i.e., positive pairs) and pushing further apart
pairs of dissimilar images (i.e., negative pairs). In (17),
MoCo v2 was used to pre-train a ResNet50 (37) on 2.6M
patches (or tiles) from WSI of the colon adenocarcinoma
cohort of TCGA (TCGA-COAD). Their experiments on
Camelyon16 (breast cancer metastasis detection) showed
that in-domain pre-training significantly outperforms
out-of-domain (ImageNet) pre-training. The work of (38)
further illustrated the benefits of in-domain pre-training.
They used SimCLR to pretrain several ResNet networks on
206 thousand tiles from a total of 57 datasets and found that
in-domain pre-training outperforms ImageNet pre-training
on five classification and one regression tasks, while

1In this document, we use the "4M" notation to denote "4 million".
2See https://github.com/owkin/HistoSSLscaling.

remaining comparable to ImageNet pre-training on two
segmentation tasks.
While these contributions focus on CL, non-contrastive
methods have also been successfully applied to digital
pathology. They include Barlow Twins (39), SwAV (40) and
DINO (27). While Barlow Twins shares similarities with CL
methods, it does not rely on negative pairs. By bringing the
cross-correlation matrix of embeddings closer to the identity
matrix, Barlow Twins forces embeddings of images with
similar semantic content to be closer, while penalizing
redundancy among the coordinates of the embedding
vectors. As opposed to MoCo v2 or Barlow Twins, SwAV
takes advantage of CL methods without the need for
computing pairwise comparisons. It uses online clustering
and enforces consistency between cluster assignments for
augmented views of the same image. SwAV learns by
predicting the cluster assignment of a view given the
embedding of another view (of the same image). Finally,
DINO is designed to leverage the effectiveness of ViT (26).
DINO uses self-distillation (with no labels): two ViT (the
teacher and the student), with different parameters, compute
embeddings for two augmented views of the same image,
their similarity is measured using a cross-entropy loss.
In (12), the authors present a large and comprehensive study
in which they investigated the impact of pre-training image
encoders (CNN or ViT) on tiles from WSI images using the
four SSL methods mentioned above: MoCo v2, SwAV,
Barlow Twins and DINO. To this end, they extracted a total
of 32.6 million tiles from TCGA cohorts and an internal
dataset of WSI. The pre-trained image encoders are
eventually benchmarked on four classification tasks and one
instance segmentation task. The authors adapted these SSL
methods to digital pathology by using color augmentations
well-suited to digital pathology images. Their results show
that, although no SSL method clearly outperformed the
others, ViT pre-trained with DINO often provided the best
performance in classification tasks. Such results encourage
the use of ViT and dedicated SSL methods to efficiently
pre-train these networks on large databases of WSI. Their
evaluation only considers patch-level tasks and does not
compare with state-of-the art frameworks tailored for
histology (16, 24). In contrast, we evaluate our method
against recent SSL methods available in the literature on a
comprehensive list of downstream tasks both at the patch
and slide-level.

2.2 Introduction to Masked Image Modeling
Masked Image Modeling is a recent adaptation of Masked
Language Modeling in the context of computer vision.
In MLM, a neural network, often based on
transformers (41), is trained to predict the masked tokens in
a sentence based on the context given by the non-masked
tokens. This task has revolutionized the field of Natural
Language Processing with the introduction of BERT (29),
enabling the pre-training of very large language models on
massive amounts of data (42, 43). Inspired by this
work, MIM randomly masks portions of an image (patches
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or pixels) and learns meaningful representations by
reconstructing those masked portions. The concept of MIM
was first explored by (44), introducing a context encoder to
mask rectangular areas and predict missing pixels. The work
of (31) on Masked AutoEncoder (MAE) allowed to take
advantage of ViT in the context of MIM and reinforced the
interest for such methods in the context of SSL.

MLM heavily relies on the use of language tokenizers to
split sentences into tokens (e.g., words, parts of a word or
characters). In MIM, the design of a convenient vision
tokenizer plays a crucial part as this tokenizer is used to
encode the masked patches. Some studies focus on
predicting the raw pixel values (32, 45) or batch-normalized
pixel values (31), with the tokenizer being the identity
mapping. Others use a pre-trained discrete variational
autoencoder (30) or a clustering-based tokenizer that
groups red-green-blue (RGB) values into k-means
clusters (46), both techniques relying on a large corpus of
natural images. Notably, BEiT method (30) creates discrete
visual tokens using a pre-trained dVAE (47). However, the
previous tokenizers often struggle to model high-frequency
details and may require offline pre-training with
domain-specific images. To overcome these limitations, the
iBOT framework (image BERT pre-training with Online
Tokenizer, (33)) proposes a single-stage pipeline where the
tokenizer and the backbone encoder are jointly optimized
through knowledge distillation. In addition to achieving
state-of-the-art results in downstream tasks like
classification, object detection, instance and semantic
segmentation, iBOT exhibits robustness property against
various perturbations, such as background change and
occlusion. This property is particularly relevant for
histopathology images, which may contain texture artifacts
(blur, tissue folding, dark spots, markers or air bubbles) with
potential impact on diagnostic models (25, 48). Given its
high analogy with MLM, we expect MIM to improve the
performance of visual models, both in terms of architecture
and data scaling (31, 35, 49). The study conducted by (35)
systematically explores the data scaling capability of MIM
using the SimMIM method and a one billion parameters
SwinV2-S model. The authors investigate the effects of
different model sizes, pre-training dataset sizes, and training
lengths on MIM performance. The findings suggest that,
with an appropriate training length, MIM exhibits properties
of being both model and data scalable.

A significant contribution of iBOT is to cast self-distillation
as a token-generation self-supervised objective. An online
tokenizer (the teacher) is fed with the original image, while
the encoder (the student) receives a corrupted, partially
masked image. The student aims to predict the correct
teacher visual tokens for each masked patch token using
standard Exponential Moving Average. The overall training
objective of iBOT is twofold: performing self-distillation on
masked patch tokens to capture low-level details and
self-distillation on the class token to acquire high-level
visual semantics. This novel approach eliminates the
requirement for an extra pre-training phase and performs

tokenization directly within the target domain.
Note that the iBOT framework is tailored for vision
transformers. ViT rely on a self-attention mechanism
inspired by the Transformer architecture (41), which has
been highly successful in natural language processing tasks.
By breaking down images into smaller patches,
self-attention enables each patch to attend to all other
patches, effectively modeling local information, spatial
structure, and enforcing long-range dependencies in the
early layers (26). Although CNN have dominated computer
vision for many years, ViT have shown promising results
and improved generalization, notably in
histology (12, 16, 24, 50).

3 Pre-training setup
This section details the pre-training setup applied to our
iBOT models. Sections 3.1 and 3.2 focus respectively on the
different ViT architectures and pre-training datasets used in
this study. In section 3.3, we provide some technical details
on how the pre-training was conducted.

3.1 Description of ViT models used for
pre-training with iBOT

To assess the scalability of the iBOT framework, we
pre-trained five different models with varying architectures
(ViT-S, ViT-B or ViT-L), size of the pre-training datasets
(4.4M or 43.3M) and diversity (colon-specific or pan-cancer
patches), as summarized on 1. Following iBOT (33), we
use ViT models with different numbers of
parameters: ViT-S/16 (21.7M), ViT-B/16 (85.8M)
and ViT-L/16 (307M) where “/16” denotes a patch size of
16 × 16 pixels, which we omit in the next section in favor
of ViT-S, ViT-B and ViT-L, respectively. Histology tiles
(extracted from WSI) having a fixed size of 224 × 224
pixels, each image is represented as a grid of 14 × 14
non-overlapping tokens.
Following the DINO methodology (27), we perform
multi-crop data augmentation (we refer the reader to (30) for
a detailed description). For each histology tile, two global
crops and ten local crops are sampled within a proportion of
(32%, 100%) and (5%, 32%) of the original image size,
respectively. Global and local crops are resized to 224 × 224
pixels and 96 × 96 pixels tiles, respectively. As described
in (33), random MIM is performed only on the two global
crops: either no cropping is applied with probability 0.5, or
a proportion p of tokens, uniformly sampled in range
[10%, 50%] of the 196 tokens, is masked out with
probability 0.5. Data augmentation is performed on all crops
using iBOT standard transformations: flipping, color jitter,
grayscale, gaussian blur and solarization (augmentations
may slightly differ between crops, see (33) and associated
GitHub repository (51) for additional details).

3.2 Pre-training datasets
ViT models are pre-trained using iBOT on
unlabeled formalin-fixed,
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3.3 Pre-training details

Table 1. Description of ViT models pre-trained with iBOT on histology tiles for this study. We provide a description of MoCoV2[RN50w2]COAD for comparison with a purely
contrastive learning framework. Model name formalism is described at the end of section 4.3. GPU: Graphical Processing Unit.

