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Abstract 

Parkinson's disease (PD) is often known for its classical motor symptoms, but non-motor 

symptoms are often reported including interoceptive and autonomic dysfunctions. Autonomic 

dysfunctions, such as cardiovascular, urinary, or thermoregulatory abnormalities, are more 

prone to be associated with motor and cognitive decline, as well as increase the risk of mortality. 

More recent evidence has shown that Parkinsonian patients may experience alterations in 

interoceptive processing, i.e., reduced sensitivity to accurately sensing and interpreting internal 

cues, leading to further impairment in self-awareness, cognitive and emotional processing. 

Noteworthy, the mechanisms behind these autonomic/interoceptive dysfunctions are not well 

understood. During the early stages of PD, disruptions in the connectivity of multiple brain 

regions occur, which has prompted the study of PD as a network-level phenomenon. Our 

hypothesis is that by examining the relationship between brain connectivity and heartbeat 

dynamics, we can gain insight into the large-scale network disruptions and the neurophysiology 

of the disrupted interoceptive mechanisms in PD. Our results show that the coupling of 

fluctuating alpha and gamma connectivity with heartbeat dynamics is reduced in PD patients, 

as compared to healthy participants. Furthermore, we show that PD patients under dopamine 

medication recover part of the brain-heart coupling, in proportion with the reduced motor 

symptoms. Our proposal offers a promising approach to unveil the physiopathology of PD and 

promoting the development of new diagnostic methods for the early stages of the disease. 
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Introduction 
The understanding about the physiopathology and clinical phenotype of Parkinson’s 

disease (PD) remains limited. PD is known to affect motor function, but non-motor symptoms 
such as autonomic dysfunction have a significant impact on patients' quality of life (1). 
Autonomic dysfunction can involve various bodily systems, including gastrointestinal, 
cardiovascular, urinary, erectile, thermoregulatory, and pupil contraction systems (2, 3). Recent 
research shows that measuring brain-heart interactions can reveal the body's physiological state 
(4), which helps to diagnose and prognose brain-injured patients (5–7). Neurodegenerative 
diseases including PD may disrupt the awareness of one's own heartbeats, known as cardiac 
interoception, suggesting a disruption in the communication between the brain and the heart 
(8–11). Existing evidence of changes in the brain networks of PD patients (12–14), along with 
autonomic dysfunctions and disrupted interoception, lead to the hypothesis that PD patients 
may have altered brain-heart interactions. 

In recent years, PD has been recognized as a condition that affects physiology at a 
network level, rather than just a focal brain region pathology (15, 16). One of the physiological 
signatures of PD are the aberrant changes in brain connectivity, whose origin remains to be 
understood (17, 18). We propose a new framework to study brain-heart interactions by 
quantifying the relationship between brain connectivity and estimators of cardiac sympathetic 
and parasympathetic activities. Our study cohort includes EEG and ECG 3 min resting state 
data from 16 healthy participants (HS, 7 males and 9 females, median age = 60.5±8 years) and 
15 PD patients at an early state of the disease (7 males and 8 females, median age = 63± 8 years)  
(19). This study compares PD patients on and off dopaminergic therapy, as dopaminergic 
therapy has been shown to improve patient outcomes (20), to determine if physiological 
changes triggered by dopamine medication are reflected in brain-heart interactions. 
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Results 
We estimated cardiac sympathetic and parasympathetic activities through a method 

based on the geometry of the interbeat intervals distributions as depicted in Poincaré plots (21). 
To quantify brain connectivity, a first-order adaptive Markov process was used (22). This 
helped to derive a directed connectivity measure between the fluctuations in power of two EEG 
channels at a defined frequency band, as shown in Figure 1. Maximal Information Coefficient 
(MIC) was used to quantify the linear and nonlinear couplings between the brain and the 
heartbeat-derived time series, resulting in an index in the range 0-1 (23).  Statistical 
comparisons were based on finding clustered effects (24) on the brain-heart coupling measures 
(MIC values), between healthy participants and PD patients, and between PD on and off 
dopaminergic therapy.  
 