Model name
No.

params
Size of pre-trained

datasets
Batch size
per GPU

No. V100
GPUs

Total batch
size

No.
iter

Training time
(GPU hours)

MoCoV2[RN50w2]COAD 66.8M 4.4M 256 16 4,096 215k 2,300
iBOT[ViT-S]COAD 21.7M 4.4M 112 16 1,792 245k 1,152
iBOT[ViT-B]COAD 85.8M 4.4M 60 24 1,440 165k 1,704
iBOT[ViT-L]COAD 307M 4.4M 20 64 1,280 165k 3,712
iBOT[ViT-S]PANCAN 21.7M 4.4M 112 16 1,792 245k 1,152
iBOT[ViT-B]PANCAN 86M 43.3M 45 32 1,440 155k 1,216

paraffin-embedded (FFPE) hematoxylin and eosin (H&E)
stained diagnostic WSI from TCGA. For each slide,
non-overlapping tiles are extracted at 20× magnification
(0.5µm/px) with a fixed size of 224 × 224 pixels. Prior to
extraction, a bi-directional U-Net neural network (52) is
used to segment tissue on the input WSI and discard
background and artifacts. Unless specified explicitly, a
minimal tissue matter proportion of 60% is used as a
selection criterion. Finally, a uniform number of tiles is
sampled across slides not to exceed 4M tiles per TCGA
cohort. To investigate the effect of data scaling on
downstream tasks performance, we generate three datasets,
denoted as TCGA-COAD, PanCancer4M and
PanCancer40M. TCGA-COAD pre-training dataset contains
a total of 441 slides and 4,386,755 tiles for 434 patients with
colon adenocarcinoma. PanCancer40M pre-training dataset
covers 13 anatomic sites and 16 cancer subtypes for 5,558
patients, representing a total of 6,093 slides and 43,374,634
patches. Finally, PanCancer4M is a subset of
PanCancer40M with 5,183WSI and 4,386,755 tiles overall
(see Table B1 and Table B2 in appendix for cohorts
distribution).

3.3 Pre-training details
To ensure stability in the pre-training stage, we pre-trained
our ViT models with iBOT using specific sets of parameters,
depending on the size of the architecture. This section gives
an overview of the most influential parameters, further details
can be found in appendix.
Teacher temperature was set to 0.04 with an initial value of
0.04 and 30 warm-up epochs for iBOT ViT-B and
iBOT ViT-L, ten warm-up epochs for iBOT ViT-S. AdamW
optimizer (53) was used and learning rate linearly ramped
up during the first ten (resp. three) epochs for ViT-B
and ViT-L (resp. ViT-S) to its base value scaled with the
total batch size according to: 0.0005×B/256 (54), where B
denotes the batch size. The final learning rate was set to
0.000002 through a cosine schedule. Regarding multi-crop
augmentation, two global crops and ten local crops are
sampled within a proportion of (32%, 100%) and
(5%, 32%) instead of (14%, 100%) and (5%, 40%),
respectively.
All models were implemented in PyTorch 1.13.1 and
pre-trained on 16 to 64 NVIDIA V100 GPUs with 32Gb
RAM on the French Jean Zay cluster. Batch size and
corresponding time to convergence are reported in appendix

(Table B1) for each iBOT model.

4 Experimental and evaluation setup
After pre-training, we evaluate our ViT models pre-trained
with iBOT on a wide range of downstream tasks. This
includes 17 datasets covering seven cancer indications.
Slide-level experiments involve 14 weakly-supervised WSI
classification tasks using TCGA cohorts, Camelyon16 and
PAIP-CRC datasets. Patch-level experiments are conducted
on the NCT-CRC-HE and Camelyon17-WILDS (55)
datasets with two patch classification tasks. Detailed
information about the datasets, tasks and validation protocol
used in our experiments is provided in this section.

4.1 Slide-level experiments
The first category of downstream experiments consists of
slide-level prediction tasks on a various range of outcomes
(histological and molecular subtypes, genetic alterations,
cancer types, overall survival). We describe them in this
section.

4.1.1 Downstream tasks and corresponding datasets

Histological subtype prediction TCGA-RCC. Renal
cell cancer (RCC) can be divided into three histological
subtypes. The goal of this classification task is to classify
each slide as: kidney renal clear cell
carcinoma (KIRC), kidney renal papillary cell
carcinoma (KIRP) or kidney chromophobe (KICH).
TCGA-BRCA. Breast carcinoma (BRCA) can be divided
into two main histological subtypes. The goal of this task is
to classify each slide as either invasive lobular
carcinoma (ILC) or invasive ductal carcinoma (IDC).

Molecular subtype prediction TCGA-BRCA. This
multi-class classification task aims at distinguishing between
normal-like (Normal), basal-like (Basal), luminal A
(LumA), luminal B (LumB) and Her2-enriched (Her2)
molecular subtypes.

Cancer type prediction TCGA-NSCLC. Non-small cell
lung carcinoma (NSCLC) is commonly divided into two
main cancer types. For a given slide, this classification task
aims at predicting the lung adenocarcinoma (LUAD) or lung
squamous cell carcinoma (LUSC) cancer type.
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Genomic alterations prediction MSI and HRD. MSI
and HRD are both abnormalities impacting
the deoxyribonucleic acid damage repair (DDR) process in
tumors. Early recognition of those biomarkers may benefit
the patients through specific therapies targeting DDR-related
genomic alterations (19, 20). This is of particular interest in
breast cancer (21, 56) and colorectal cancer (11, 21).
For MSI or HRD, we aim at predicting high vs low
instability or deficiency (MSI-H vs MSS/MSI-L, or HRD-H
vs HRD-L) patients. MSI on PAIP-CRC. PAIP (57, 58)
provides 2,547 WSI collected from three Korean centers
(Seoul National University Hospital, Seoul National
University Bundang Hospital and SMG-SNU Boramae
Medical Center), covering six cancer types. We retrieved 47
patients from PAIP with colorectal tumors and available
MSS/MSI-L labels, provided by the Pathology AI Platform.
This dataset is used for external validation only after training
on the TCGA-CRC cohort.

Metastases detection Camelyon16. Camelyon16 (59) is
a dataset of H&E stained slides from lymph node sections
designed for the automated detection of metastasis in breast
cancer. This dataset contains 399 WSI from two medical
centers, divided into 269 training and 130 testing WSI. In
this work, we consider slide-level labels indicating whether
a given WSI contains metastases or not.

Overall survival OS. The OS refers to durations between
the beginning of treatment and potential all-cause
mortality. OS prediction task aims to estimate
time-to-events, taking right-censoring into account, i.e.,
potential loss of follow-up or no event before the end of the
study.

4.1.2 Models: weakly-supervised learning
The weakly-supervised classification problem in whole slide
images involves providing global annotations at the slide
level without detailed pixel-level annotations for internal
regions. Existing weakly-supervised algorithms for WSI
classification typically consist of two main steps: patch-level
feature extraction within the WSI and subsequent feature
aggregation using multiple instance learning (MIL)
algorithms. To evaluate the intrinsic representation capacity
of the different SSL models, we highlight the results
obtained with two MIL algorithms, namely ABMIL (60) and
TransMIL (61). These algorithms are applied to features
extracted from WSI patches. To further illustrate the impact
of the choice of MIL model, some of our results also report
results obtained with the following MIL algorithms:
DSMIL (62), Chowder (10) and MeanPool, the latter simply
averaging patch features across the slide to obtain a single
slide-level representation, and applying a multi-layer
perceptron (MLP) on it. In particular, note that the
comparison in section 5.3 highlights the optimal
performance across those five MIL algorithms. For a
comprehensive review of aggregation methods in
weakly-supervised learning, including MIL, see the recent
work of (63).

During the training process, we retain a random subset of
1,000 tile features for each slide. The Adam optimizer is
utilized with a mini-batch size of eight slides. The MIL
algorithms are trained for a maximum of 50 epochs for SSL
in-domain models, and 100 epochs when utilizing a
ResNet-50 pre-trained on ImageNet. This additional training
time is considered to account for the out-of-domain
pre-training task (i.e., classification of object-centric natural
images), which may lead to less linearly separable features
of histology images, hence to a more unstable training.
For all tasks, we optimize binary cross-entropy loss for
binary classification tasks and categorical cross-entropy loss
for multi-class classification tasks. To estimate overall
survival, we employ a differentiable Cox
loss (64, 65). cross-validation (CV) folds are created at the
patient level and stratified based on class distribution or
censoring proportion.