 
Figure 1. Methodological pipeline. (i) Computation of time-varying EEG power at different frequency bands (a, 
b, g) and the estimation of time-varying connectivity between two EEG channels. (ii) Computation of the heart 

rate variability series from ECG and the estimation of cardiac sympathetic-parasympathetic activity. (iii) Brain 
connectivity-cardiac coupling estimation by computing the Maximal Information Coefficient (MIC). The 

coupling quantification is achieved by assessing the similarities between two time series, regardless of the 
curvature of the signals. The MIC method evaluates similarities between distinct segments individually, using an 
adjusted grid as depicted in the figure. The overall measure combines the similarities observed throughout the 

entire time-course. 
 

We observed significant variations in the relationship between the brain connectivity 
and heartbeat dynamics among PD patients and healthy individuals. In healthy individuals, we 
observed a coupling between fluctuations in EEG connectivity and variations in cardiac 
dynamics. However, this coupling was weaker in PD patients, particularly in the relationship 
between slow fluctuations of heart rate variability (which are associated with sympathetic 
activity) and alpha and gamma connectivity.  

We found differences when comparing the brain-heart coupling of healthy participants 
with that of PD patients who were not receiving dopaminergic therapy (PD off). Through 
cluster-based permutation tests, applied to the ensemble of EEG connectivity values coupled 
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with heartbeat dynamics, we discovered that one network in the alpha band was significantly 
linked to cardiac sympathetic indices, whose coupling was reduced in PD (Figure 2A and B, 
cluster statistics HS vs PD off, p = 0.0002, Z = 2.9844, cluster size = 154). These findings 
indicate that the resting state neural dynamics in PD are disturbed, affecting the interactions 
between brain connectivity and heartbeat dynamics. Importantly, these differences can be 
identified using non-invasive methods, without requiring any form of stimulation. 

Dopaminergic therapy has been found to improve the reduced brain-heart coupling in 
patients with PD. This suggests that measures of brain-heart coupling are sensitive to the 
physiological changes induced by dopaminergic therapy in PD patients. We found a correlation 
between the brain-heart coupling and the changes in the motor evaluation in PD patients (as 
evaluated in the motor section of the Unified Parkinson's Disease Rating Scale–UPDRS III 
(25)). Specifically, the significant correlation between the improvement in motor symptoms 
and brain-heart coupling was found in the alpha band (Figure 2C, Spearman correlation, R = 
0.6470, p = 0.0091).  

 

 
Figure 2. Significant alpha network that changed their coupling with cardiac sympathetic indices. (A) The 

network distinguishing healthy participants from PD patients off dopaminergic therapy. (B) Distribution of the 
mean brain-heart coupling. The dashed lines indicate the group medians. (C) Correlation between the changes 

in the brain-heart coupling (Dbrain-heart coupling, i.e., on minus off) and the changes in motor symptoms 
(motor section of the United Parkinson's Disease Rating Scale—where a lower score means better motor 

outcome). All values are in arbitrary units. 
 
Additionally, we found two networks in the gamma band that were also linked to the 

estimation of cardiac sympathetic indices as well. These two networks were located in the 
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parieto-frontal (Cluster statistics HS vs PD off, p < 0.0001, Z = 2.9844, cluster size = 789) and 
parieto-temporal regions (Cluster statistics HS vs PD off, p < 0.0001, Z = 2.7472, cluster size 
= 398), as shown in Figure 3. These couplings showed no correlation with changes in motor 
symptoms in either gamma network 1 (Spearman correlation, R = 0.4050, p = 0.1342), or in 
gamma network 2 (Spearman correlation, R = 0.4444, p = 0.0969).  

We found non-significant differences when comparing the mean connectivity values in 
the identified alpha network (Wilcoxon test, HS vs PD on, p = 0.4177; HS vs PD off, p = 0.5936; 
PD on vs PD off, p = 0.1914), gamma network 1 (Wilcoxon test, HS vs PD on, p = 1; HS vs 
PD off, p = 0.3328; PD on vs PD off, p = 0.3066) and gamma network 2 (Wilcoxon test, HS vs 
PD on, p = 0.0930; HS vs PD off, p = 0.1184; PD on vs PD off, p = 0.8647), cardiac sympathetic 
(Wilcoxon test, HS vs PD on, p = 0.2436; HS vs PD off, p = 0.5143; PD on vs PD off, p = 
0.8682) and cardiac parasympathetic (Wilcoxon test, HS vs PD on, p = 0.8279; HS vs PD off, 
p = 0.3954; PD on vs PD off, p = 0.2998). 