4.1.3 Evaluation with nested cross-validation
In a real-case machine learning scenario, one has to
simultaneously select the best model for a given dataset and
assess its generalization performance. Even though model
selection is different from model generalization
assessment (66), most works report the cross-validation
error found for the optimal model during the model selection
as the assessed model generalization
performance (67). (67–69) report a bias in error estimation
when using cross-validation for model selection and model
assessment simultaneously. Indeed, hyperparameter
optimization can lead to overfitting a dataset or a specific
data split, and provide an over-optimistic evaluation of the
actual model performance, that should not be used for model
generalization evaluation. (67, 69) suggest to rather use
nested cross-validation (or double cross-validation) as an
unbiased estimate of the true error. Nested cross-validation
involves two levels of cross-validation, an outer and inner
cross-validation. Within the training outer folds, an inner
cross-validation is performed for hyperparameter tuning and
model selection. The best model configuration is chosen
based on the average performance across the inner folds.
This selected model is then evaluated on the corresponding
validation outer fold, which was not used during model
selection. The performance metrics obtained from each
validation outer fold are averaged to estimate the model
generalization performance. This eliminates the bias
introduced by standard cross-validation procedure as the test
data in each iteration of the outer cross-validation has not
been used to optimize the performance of the model in any
way, and may therefore provide a more reliable criterion for
choosing the best model.
In this study, we applied stratified nested cross-validation to
reduce the bias of the resulting error estimate. As such, we
perform model selection (hyperparameter tuning) and model
assessment through 5x5 nested cross-validation with no
repeats (five inner and five outer splits). During nested-CV,
we test different values of the initial learning rate and weight
decay, namely {0.001, 0.0001} for learning rate and
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4.2 Patch-level experiments

{0, 0.0001} for weight decay, respectively. The optimal
number of epochs is determined within each outer split
through the 5-fold inner CV based on the validation metric.
One of the tasks includes the evaluation on an external
cohort using the PAIP-CRC cohort for MSI prediction, with
TCGA-CRC serving as the training set. In this scenario, we
employed standard 5-fold CV with three repeats on the
internal training cohort TCGA-CRC. This allows us to
create an ensemble of 15 models that is subsequently
evaluated on the PAIP-CRC external cohort.
Hyperparameter tuning is conducted on the internal training
cohort using the same set of configurations as in the
nested CV approach.

4.2 Patch-level experiments
The second category of downstream experiments consists of
patch-level classification tasks, which we described below.

Downstream tasks and corresponding datasets

Colorectal tissue phenotyping In the NCT-CRC-HE (70)
datasets, the task consists in classifying each patch of
colorectal cancer image as one of nine tissue types: Adipose
(ADI), background (BACK), debris (DEB), lymphocytes
(LYM), mucus (MUC), smooth muscle (MUS), normal
colon mucosa (NORM), cancer-associated stroma (STR)
and colorectal adenocarcinoma epithelium (TUM). The
training set, NCT-CRC-HE-100K, consists of 100,000
patches extracted from 86 WSI at a resolution of 0.5µm/px,
collected at the NCT Biobank National Center for Tumor
Diseases (Heidelberg, Germany) and the UMM pathology
archive (University Medical Center Mannheim, Mannheim,
Germany). All patches have a size of 224 × 224 pixels.
NCT-CRC-HE-7K serves as an independent set of 7,180
patches used for testing. Images without Macenko (71)
normalization were used.

Metastases detection Camelyon17-WILDS (55, 72)
dataset is a patch-based variant of the Camelyon17 (73)
dataset. It contains 450,000 H&E stained lymph-node scans
from five hospitals, extracted at 20× magnification
(0.5µm/px resolution) from 50 WSI. The binary
classification task aims at detecting the presence of
metastasis on 96 × 96 pixels breast cancer patches from
lymph nodes sections, in the presence of high domain shifts
between hospitals. The training set is composed of three
centers (ID 0, 3 and 4) for a total of 335,996 patches,
whereas the testing set only contains center 1 with 34,904
patches, considered as out-of-distribution.

4.2.1 Linear evaluation
Patch classification tasks are evaluated on top of
pre-extracted frozen features. Patches are resized according
to the input shape of the ViT or CNN (224 × 224 pixels or
256 × 256 pixels). Linear evaluation is evaluated by training
a logistic regression with stochastic gradient descent
optimization for 1,000 iterations. Early stopping is
performed on 10% of training data, serving as a validation

set. The initial value of the learning rate is set to 0.0001 and
is divided by five each time the validation loss does not
decrease for five consecutive epochs. We perform an
ensemble of 30 different models with different random
initialization and data shuffling. Linear evaluation is
performed at different sizes of the training datasets, namely
0.1%, 0.5%, 1%, 5%, 10%, 50% and 100%.

4.3 Other representation learning
frameworks

To further demonstrate the validity of our
iBOT-pretrained ViT models, we conduct a comprehensive
comparison with existing other representation learning
methods. Those feature extraction methods include
ImageNet-pretraining and SSL-pretraining, described as
follows:

• CTransPath (24): a hybrid model composed of a CNN
and a multi-scale Swin transformer architecture.
CTransPath implements SCRL, a
semantically-relevant contrastive learning method, an
extension of MoCo v3 (74) method implementing an
additional branch where positive pairs no longer come
from the same instance, but rather a large memory
bank of pseudo-positives, semantically-relevant
images. CTransPath was pre-trained on 14.3M
unlabeled patches at 20× magnification with a size of
1024×1024 pixels.

• HIPT (16): a hierarchical image pyramid ViT trained
with DINO (27). A first patch-level ViT is trained on
256 × 256 pixels images (20×). From the output
tokens of the first ViT-S, 4096 × 4096 pixels images
are encoded into 16 × 16 pixels tokens, on which a
second region-level ViT-Tiny (2.8M parameters with
output dimension 182) is trained to produce
region-level tokens. Patch and region-level being
frozen, tokens from 4096×4096 pixels regions from a
given WSI are finally aggregated using a final
transformer fine-tuned on downstream tasks.
Pre-training dataset covers 33 cancer types
from TCGA, from which patch-level and
region-level ViT were trained on 104M patches and
408,218 regions respectively.

• Dino[ViT-S]BRCA (formalism detailed below): (50)
pre-trained a ViT-Small model with DINO. The
pre-training dataset consists of two million patches
with shape 256 × 256 pixels, extracted from
1,038 WSI in the TCGA-BRCA cohort.

• MoCov2[RN50W2]COAD (formalism detailed
below): (17) pre-trained a wide ResNet-50-2 (75) with
MoCo v2 on the TCGA-COAD cohort. Tiles were
extracted at 20× magnification with a fixed shape of
224 × 224 pixels. Those tiles are identical to that of
the TCGA-COAD dataset described in section 3.2.

As opposed to the previous in-domain SSL methods, we also
consider one out-of-domain supervised method to further
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compare the impact of pre-training domains on downstream
tasks performance. We use a ResNet-50 (37) pre-trained on
Imagenet-1K (1.2M natural images).
Weights from DinoBRCA, HIPT and CTransPath models
were retrieved directly from their respective GitHub
repositories (see appendix C for details). MoCoV2COAD
was pre-trained from scratch on the TCGA-COAD dataset,
following the same training recipe and hyperparameters
settings as the original publication (See table 1).
In the following sections, models are named using the
framework[architecture]pre-training-dataset
formalism. Accordingly, the following model names denote:

• MoCoV2[RN50W2]COAD: a ResNet-50-w2
pre-trained with MoCo v2 SSL framework
on TCGA-COAD dataset

• Sup[RN50]IN: a ResNet-50 pre-trained in a supervised
fashion on ImageNet-1K.

• iBOT[ViT-X]COAD: a ViT-S, ViT-B or ViT-L
pre-trained with iBOT SSL framework
on TCGA-COAD

• iBOT[ViT-S]PanCancer: a ViT-S pre-trained with
iBOT on TCGA-COAD dataset

• iBOT[ViT-B]PanCancer: a ViT-B pre-trained with
iBOT on PanCancer40M dataset

• Dino[ViT-S]BRCA: a ViT-S pre-trained with DINO on
TCGA-BRCA dataset

4.4 Metrics
Slide-level prediction tasks performance is evaluated using
the area under the receiver operating characteristic
curve (ROC AUC), while Harrell C-index (76) is utilized
for OS prediction tasks. Standard deviations are consistently
reported for nested CV and calculated across the five outer
folds. We use bootstrap on 1,000 repeats with replacement
to generate a 95% confidence interval for ROC AUC scores
obtained with PAIP-CRC external validation. Bootstrap
hypothesis testing is used to statistically compare the mean
performance of our models on PAIP-CRC external cohort.
Patch-classification tasks performance is evaluated using the
accuracy, F1 and ROC AUC score. Macro F1 and ROC
AUC are reported for multi-class classification tasks. It
should be noted that the “background” (BACK) class is not
considered for NCT-CRC-HE neither for training nor for
evaluation, following (23, 50, 77, 78).

5 Results
In this section, we first provide a comparison of iBOT
pre-trained ViT models against out-of-domain SSL
pre-trained models and a purely contrastive model
pre-trained from scratch on TCGA-COAD using MoCo v2.
Then, we investigate the effect of scaling iBOT models in
terms of architecture (ViT-S to ViT-L), dataset size and
diversity (TCGA-COAD vs. PanCancer 40M). Finally, we
compare our iBOT[ViT-B]PanCancer to state-of-the-art
in-domain architectures.

As described in section 4, we report results on both weakly-
supervised WSI classification and patch-level classification
tasks:

• For each WSI-level task, slide features are generated
from a given model, which may be trained in a
supervised fashion (ResNet50 on ImageNet) or
pre-trained on in-domain pathology datasets (see
section 4.3). Then, feature aggregation is performed
through a MIL algorithm, which is trained and
optimized using nested CV. In the following sections,
unless specified otherwise, results for nested CV or
external validation are depicted for two MIL
algorithms: ABMIL and TransMIL. All results are
re-produced using the original implementation and
corresponding released codes.

• Patch-level classification tasks are assessed using a
linear evaluation protocol described in section 4.2.1.
We conduct experiments on training with different
fractions to investigate the classification performance
under limited labeling, by randomly sampling 0.1% to
100% of the training data.

5.1 In-domain pre-training with iBOT
5.1.1 Comparison of in-domain and out-of-domain pre-

training
In this section, we discuss the advantages of using in-domain
pre-trained neural networks compared to out-of-domain
pre-trained ones, namely models pre-trained on the
ImageNet database. In Table 2, the first (i.e., Sup[RN50]IN)
and second (i.e., iBOT[ViT-S]COAD) columns show that
using a feature extractor pre-trained on patches from WSI
brings a consistent improvement over a vast majority of
downstream tasks. We observe an improvement of up to
4.0%, on average, across all downstream tasks using
ABMIL (both in terms of ROC AUC for classification tasks
and Harrell’s C-Index for survival analysis tasks). This
average improvement increases by up to 7.9% on colorectal
cancer-specific tasks, namely MSI prediction, with a
remarkable generalization performance on PAIP-CRC
external validation (92.1 vs. 78.7 ROC AUC on MSI
prediction, see Table 3). It is worth noting that, although the
two models have different architectures, they both share a
comparable number of trainable parameters (21.7M
for ViT-S and 25M for ResNet50). The same conclusion can
be drawn from Table 3 (external validation of the PAIP-CRC
dataset). The advantage of in-domain pre-training over
out-of-domain pre-training is also noticeable on patch-level
classification tasks (Table 4). Indeed, statistically significant
improvements (p < 0.0001) are observed from using
in-domain pre-trained methods over Sup[RN50]IN, i.e. 6.8
(resp. 1.8), 7.5 (resp. 1.7) and 8.7 (resp. 2.9) accuracy gains
on the NCT-CRC-HE-7K (resp. Camelyon17-WILDS)
dataset offered by iBOT[ViT-S]COAD,
MoCoV2[RN50W2]COAD and iBOT[ViT-B]COAD
models. Results from Figure 3 and Table 4 also highlight the
high-label efficiency and discriminative capacity of iBOT
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5.1 In-domain pre-training with iBOT

Table 2. Comparison weakly-supervised downstream performance with (A) in-domain pre-training vs out-of-domain training, (B) MoCoV2 vs iBOT methods with TCGA-COAD
pre-training. [MSI], [HRD], [Ctype], [Mol], [Hist] and [OS] denote respectively: MSI, HRD, Cancer Type, Molecular Subtyping, Histological Subtyping classification, and Overall
Survival prediction. We take the average and standard deviation of each metric over the five outer test splits from nested CV. Bold indicates the highest performance for
each MIL model in (A) and (B) separately (1ABMIL, 2TransMIL).

(A) (B)
25M parameters > 60M parameters

Cancer site Task Sup[RN50]IN iBOT[ViT-S]
COAD

MoCoV2[RN50W2]
COAD

iBOT[ViT-B]
COAD

Breast
cancer

Camelyon16
[Meta]

84.2 ± 2.21 93.0 ± 5.8 91.4 ± 4.3 93.5 ± 1.7

67.0 ± 12.42 93.4 ± 4.7 85.2 ± 3.6 94.0 ± 2.1

TCGA-BRCA
[Hist]

90.8 ± 3.2 94.0 ± 1.0 93.0 ± 1.7 95.1 ± 1.5
76.7 ± 7.8 93.4 ± 4.7 85.2 ± 3.6 94.0 ± 2.1

TCGA-BRCA
[HRD]

75.6 ± 4.1 72.8 ± 3.6 73.5 ± 4.3 74.4 ± 2.6
65.7 ± 3.9 74.0 ± 3.5 71.0 ± 3.9 71.9 ± 5.3

TCGA-BRCA
[Mol]

75.3 ± 2.3 79.4 ± 1.3 78.0 ± 1.4 82.1 ± 1.2
67.1 ± 3.0 79.9 ± 2.0 70.3 ± 3.0 80.1 ± 1.9

TCGA-BRCA
[OS]

60.7 ± 8.6 62.9 ± 8.5 60.3 ± 2.9 64.9 ± 7.1
56.0 ± 7.7 63.8 ± 8.4 56.0 ± 8.0 60.3 ± 5.3

Colorectal
cancer

TCGA-CRC
[MSI]

83.8 ± 4.5 89.1 ± 3.1 88.5 ± 2.5 91.5 ± 2.3
68.7 ± 5.3 88.3 ± 5.6 81.3 ± 6.2 88.3 ± 5.8

TCGA-COAD
[OS]

58.2 ± 10.9 58.5 ± 9.8 59.4 ± 10.2 60.8 ± 7.7
50.4 ± 9.2 62.9 ± 8.0 52.3 ± 9.5 62.5 ± 7.3

Lung
cancer

TCGA-NSCLC
[CType]

92.7 ± 3.5 94.7 ± 1.9 96.2 ± 1.7 96.3 ± 1.5
83.8 ± 2.8 94.9 ± 3.0 90.0 ± 7.2 96.4 ± 1.5

TCGA-LUAD
[OS]

56.2 ± 5.2 58.4 ± 5.2 55.3 ± 4.8 59.2 ± 8.9
56.5 ± 4.1 59.3 ± 7.4 58.0 ± 7.0 59.9 ± 8.6

TCGA-LUSC
[OS]

56.3 ± 1.5 57.7 ± 2.1 61.6 ± 4.2 55.9 ± 2.5
54.6 ± 6.1 57.2 ± 5.9 57.6 ± 3.6 58.4 ± 4.6

Ovarian
cancer

TCGA-OV
[HRD]

69.3 ± 10.4 72.2 ± 12.6 69.2 ± 12.9 74.1 ± 11.8
68.0 ± 12.0 71.0 ± 4.8 52.2 ± 6.4 74.5 ± 12.5

Kidney
cancer

TCGA-RCC
[CType]

97.7 ± 0.3 98.5 ± 0.5 98.6 ± 0.3 98.1 ± 0.4
94.9 ± 1.7 98.3 ± 0.6 96.6 ± 1.2 98.5 ± 0.4

Stomach
cancer

TCGA-STAD
[MSI]

78.5 ± 5.3 79.5 ± 3.8 78.1 ± 4.8 84.3 ± 4.0
64.8 ± 2.6 82.5 ± 4.2 72.0 ± 4.9 84.9 ± 7.3

Pancreatic
cancer

TCGA-PAAD
[OS]

54.7 ± 6.6 55.2 ± 3.6 58.2 ± 4.9 55.9 ± 6.7
56.8 ± 6.1 57.7 ± 4.9 59.6 ± 4.2 56.1 ± 7.1

Table 3. Comparison of external validation performance for (A) in-domain pre-training vs out-of-domain training, (B) MoCoV2 vs iBOT methods with TCGA-COAD pre-
training. Results are reported for PAIP-CRC[MSI] external validation after training on TCGA-CRC[MSI] classification task. ROC AUC scores and 95% confidence intervals
are computed using bootstrap with 1,000 repeats. Bold indicates the highest performance for each MIL model in (A) and (B) separately (1ABMIL, 2TransMIL).

(A) (B)
25M parameters > 60M parameters

Cancer site Task Sup[RN50]IN iBOT[ViT-S] COAD MoCoV2[RN50W2]
COAD

iBOT[ViT-B]COAD

Colorectal
cancer

MSI prediction:
TCGA-CRC to
PAIP

78.7 [65.2, 95.6]1 92.1 [84.7, 100.0] 94.0 [88.8, 100.0] 96.5 [92.9, 100.0]

64.7 [45.0, 86.6]2 88.5 [77.0, 100.0] 77.6 [64.2, 93.2] 93.8 [88.5, 100.0]

pre-trained ViT models both in very low data regime for the
downstream task (< 5%) and full training dataset setting.

More specifically, we observe on NCT-CRC-HE-7K a
performance plateau for all models from 10% of the training
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Table 4. Comparison of patch classification performance for (A) in-domain pretraining vs out-of-domain training, (B) MoCoV2 vs iBOT methods with TCGA-COAD pre-
training. F1 score (†) is reported for single class classification (ADI to TUM) in NCT-CRC-HE-7K. Accuracy (‡) and 95% confidence intervals are computed using bootstrap
with 1,000 repeats for multi-class classification in NCT-CRC-HE-7K and binary classification in Camelyon17-WILDS, respectively. Bold indicates the highest performance
across classes. ROC AUC scores are reported in appendix (Table G1).