 

 
Figure 3. Significant gamma networks that changed their coupling with cardiac sympathetic indices. (A) The 

networks distinguishing healthy participants from PD patients off dopaminergic therapy. (B) Distribution of the 
mean brain-heart coupling. The dashed lines indicate the group medians. All values are in arbitrary units. 

 
Furthermore, we examined the relationship between the brain and heartbeats by 

analyzing heartbeat-evoked responses (HERs), acknowledged markers of the central processing 
of cardiac inputs (26). HERs were gathered from the average of EEG epochs synchronized with 
the cardiac cycle. We compared HERs in healthy individuals to those with PD, both on and off 
dopaminergic therapy, and compared HERs in PD patients on and off dopamine therapy. Our 
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findings revealed distinct HER patterns when comparing PD patients on and off dopaminergic 
therapy (Cluster statistics PD on vs PD off. Positive clusters: p1 = 0.0008, Z1 = 3.2942; p2 = 
0.0068, Z2 = 3.0102. Negative cluster: p = 0.0037, Z = 2.8966), as shown in Figure 4. However, 
there was only a slight difference between the two conditions, suggesting that higher-order 
brain-heart interaction analysis, such as the coupling between cardiac and brain networks may 
be a more suitable approach for characterizing PD. 
 
 

 
Figure 4. Heartbeat-evoked responses (HERs). (A) Pipeline to compute HERs. (B) Clustered effects found when 

comparing PD on vs PD off. Thick channels show clustered effects, and the color bar indicates the Z-value 
obtained from the paired Wilcoxon test. (C) Group median time course of the thick electrodes shown in (A). (D) 

Combined clustered effects. 
PD on: Parkinsonian on dopamine, PD off: Parkinsonian off dopamine. 
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Discussion 
The physiological basis of disrupted cardiac interoceptive pathways in PD, as assessed 

by brain-heart interactions, has not been significantly explored to date. Peripheral autonomic 
neurons are affected as well in PD (27), leading to symptoms of dysautonomia ranging among 
cardiovascular, respiratory, gastrointestinal, urinary, erectile, thermoregulatory, and pupil 
contraction disorders (2, 3). The appearance of autonomic damage in PD has led to a search for 
specific abnormalities in autonomic function, e.g., heart rate variability (28, 29), that could 
predict the disease. The reliability of these biomarkers remains uncertain due to the lack of 
understanding regarding their underlying mechanisms (30). Furthermore, the strongest 
evidence indicates that autonomic markers may rather provide insights into the severity and 
prognosis of PD (31). 

The exploration of the relationship between brain connectivity and cardiac dynamics in 
PD is motivated by the substantial evidence of abnormal brain connectivity and autonomic 
abnormalities found in PD patients. These findings may provide a link to the observed 
disruptions in interoception in these individuals (8–11). Nigrostriatal fiber degeneration in PD 
disrupts the striato-cortical functional connectivity networks, leading to the known impairments 
in motor control (32). However, in the early stages of PD, changes in brain metabolism occur 
in key nodes of motor and cognitive networks, which can lead to disruptions in the connectivity 
of several regions (33, 34). This has motivated the study of PD in terms of network-level 
phenomena rather than focal pathology (15, 16). We investigated how cortical connectivity and 
heart rate variability covary at resting state. Our study found notable differences between the 
coupling between cardiac dynamics and brain connectivity in patients with PD and healthy 
individuals. In healthy participants, we noticed that changes in time-varying EEG connectivity 
are linked to changes in cardiac dynamics. However, this coupling is reduced in PD patients, 
especially in the connection between slow fluctuations of heart rate variability (considered 
predominantly sympathetic) and alpha and gamma connectivity. When PD patients are under 
dopaminergic therapy, the brain-heart coupling changes, suggesting a close link between the 
changes triggered by dopamine replacement and brain-heart coupling measures. This may 
indicate that markers of brain-heart interactions can capture dopaminergic-dependent 
mechanisms that are disrupted in PD. Indeed, one of the pathways affected by PD is the locus 
coeruleus-noradrenaline pathway (35). The disruptions in the locus coeruleus-noradrenaline 
pathway lead to changes in the slow fluctuations of heart rate variability, which are caused by 
changes in sympathetic activity resulting from variations in the noradrenaline release rate (36). 