NCT-CRC-HE-7K
Camelyon
17WILDS

Method Adi† Deb† Lym† Muc† Mus† Norm† Str† Tum† All‡ Metastases‡

(A)
Sup[RN50] IN 98.8 57.2 97.1 86.6 67.4 95.4 50.2 94.2

86.6
[85.8, 87.5]

90.6
[90.3, 90.9]

iBOT[ViT-S]
COAD

98.9 81.9 89.1 98.9 79.6 98.5 72.4 98.5 93.2
[92.6, 93.8]

92.4
[92.2, 92.7]

(B)

MocoV2
[RN50W2]
COAD

99.1 95.5 95.3 97.8 78.1 97.6 73.2 97.7
94.1

[93.6, 94.7]
92.3

[92.1, 92.6]

iBOT[ViT-B]
COAD

99.4 92.7 96.6 99.0 81.1 99.6 75.8 98.9 95.3
[94.8, 95.9]

93.7
[93.4, 93.9]

Fig. 2. Linear evaluation results on NCT-CRC-HE and Camelyon17-WILDS testing dataset with different sizes of training data. We compare i) in-domain pre-training vs
out-of-domain training for < 25M parameters models (dashed), ii) MoCoV2 vs iBOT methods with > 60M parameters models pre-trained on TCGA-COAD dataset (plain).
Metrics are reported for an ensemble of 30 linear classifiers with different initializations. 95% confidence intervals are computed using bootstrap with 1,000 repeats.

dataset while the gap between Sup[RN50]IN and other SSL
methods remains constant. This suggests that the
out-of-domain Sup[RN50]IN can not benefit from more
examples during training. In contrast, other pre-trained
models on TCGA-COAD show highly discriminative
capacity on in-domain data from 0.1%, indicating that
in-domain pre-training is much more beneficial to this
particular downstream task. This observation is mitigated by
the results on Camelyon17-WILDS, which can be seen as
different degrees of an out-of-domain dataset (breast instead
of colon or natural images). In this task, Sup[RN50]IN still
underperforms but closes the gap in higher ratio of the
training data.
These results are aligned with the conclusions from previous
work (12, 38, 50). Although transfer learning from
ImageNet usually provides a strong baseline, one might
expect in-domain pre-training to provide consequential
performance gains.

5.1.2 Advantages of using iBOT for pre-training with
respect to MoCo v2

In the previous section, we presented results in favor of
in-domain pre-training with MoCo v2 or iBOT. A question

remains: should one of these two SSL methods be preferred
over the other? In this section, we argue that iBOT should be
preferred to MoCo v2 for in-domain pre-training and
provide experimental results on a variety of downstream
tasks to support this. The second (i.e., iBOT[ViT-S]COAD)
and third (i.e., MoCoV2[RN50W2]COAD) columns of
Table 2 show that, despite an approximately three times
smaller model and pre-trained on the same
in-domain TCGA-COAD dataset, iBOT[ViT-S]COAD
brings an average 0.72% performance gain over
MoCoV2[RN50W2]COAD, to mitigate with an average
−0.93% drop across CRC-related tasks. Additionally, we
also provide a comparison between
MoCoV2[RN50W2]COAD (third column of Table 2) and
iBOT[ViT-B]COAD (fourth column of Table 2) on multiple
downstream tasks, two models pre-trained on TCGA-COAD
and with roughly comparable number of trainable
parameters (66.8M for Wide ResNet50-2 and 85.8M
for ViT-B). Overall, iBOT[ViT-B]COAD brings a +3.2%
mean improvement on MoCoV2[RN50W2]COAD across all
tasks, outperforming the CL based method both on
non-CRC-related (+3.3%) tasks and CRC-related (+2.7%)
with a 96.5 vs. 94.0 ROC AUC score on PAIP-CRC external
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5.2 Scaling iBOT with model architecture

validation (Table 3). From the results in Figure 3 and
Table 4, we also see that iBOT[ViT-B]COAD brings a
strong improvement in patch-level classification tasks
associated with NCT-CRC-HE-7K and
Camelyon17-WILDS.
It should be noted that despite using the same validation
scheme and hyperparameter tuning, the results of TransMIL
for Sup[RN50]IN and MoCoV2[RN50W2]COAD do not
match those of ABMIL by a large margin. This discrepancy
could be attributed to the higher output feature dimension of
these models (2048) which is approximately 5 (resp. 2.5)
times higher than that of iBOT[ViT-S]COAD (resp.
iBOT[ViT-B]COAD). We encountered difficulties with
overfitting and convergence when applying TransMIL on top
of 2048-dimensional features.

5.2 Scaling iBOT with model architecture
In this section, we examine the impact of increasing the size
of the ViT model from a ViT-S (21.7M) to a ViT-L (307M)
architecture. We pre-trained all iBOT models using
the TCGA-COAD pre-training dataset. The results in
Table 5 and Table 6 indicate that scaling the model from
a ViT-S (21.7M) to ViT-B (85.8M) architecture strongly
affects the performance on downstream tasks using ABMIL,
with an average gain of 2.5% across all tasks. However, the
results also demonstrate that further increasing the size of
the architecture from ViT-B to ViT-L (307M) does not
provide clear benefits. The ViT-L model leads to an overall
performance loss of 0.2% and a 1.7% loss on the four OS
prediction tasks compared to the ViT-B counterpart. This
suggests that our ViT models reach their discriminative
capacity saturation when architecture is not scaled alongside
the pre-training dataset size.
Table 7 presents the ROC AUC scores on the
NCT-CRC-HE-7K and Camelyon17-WILDS test datasets.
We fit a logistic regression for 100 iterations on top of the
frozen patch features using 100% of the corresponding
training sets. We observe statistically significant
improvements (p < 0.0001) from ViT-S to ViT-B
architectures on both datasets. Interestingly, these
architectures produce similar results (accuracy, F1, and ROC
AUC scores) with less than 5% of the training set on
NCT-CRC-HE-7K (see Figure 3). However, in this scenario
of low data regime, the ViT-B architecture performs
significantly better (p < 0.0001) than its ViT-S counterpart
on the breast cancer patches classification task,
Camelyon17-WILDS. This observation suggests that
smaller architectures struggle to transfer knowledge to
out-of-domain tasks compared to larger ones.
Notably, despite mixed results in weakly supervised
experiments, the ViT-L architecture seems to possess more
inherent discriminative capacity. Indeed, we observe that
combining ViT-L with the simplistic MeanPool MIL
algorithm leads to an average improvement of 1.60% over
the ViT-B architecture. This improvement rises to 2.40% on
slide-level classification tasks and 3.3% on CRC-related
tasks.

Table 5. Impact of ViT architecture on weakly-supervised downstream
performance. The iBOT[ViT-B]COAD column is repeated from Table 2 to ease the
comparison with iBOT[ViT-L]COAD. ROC AUC scores and C-Index are reported for
classification and survival tasks, respectively. We take the average and standard
deviation of each metric over the five outer test splits from nested CV. Bold indicates
the highest performance for each MIL model (1ABMIL, 2TransMIL).

Cancer
site

Task iBOT[ViT-B]
COAD

iBOT[ViT-L]
COAD

Breast
cancer

Camelyon16
[Meta]

93.5 ± 1.71 94.0 ± 2.0

94.0 ± 2.12 94.8 ± 2.0

TCGA-BRCA
[Hist]

95.1 ± 1.5 94.3 ± 0.9
93.2 ± 3.4 93.4 ± 1.3

TCGA-BRCA
[HRD]

74.4 ± 2.6 76.5 ± 2.8
71.9 ± 5.3 74.6 ± 2.3

TCGA-BRCA
[Mol]

82.1 ± 1.2 81.3 ± 1.7
80.1 ± 1.9 78.8 ± 2.1

TCGA-BRCA
[OS]

64.9 ± 7.1 64.6 ± 1.7
60.3 ± 5.3 59.1 ± 10.6

Colorectal
cancer

TCGA-CRC
[MSI]

91.5 ± 2.3 90.5 ± 4.0
88.3 ± 5.8 90.1 ± 2.9

TCGA-COAD
[OS]

60.8 ± 7.7 60.7 ± 6.4
62.5 ± 7.3 57.5 ± 4.7

Lung
cancer

TCGA-NSCLC
[CType]

96.3 ± 1.2 96.3 ± 1.5
96.4 ± 1.5 95.7 ± 1.7

TCGA-LUAD
[OS]

59.2 ± 8.9 58.9 ± 7.3
59.9 ± 8.6 57.7 ± 4.2

TCGA-LUSC
[OS]

55.9 ± 2.5 57.9 ± 4.3
58.4 ± 4.6 56.6 ± 3.8

Ovarian
cancer

TCGA-OV
[HRD]

74.1 ± 11.8 73.8 ± 7.8
74.5 ± 12.5 75.6 ± 15.3

Kidney
cancer

TCGA-RCC
[CType]

98.1 ± 0.4 98.4 ± 0.6
98.5 ± 0.4 98.1 ± 0.2

Stomach
cancer

TCGA-STAD
[MSI]

84.3 ± 4.0 86.8 ± 4.2
84.9 ± 7.3 77.6 ± 8.1

Pancreatic
cancer

TCGA-PAAD
[OS]

55.9 ± 6.7 53.0 ± 5.7
56.1 ± 7.1 57.0 ± 6.3

Table 6. Impact of ViT architecture scaling on external validation. The iBOT[ViT-
B]COAD column is repeated from Table 3 to ease the comparison with iBOT[ViT-
L]COAD. ROC AUC scores and 95% confidence intervals are computed using
bootstrap with 1,000 repeats. Bold indicates the highest performance for each MIL
model (1ABMIL, 2TransMIL).