The acknowledged multi-organ dysfunction found in PD indicate that the 
physiopathology involves the disruption of several interoceptive pathways (2, 3), including 
cardiac sympathetic denervation caused by the loss of catecholamine innervation in the 
nigrostriatal system and in the sympathetic nervous system (37). Previous behavioral studies 
have found that patients with PD have difficulty sensing their own heartbeats, namely cardiac 
interoception (8, 10). This suggests that their brain-heart communication may be disrupted. In 
another study (9) the authors found an improved emotion recognition when  healthy individuals 
performed an emotion recognition task after completing a cardiac interoception task. However, 
this effect was not observed in patients with PD (9). Furthermore, early PD has reported atrophy 
of the insula, key structure in interoceptive processing (38). Interoceptive inputs have been 
recognized as playing an important role in perception within computational frameworks of 
predictive coding (39) and consciousness (4), where dopamine is thought to be critical for 
processing interoceptive prediction errors (40, 41). Numerous studies have shown that 
dopamine encodes learning and reward prediction (42–45), further supporting this idea. On 
account of the key role of dopamine-modulated mechanisms, it has been hypothesized that 
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dopamine participates in adaptation processes in predictive coding (46), which may extend to 
the role of dopamine in the regulation of the subjective experience of perception (47). 

Our results may provide new insights for the understanding of the well-known 
abnormalities in brain connectivity of PD. For instance, PD patients show decreased 
connectivity in the supplementary motor area, dorsal lateral prefrontal cortex, and putamen, but 
increased connectivity in the cerebellum, primary motor cortex, and parietal cortex (48). PD 
patients may have higher connectedness within the sensorimotor and visual networks (49), due 
to compensation or loss of mutual inhibition between brain networks. Dopamine medication 
can normalize some patterns of functional connectivity, but the recovery level may depend on 
disease severity (48, 50). In our results we observed a decrease in the coupling of cardiac 
sympathetic activity with brain connectivity measured in the alpha and gamma bands. EEG 
studies have revealed significant changes in the alpha-gamma range in PD, with reduced 
connectivity in alpha-beta bands and increased connectivity in the gamma band (12), but also 
aberrant cortical synchronization in the beta band (17, 18). It remains to be confirmed whether 
our results relate to the repeatedly reported changes in brain connectivity in PD, including 
subcortical structures.  

One of the believed causes of PD is the alpha-synuclein accumulation, is associated with 
neuronal death and synapse loss, as well as Lewy body formation. Noteworthy, these 
mechanisms affect dopamine transporter activity (51) and all the components of the central 
autonomic network, including cortical, insular, hypothalamic, brain stem, and spinal cord, as 
well as in peripheral structures like the vagus nerve, sympathetic nerve fibers, and enteric neural 
plexus (52). It remains to be explored whether the disrupted brain-heart interactions measured 
can be used as biomarkers of the early appearance of alpha-synuclein, or the migration of alpha-
synuclein from peripheral systems to the brain (53, 54), but also for the early PD diagnosis and 
the prognosis of cognitive and motor deficits (55). 
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Conclusions 
The interactions between brain connectivity and cardiac dynamics can help us to better 

understand the complex physiopathology of PD, even in the early stages of the disease. We 
showed that cardiac sympathetic dynamics have a reduced coupling with brain connectivity 
patterns. Our results suggest a direct link between the already described changes in brain 
connectivity and autonomic dysfunctions in PD, which are potentially dopaminergic-
dependent. We have demonstrated the potential of the study of brain-heart interactions in PD 
patients, whose exploitation may bring with advances in early diagnosis and the development 
of tools to be utilized in easily accessible clinical setups. Overall, our findings could inspire the 
development of new methods to investigate central nervous system and autonomic activity in 
both healthy individuals and those with pathological conditions. 
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Materials and methods 