Cancer
site

Task iBOT[ViT-B]
COAD

iBOT[ViT-L]
COAD

Colorectal
cancer

MSI prediction:
TCGA-CRC to
PAIP

96.5
[92.9, 100.0]1

97.2
[94.4, 100.0]

93.8
[88.5, 100.0]2

91.9
[84.5, 100.0]

In a previous study conducted by (35), it is shown that large
models may perform worse than smaller ones when a
"small" pre-training dataset is used. Similarly, we observe a
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Table 7. Impact of ViT architecture scaling on patch classification tasks. The iBOT[ViT-B]COAD line is repeated from Table 4 to ease the comparison with iBOT[ViT-L]COAD.
F1 score (†) is reported for single class classification (Adi to Tum) in NCT-CRC-HE-7K. Accuracy (‡) and 95% confidence intervals are computed using bootstrap with
1,000 repeats for multi-class classification in NCT-CRC-HE-7K and binary classification in Camelyon17-WILDS, respectively. Bold indicates the highest performance across
classes. ROC AUC scores are reported in appendix (Table G2).

NCT-CRC-HE-7K
Camelyon
17WILDS

Method Adi† Deb† Lym† Muc† Mus† Norm† Str† Tum† All‡ Metastases‡

iBOT[ViT-B]
COAD

99.4 92.7 96.6 99.0 81.1 99.6 75.8 98.9 95.3
[94.8, 95.9]

93.7
[93.4, 93.9]

iBOT[ViT-L]
COAD

99.2 93.2 98.6 99.3 83.9 99.5 77.3 98.7
95.8

[95.3, 96.3]
94.3

[94.0, 94.6]

Fig. 3. Linear evaluation results on NCT-CRC-HE and Camelyon17-WILDS testing dataset with different sizes of training data and sizes of ViT architectures. Metrics are
reported for an ensemble of 30 linear classifiers with different initializations. 95% confidence intervals are computed using bootstrap with 1,000 repeats.

saturation phenomenon with the largest architecture, which
could be attributed to overfitting on a relatively small
organ-specific pre-trained dataset. However, the results
using MeanPool on slide-level tasks or linear evaluation on
patch-level tasks suggest that ViT-L possesses higher
intrinsic discriminative capacity and produces features that
are more linearly separable than for smaller architectures.
This property, however, does not benefit when frozen
features are combined with non-linear advanced MIL
algorithms such as ABMIL or TransMIL.
Finally, it is worth noting that the ViT-L architecture
performs worse overall when combined with the TransMIL
algorithm (−0.8% and −1.2% compared to ViT-S
and ViT-B architectures). This supports the observations
from the previous section, suggesting that TransMIL’s
performance decreases with the dimension of the output
space.

5.3 Scaling iBOT with pan-cancer dataset
In the previous section, we highlighted performance
saturation reached with a ViT-L architecture pre-trained on a
relatively small pre-training dataset TCGA-COAD.
Consequently, we now investigate whether increasing both
the pre-training dataset size and diversity helps the
discriminative feature learning of our iBOT models. Table 8
compares the same ViT-B pre-trained with iBOT on two
different pre-training sets, TCGA-COAD and
PanCancer40M (43.3M patches). On average across all

tasks, pan-cancer pre-training brings a slight improvement
of 0.5% with ABMIL (1.3% with TransMIL) over colon
adenocarcinoma pre-training. Interestingly, pan-cancer
pre-training appears beneficial even for classification tasks
involving organs unseen during pre-training (0.6% and 1.6%
with ABMIL and TransMIL, respectively). Notably,
iBOT[ViT-B]PanCancer outperforms its TCGA-COAD
counterpart on breast cancer HRD prediction (79.3 vs.
74.4 ROC AUC), MSI prediction in stomach cancer (89.9
vs. 84.3 ROC AUC) or OS prediction in pancreatic cancer
(59.2 vs. 56.1 ROC AUC with TransMIL). Moreover,
pan-cancer pre-training does not induce a major
performance drop on colorectal cancer tasks compared
to TCGA-COAD pre-training, except on PAIP-CRC external
validation with a ROC AUC drop of 1.8 points (see Table 9).
Thus, pan-cancer and colon adenocarcinoma pre-trainings
act in a complementary fashion. These observations are also
confirmed on patch classification tasks.
iBOT[ViT-B]PanCancer consistently outperforms
iBOT[ViT-B]COAD on breast cancer Camelyon17-WILDS
dataset (see Table 10), showing remarkable label efficiency
for less than 1% of the training dataset (see Figure 4). On
the other hand, TCGA-COAD pre-training benefits
patch-classification on NCT-CRC-HE-7K (as illustrated in
Table 10) in all data regimes (Figure 4).
Overall and in contrast with (38), we conclude that
pre-training on a larger, pan-cancer dataset often improves
the performance in downstream tasks involving unseen
cancer indications. Although no consistent performance
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5.4 Comparison with other in-domain pre-trained methods

Table 8. Impact of the pre-training dataset size on weakly-supervised downstream
performance for a ViT-B architecture. The iBOT[ViT-B]COAD column is repeated
from Table 2 to ease the comparison with iBOT[ViT-B]PanCancer. ROC AUC scores
and C-Index are reported for classification and survival tasks, respectively. We take
the average and standard deviation of each metric over the five outer test splits from
nested CV. Bold indicates the highest performance for each MIL model (1ABMIL,
2TransMIL).

Cancer
site

Task iBOT[ViT-B]
COAD

iBOT[ViT-B]
PanCancer

Breast
cancer

Camelyon16
[Meta]

93.5 ± 1.71 92.9 ± 3.3

94.0 ± 2.12 94.5 ± 4.4

TCGA-BRCA
[Hist]

95.1 ± 1.5 96.2 ± 3.3
93.2 ± 3.4 95.8 ± 2.0

TCGA-BRCA
[HRD]

74.4 ± 2.6 79.3 ± 2.4
71.9 ± 5.3 78.1 ± 2.6

TCGA-BRCA
[Mol]

82.1 ± 1.2 81.7 ± 2.2
80.1 ± 1.9 81.7 ± 1.6

TCGA-BRCA
[OS]

64.9 ± 7.1 64.7 ± 5.7
60.3 ± 5.3 63.9 ± 10.2

Colorectal
cancer

TCGA-CRC
[MSI]

91.5 ± 2.3 91.0 ± 2.2
88.3 ± 5.8 88.8 ± 1.1

TCGA-COAD
[OS]

60.8 ± 7.7 62.8 ± 12.7
62.5 ± 7.3 63.4 ± 7.4

Lung
cancer

TCGA-NSCLC
[CType]

96.3 ± 1.2 97.7 ± 1.3
96.4 ± 1.5 97.5 ± 1.0

TCGA-LUAD
[OS]

59.2 ± 8.9 53.8 ± 4.5
59.9 ± 8.6 53.7 ± 5.6

TCGA-LUSC
[OS]

55.9 ± 2.5 62.2 ± 2.9
58.4 ± 4.6 61.3 ± 3.5

Ovarian
cancer

TCGA-OV
[HRD]

74.1 ± 11.8 74.2± 8.6
74.5 ± 12.5 73.1 ± 10.3

Kidney
cancer

TCGA-RCC
[CType]

98.1 ± 0.4 99.5 ± 0.2
98.5 ± 0.4 99.4 ± 0.3

Stomach
cancer

TCGA-STAD
[MSI]

84.3 ± 4.0 89.9 ± 3.9
84.9 ± 7.3 86.7 ± 3.1

Pancreatic
cancer

TCGA-PAAD
[OS]

55.9 ± 6.7 55.3 ± 4.4
56.1 ± 7.1 59.2 ± 4.1

Table 9. Performance comparison of iBOT ViT-B pre-trained on TCGA-COAD
vs. PanCancer40M on PAIP-CRC[MSI] external validation. The iBOT[ViT-
B]COAD column is repeated from Table 3 to ease the comparison with iBOT[ViT-
B]PanCancer. ROC AUC scores and 95% confidence intervals are computed using
bootstrap with 1,000 repeats. The top and bottom rows indicate performance with
ABMIL1 and TransMIL2.