Dataset description 
The dataset (19, 56) includes 15 PD patients (7 males and 8 females, median age = 63± 

8 years) and 16 healthy participants (7 males and 9 females, median age = 60.5±8 years). The 
median disease duration is 3±2 years (range 1 to 12 years). PD patients were diagnosed by a 
movement disorder specialist at Scripps clinic in La Jolla, California. Dopaminergic medication 
significantly improved motor symptoms, as measured by the motor section of the Unified 
Parkinson's Disease Rating Scale–UPDRS III (25), as performed in a paired Wilcoxon test (Z 
= 2.9388, p = 0.0033). Participants were right-handed and provided written consent in 
accordance with the Institutional Review Board of the University of California, San Diego, and 
the Declaration of Helsinki. Details on the demographic information of each participant are 
available in the original studies from this cohort (19, 56). 

PD patients’ data were collected under on- and off-medication. On- and off-medication 
conditions were collected on different days with a counterbalanced order. For the on-medication 
recordings, patients continued their typical medication regimen. For the off-medication state, 
patients discontinued medication use at least 12 h before the session.  

EEG data were acquired using a 32-channel BioSemi ActiveTwo system, together with 
a one-lead ECG, sampled at 512 Hz at rest for approximately 3 min.  

 
EEG processing 

EEG data were pre-processed using MATLAB R2022b and Fieldtrip Toolbox (57). Data 
were bandpass filtered with a fourth-order Butterworth filter, between 0.5 and 45 Hz. Large 
movement artifacts were removed using the wavelet-enhanced independent component analysis 
(58). Consecutively, an Independent Component Analysis (ICA) was re-run to identify and set 
to zero the components with eye movements and cardiac-field artifacts. To this end, one lead 
ECG was included as an additional input to the ICA to enhance the process of finding cardiac 
artifacts. Once the ICA components with eye movements and cardiac artifacts were visually 
identified, they were set to zero to reconstruct the EEG series. The results of this step were eye-
movements and cardiac-artifact-free EEG data. Channels were re-referenced using a common 
average (59).  
 
ECG processing 

ECG time series were bandpass filtered using a fourth-order Butterworth filter, between 
0.5 and 45 Hz. The R-peaks from the QRS waves were identified with an automatized process, 
followed by a visual inspection of misdetections. The procedure was based on a template-based 
method for detecting R-peaks (59). All the detected peaks were visually inspected over the 
original ECG, along with the inter-beat intervals histogram. Manual corrections of 
misdetections were performed if needed. 

 
Computation of cardiac sympathetic and parasympathetic indices 

The cardiac sympathetic and parasympathetic activities were estimated through a 
method based on the time-varying geometry of the interbeat interval (IBI) Poincaré plot (21). 
Poincaré plot is a non-linear method to study heart rate variability and depicts the fluctuations 
on the duration of consecutive IBIs (60). The features quantified from Poincaré plot are the SD1 
and SD2, the ratios of the ellipse formed from consecutive changes in IBIs, representing the 
short- and long-term fluctuations of heart rate variability, respectively (61). 
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The ellipse ratios for the whole experimental condition SD!" and SD!# are computed as 
follows: 

𝑆𝐷!" 	= 	'
1
2	𝑠𝑡𝑑(𝐼𝐵𝐼

$)# (1) 

𝑆𝐷!# 	= 	'2	𝑠𝑡𝑑(𝐼𝐵𝐼)# −
1
2	𝑠𝑡𝑑(𝐼𝐵𝐼

$)#	 
(2) 

 

where IBI$ is the derivative of IBI and std() refers to the standard deviation.  
The fluctuations of the ellipse ratios are computed with a sliding-time window, as shown 

in Eq. Erreur ! Source du renvoi introuvable. and Erreur ! Source du renvoi introuvable.: 
 

𝑆𝐷"(𝑡) 	= 	'
1
2	𝑠𝑡𝑑(𝐼𝐵𝐼

$
%!)# 

(3) 

 

𝑆𝐷#(𝑡) 	= 	'2	𝑠𝑡𝑑(𝐼𝐵𝐼%!)# −
1
2	𝑠𝑡𝑑(𝐼𝐵𝐼

$
%!)#	 

(4) 

 
where Ω&:	t	– 	T	 ≤ 	 t' 	≤ 	t, in this study T is fixed in 15 seconds. 