Cancer
site

Task iBOT[ViT-B]
COAD

iBOT[ViT-B]
PanCancer

Colorectal
cancer

MSI prediction:
TCGA-CRC to
PAIP

96.5
[92.9, 100.0]1

94.7
[89.4, 100.0]

93.8
[88.5, 100.0]2

92.7
[85.6, 100.0]

drop on colon-specific tasks is observed for
iBOT[ViT-B]PanCancer, colon-specific pre-training benefits

better generalization, which should be further investigated
with more internal and external validation cohorts.
According to the findings of (38), adding diversity to the
pre-training dataset does not necessarily result in a more
generalized model per se. As an additional study, we
compare two ViT-S iBOT models that were pre-trained
on TCGA-COAD and PanCancer4M datasets respectively,
both following the same experimental setup and containing
an equal number of tiles. We specifically investigate the
impact of increasing the diversity of organ sites during
pre-training. In appendix E, our results show an average
performance drop of 1.3% from colon to pan-cancer
pre-training, this across all weakly-supervised tasks using
the ABMIL aggregation algorithm (2.4% with TransMIL, as
shown in appendix, Table E2). Moreover, we notice a
substantial decrease of 8.4 points in the ROC AUC score for
the external validation of PAIP-CRC when considering a
pan-cancer pre-training approach. This suggests that as
diversity increases, the pre-training task becomes more
challenging, particularly for the ViT-S model which has
limited capacity to handle complex variations. However, it is
worth noting that the iBOT[ViT-S]PanCancer model
outperformed its TCGA-COAD counterpart in
patch-classification tasks, demonstrating significant
improvements across all data regimes (p < 0.005 for all
datasets and training set ratios, except for the 5% ratio)
(refer to Figure E1 in appendix). We speculate that a smaller
model with restricted representation capacity benefits from
higher diversity during pre-training from the perspective of
learning more discriminative higher-level features. This
attribute benefits simple tissue phenotyping tasks but faces
limitations on more challenging tasks such as
weakly-supervised classification.
In contrast, the iBOT[ViT-S]COAD iterating on a smaller
set of patches, tends to focus more on specific histology
characteristics during training. This narrower focus can
simplify the training process and enhance the network’s
representation capabilities. However, this approach also
poses the risk of overfitting to colon-specific features and
may limit the model’s ability to generalize and abstract
information during linear evaluation tasks.
Together with the ViT-Base comparison, those results
confirm the assumption that histology pre-training pipelines
benefit from a simultaneous scaling of both the dataset size
(in order to have more variety in terms of patches) and the
network capacity (in order to increase its representation
capabilities), as highlighted by Figure 5.

5.4 Comparison with other in-domain
pre-trained methods

Eventually, this last section provides a comparison of
iBOT[ViT-B]PanCancer with state-of-the-art SSL models
used in computational pathology. Those include: i) a ViT
pre-trained with knowledge distillation (Dino[ViT-S]BRCA
and HIPT) or CL (MoCoV2[RN50W2]COAD); ii)
hybrid CNN and transformer encoder framework pre-trained
with semantically relevant CL, denoted by CTransPath (24).
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Table 10. Impact of ViT pre-training datasets on patch classification tasks performance for a ViT-B architecture. The iBOT[ViT-B]COAD line is repeated from Table 4. F1 score
(†) is reported for single class classification (ADI to TUM) in NCT-CRC-HE-7K. Accuracy (‡) and 95% confidence intervals are computed using bootstrap with 1,000 repeats
for multi-class classification in NCT-CRC-HE-7K and binary classification in Camelyon17-WILDS, respectively. Bold indicates the highest performance across classes. ROC
AUC scores are reported in appendix (Table G3).

NCT-CRC-HE-7K
Camelyon
17WILDS

Method Adi† Deb† Lym† Muc† Mus† Norm† Str† Tum† All‡ Metastases‡

iBOT[ViT-B]
COAD

99.4 92.7 96.6 99.0 81.1 99.6 75.8 98.9 95.3
[94.8, 95.9]

93.7
[93.4, 93.9]

iBOT[ViT-B]
PanCancer

99.5 83.7 88.8 99.0 83.7 99.4 77.4 98.5
94.3

[93.7, 94.9]
96.6

[96.4, 96.8]

Fig. 4. Impact of ViT pre-training datasets on the linear evaluation results with different sizes of training data for a ViT-B architecture. Results are reported on NCT-CRC-HE
and Camelyon17-WILDS testing datasets. Metrics are reported for an ensemble of 30 linear classifiers with different initializations. 95% confidence intervals are computed
using bootstrap with 1,000 repeats.

Fig. 5. Scaling iBOT to 80M parameters with pan-cancer pre-training on more than 40M histology tiles. We report the performance obtained with ABMIL aggregation
algorithm. The 5 × 5 nested CV is applied without repetition. We report the average test metrics and standard deviation on the outer folds. ROC AUC scores and Harrell’s
C-Index ([OS] suffix) are shown for classification and survival tasks, respectively. CRC-specific tasks are highlighted in bold.

Note that Figure 1 serves as a graphical summary of
Table 11 and Table 12, which we detail hereinafter.

Table 11 displays, for each model, the maximal performance
obtained across five different MIL models: TransMIL,
ABMIL, DSMIL, Chowder and MeanPool. A sixth
transformer-based algorithm is considered for HIPT based

on the original implementation. We show that
iBOT[ViT-B]PanCancer outperforms most other methods on
9 over 14 tasks with ABMIL aggregation model (see Table
F1 in appendix for results with ABMIL). Our model
pre-trained on pan-cancer data brings a 1.4% and 4.0%
mean improvement on CTransPath and HIPT, respectively.
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5.4 Comparison with other in-domain pre-trained methods

Table 11. Comparison of state-of-the-art SSL frameworks on weakly-supervised downstream performance. We display the best performance across five MIL algorithms
for features aggregation: TransMIL, ABMIL, DSMIL, Chowder and MeanPool. A sixth transformer-based algorithm is considered for HIPT based on the original
implementation. ROC AUC and C-Index are reported for classification and survival tasks, respectively. We take the average and standard deviation of each metric over
the five outer test splits from nested CV. Bold and underline indicate the highest and second highest performance across SSL methods, respectively.

(A) (B)
Cohort-specific pre-training Pan-cancer pre-training

Cancer site Task
Dino[ViT-S]

BRCA

MoCoV2
[RN50W2]

COAD
HIPT CTransPath

iBOT[ViT-B]
PanCancer

Breast cancer Camelyon16[Meta] 84.5 ± 4.0 91.4 ± 4.3 95.7 ± 2.1 96.3 ± 2.6 94.5 ± 2.8

TCGA-BRCA[Hist] 92.1 ± 3.0 93.0 ± 1.7 91.3 ± 1.9 95.8 ± 0.5 96.2 ± 1.5
TCGA-BRCA[HRD] 72.1 ± 3.1 73.5 ± 4.3 73.1 ± 3.9 77.1 ± 2.5 79.3 ± 2.7
TCGA-BRCA[Mol] 77.9 ± 1.9 78.0 ± 1.4 78.9 ± 3.4 80.8 ± 1.7 81.7 ± 1.6
TCGA-BRCA[OS] 60.3 ± 10.2 62.6 ± 7.0 63.9 ± 5.8 65.0 ± 6.0 64.7 ± 5.7

Colorectal
cancer

TCGA-CRC[MSI] 76.1 ± 4.4 88.5 ± 2.5 83.1 ± 4.3 88.5 ± 2.3 91.0 ± 2.2

TCGA-COAD[OS] 57.7 ± 10.4 62.6 ± 9.3 60.6 ± 3.4 64.3 ± 5.4 63.4 ± 7.4

Lung cancer TCGA-NSCLC[CType] 92.8 ± 2.5 96.2 ± 1.7 94.2 ± 2.8 97.3 ± 0.4 97.7 ± 1.3
TCGA-LUAD[OS] 59.1 ± 4.1 61.6 ± 2.9 58.3 ± 3.0 59.1 ± 4.5 58.0 ± 6.8
TCGA-LUSC[OS] 60.8 ± 4.0 61.6 ± 4.2 61.1 ± 5.7 61.5 ± 2.9 63.2 ± 1.4

Ovarian
cancer

TCGA-OV[HRD] 57.2 ± 8.2 70.2 ± 11.4 69.5 ± 12.9 69.5 ± 7.0 74.2 ± 8.6

Kidney
cancer

TCGA-RCC[CType] 97.5 ± 0.8 98.6 ± 0.3 98.6 ± 0.4 98.9 ± 0.2 99.5 ± 0.2

Stomach
cancer

TCGA-STAD[MSI] 76.5 ± 3.3 79.0 ± 4.0 79.6 ± 3.1 83.2 ± 8.1 89.9 ± 3.9

Pancreatic
cancer

TCGA-PAAD[OS] 59.3 ± 6.8 59.6 ± 4.2 61.3 ± 2.7 59.0 ± 4.2 59.2 ± 4.1

Table 12. Comparison of state-of-the-art SSL frameworks on PAIP-CRC[MSI] external validation. Best MIL model is reported in parentheses. Bold and underline indicate the
highest and second highest performance. ROC AUC scores and 95% confidence intervals are computed using bootstrap with 1,000 repeats.

(A) (B)
Cohort-specific pre-training Pan-cancer pre-training

Cancer site Task Dino[ViT-S]
BRCA

MoCoV2
[RN50W2]

COAD
HIPT CTransPath iBOT[ViT-B]

PanCancer

Colorectal
cancer

MSI prediction:
TCGA-CRC to PAIP

88.1
[78.1, 99.1]
(ABMIL)

94.0
[88.8, 100.0]

(ABMIL)

94.2
[85.2, 100.0]

(DSMIL)

96.1
[92.1, 100.0]

(DSMIL)

98.2
[96.3, 100.0]

(DSMIL)

Among those three pan-cancer feature extractors,
iBOT[ViT-B]PanCancer places first and achieves an average
1.2% (6.5%) gain on CRC-related tasks compared to
CTransPath (resp. HIPT), and an average 1.5% (3.4%) gain
on other tasks. Our model shows state-of-the-art
performance on TCGA-RCC and TCGA-NSCLC
histological subtype classification tasks, along with a
remarkable generalization ROC AUC score on
PAIP-CRC MSI prediction (see Table 12). In addition,
iBOT[ViT-B]PanCancer depicts the higher performance on
patch-classification tasks with full-training sets 13

surpassing other models by a large margin on
Camelyon17-WILDS dataset. Low data regime scenarios
depict on-par generalization performance between our
model, CTransPath and MoCoV2[RN50W2]COAD,
NCT-CRC-HE-7K dataset, with very high label efficiency
on 0.1% of Camelyon17-WILDS training set (Figure 6).
The previous results demonstrate the validity and superiority
of our method in capturing high-level semantic features for
patch phenotyping tasks, while producing highly
informative features for intricate slide-level predictions.
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Table 13. Comparison of state-of-the-art SSL frameworks on patch classification tasks. HIPT∗[ViT256] correspond to the first ViT-S model of HIPT architecture pre-trained
on 256 × 256 pixels tiles. F1 score (†) is reported for single class classification (Adi to Tum) in NCT-CRC-HE-7K. Accuracy (‡) and 95% confidence intervals are computed
using bootstrap with 1,000 repeats for multi-class classification in NCT-CRC-HE-7K and binary classification in Camelyon17-WILDS, respectively. Bold and underline indicate
the highest and second highest performance across classes, respectively. ROC AUC scores are reported in appendix (Table G4).

NCT-CRC-HE-7K
Camelyon
17WILDS

Method Adi† Deb† Lym† Muc† Mus† Norm† Str† Tum† All‡ Metastases‡

(A)

DINO[ViT-S]
BRCA

98.7 87.7 95.2 87.1 78.8 86.6 49.6 94.1
88.3

[87.6, 89.1]
91.1

[90.8, 91.4]
MoCoV2
[RN50W2]
COAD

99.1 95.5 95.3 97.8 78.1 97.6 73.2 97.7
94.1

[93.6, 94.7]
92.3

[92.1, 92.6]

(B)

HIPT∗[ViT256] 96.6 90.6 94.4 94.0 74.9 91.3 49.1 95.7
89.9

[89.2, 90.7]
87.0

[86.6, 87.3]

CTransPath 99.1 80.5 97.7 96.3 77.5 96.7 68.7 96.0
92.5

[91.9, 93.2]
91.8

[91.5, 92.1]
iBOT[ViT-B]
PanCancer

99.5 83.7 88.8 99.0 83.7 99.4 77.4 98.5 94.3
[93.7, 94.9]

96.6
[96.4, 96.8]

Fig. 6. Linear evaluation results on NCT-CRC-HE and Camelyon17-WILDS testing dataset for different state-of-the-art SSL frameworks with increasing size of training data.
Metrics are reported for an ensemble of 30 linear classifiers with different initializations. 95% confidence intervals are computed using bootstrap with 1,000 repeats.

6 Discussion
In this work, we explored the benefits of using iBOT to
pre-train large neural networks on databases of
unlabeled WSI. Through a large panel of 17 downstream
tasks spanning seven cancer indications and 16 cancer
subtypes, we showed that our iBOT ViT-B model,
pre-trained on more than 40M histology patches, strongly
improves the performance on ten weakly-supervised WSI
classification compared to other SSL frameworks available
in the literature. These results are based on an analysis of the
learning scalability of iBOT both in terms of pre-training
dataset size, pre-training dataset diversity and model
architecture. As a result, we provide a set of guidelines for
pre-training large ViT models on histology data using iBOT:

1. In-domain pre-training of ViT with iBOT should be
favored over standard CNN pre-training on ImageNet.
We show that a ViT pre-trained with iBOT
outperforms a ResNet pre-trained on ImageNet on 16
out of 17 downstream tasks.

2. ViT pre-trained with iBOT should be favored over a

standard CNN pre-trained with MoCo v2. We show
that, when both pre-trained on TCGA-COAD,
a ViT-B (86M parameters) pre-trained with iBOT
outperforms a ResNet50-w2 pre-trained with MoCo
v2 (67M) pre-trained with MoCo v2. Besides, a ViT-S
model pre-trained with iBOT achieves on-par
downstream performance when compared to the
aforementioned ResNet model, with three times fewer
parameters.

3. Pre-training on a relatively small histology dataset
(4M patches) and increasing the size of the
architecture to a ViT-B (85M parameters) yields
consistent performance improvement over a ViT-S
(21M parameters). However, increasing the size of the
architecture to a ViT-L (307M parameters) does not
yield further performance improvement.

4. In-cancer-domain pre-training benefits from a
simultaneous scaling of both the dataset size, diversity
and network capacity, with improved downstream
generalization performance. Notably, increasing the
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5.4 Comparison with other in-domain pre-trained methods

sole diversity of the pre-training dataset from
colon-specific to pan-cancer (PanCancer4M) seems to
degrade the downstream performance of a ViT-S
model pre-trained with iBOT. In contrast, a ViT-B
model (86M parameters) pre-trained with 40M
pan-cancer histology tiles outperform both a ViT-B
and ViT-L (307M) models pre-trained with 4M
colon-specific histology tiles on a wide variety of
weakly-supervised tasks, without performance drop
on colorectal cancer tasks.

In view of our experiments, we note that the
above-mentioned guidelines need further validation. As
such, a comprehensive ablation study should be conducted
to disentangle the role of model architecture, number of
pre-training iterations and pre-training dataset size with
iBOT for histology images (35). Those experiments
non-exclusively involve: (i) pre-training a ViT-L on the
PanCancer40M dataset (which we estimate to take 11,000
V100 hours for 350,000 iterations), confirming that larger
pan-cancer pre-training benefits larger models; (ii)
pre-training a ViT-S PanCancer on 40M tiles, confirming
that larger pan-cancer datasets are not required for smaller
architectures like ViT-S; (iii) implementing a validation loss
or custom metric (79), as it has been demonstrated to have a
strong correlation with downstream performance (35), thus
avoiding the need for expensive evaluation on
weakly-supervised tasks. Lastly, our downstream evaluation
protocol could be even further extended by broadening the
list of downstream tasks, including segmentation, object
detection, and retrieval tasks.
In section 4.1, we highlighted the superiority of a ViT-B
model pre-trained with iBOT over a ResNet50-w2 trained
with MoCo V2. Additional experiments should enrich this
comparison, especially to decouple the SSL method (iBOT
vs. MoCo v2/v3) and the pre-trained model (i.e., ViT
vs. CNN). Moreover, the cross-entropy loss on [CLS]
tokens was shown to be responsible for acquiring most of
the visual semantics as a form of CL without positive
pairs (33). This leaves room for further enhancing the CL
component of iBOT. As such, one could enforce iBOT to
further spread apart features in the output space, e.g., by
replacing the standard cross-entropy loss on [CLS] tokens
by InfoNCE loss (80) or KoLeo regularization (81, 82). In
addition, the construction of positive and negative pairs
tailored for histology could also be investigated, such as
enforcing spatial proximity of positive pairs (MoCo v3).
It should also be noted that the downstream performance
of SSL frameworks on weakly-supervised tasks remains
dependent on the application and data at hand. In
particular, OS prediction exhibits the highest variability
across datasets with no clear trend between SSL
frameworks. The OS label is known to show a limited
correlation with histology features. It is important to note
that patients with cancer may experience mortality from
causes unrelated to cancer itself. This factor could
contribute to the increased variability observed in model
benchmarks for OS prediction tasks.

Even though our ViT-B model pre-trained iBOT on 43M
pan-cancer patches demonstrates remarkable improvement
over other SSL methods, pre-training ViT-models with
iBOT is highly computationally intensive and may exhibit
instability, especially for larger architectures and datasets.
To address this issue, we intend to explore engineering
enhancements to stabilize and speed up the pre-training
process, making it more scalable to increasing model and
dataset sizes. A recent study in computer vision suggests
that such technical improvements have the potential to
achieve a two-fold increase in speed and a three-fold gain in
memory efficiency compared to the iBOT method (81). In
combination with the validation loss mentioned above, these
gains pave the way for further hyperparameters exploration.
Lastly, our iBOT methods are pre-trained on histology tiles
with the same data augmentation as the one used for natural
images (ImageNet). Consequently, we could expect better
generalization performance by integrating histology-specific
data augmentation and normalization methods into the MIM
framework (24, 83, 84).

7 Conclusion
In this work, we successfully scaled iBOT pre-training with
large ViT models to massive datasets of unlabeled WSI. Our
findings indicated that further scaling beyond ViT-B
architectures offers the potential for the development of a
foundation model for digital pathology. However, it is
essential to acknowledge that scaling per se should not
overlook the crucial role of data curation for SSL
pre-training. We strongly believe that significant
advancements can also be achieved by constructing a highly
curated and balanced dataset that extends
beyond TCGA WSI. Exciting avenues for improvement
include the adoption of more efficient data sampling
strategies (81) or the incorporation of automatic data subset
selection during pre-training (85).
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