The Cardiac Parasympathetic Index (CPI) and Cardiac Sympathetic Index (CSI) are 
computed as follows: 

𝐶𝑃𝐼(𝑡) = 𝑆𝐷!" + 𝑆𝐷"@@@@@(𝑡)	 (5) 
 

𝐶𝑆𝐼(𝑡) = 𝑆𝐷!# + 𝑆𝐷#@@@@@(𝑡)	 (6) 

 
where SD(@@@@@ is the demeaned SD( 

For a comprehensive description of the method, see (21).  
 
EEG connectivity fluctuations 

The EEG spectrogram was computed using the short-time Fourier transform with a 
Hanning taper. Calculations were performed through a sliding time window of 2 seconds with 
a 50% overlap, resulting in a spectrogram resolution of 1 second and 0.5 Hz. Time series were 
integrated within three frequency bands (alpha: 8-12 Hz, beta: 12-30 Hz, gamma: 30-45 Hz), 
based on previous EEG connectivity findings (12). 

The directed time-varying connectivity between two EEG channels was quantified 
using an adaptative Markov process (22), as shown in Equation Erreur ! Source du renvoi introuvable., 
where f is the main frequency, 𝜃) is the phase (f = 1, …, 45 Hz). The model estimates the 
directed connectivity at a specific frequency band (F = {alpha, beta, gamma}) using least 
squares in a first order auto-regressive process with an external term, as shown in Erreur ! Source 
du renvoi introuvable., where AF  is a constant and εF is the adjusted error. Therefore, the directed 
connectivity is obtained from the adjusted coefficient from the external term BF, as shown in 
Equation (9). 
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𝐸𝐸𝐺*+"(𝑡) 	= 	 D 𝑎)(𝑡)
)"

)	-	)#

∙ 𝑠𝑖𝑛(𝜔)	𝑡 + q)) 
(7) 

 a.,*+"(t) = 𝐴. · a.,*+"(t-1) +  𝐵. · 𝑎.,*+#(t-1) + ε., (8) 

𝐶.,*+#®*+"(t) =	𝐵.(𝑡)  (9) 

 
 
Brain-heart coupling estimation 

The coupling between brain connectivity fluctuations and cardiac sympathetic-
parasympathetic indices was assessed using Maximal Information Coefficient (MIC). MIC is a 
method that quantifies the coupling between two time series (23).  MIC evaluates similarities 
between different segments separately at an adapted time scale that maximizes the mutual 
information, with a final measure that wraps the similarities across the whole time-course. The 
Equations (10) and (11) show the MIC computation between two time series X and Y. The mutual 
information 𝐼0 is computed to different grid combinations 𝑔	 ∈ 	𝐺12 . The mutual information 
values are normalized by the minimum joint entropy log#min{𝑛1 , 𝑛2}, resulting in an index in 
the range 0-1. Finally, the quantified coupling between X and Y corresponds to the normalized 
mutual information resulting from the grid that maximizes the MIC value. 
 

m(X	, Y) = 
max
0	∈	4$%

𝐼0

log#min{𝑛1 , 𝑛2}
 (10) 

MIC(X	, Y) = max
5$	×	5%	7	8

𝑚(𝑋, 𝑌) (11) 

 
where B = 𝑁!.:, and N is the dimension of the signals (23). The source code 

implementing MIC is available online at https://github.com/minepy. 
 
The visualization of the brain networks coupled with heartbeat dynamics was performed 

using Vizaj (62). 
 
Heartbeat-evoked responses analysis 

Heartbeat-evoked responses (HERs) were defined by averaging time-locked EEG 
epochs with respect to R-peaks, from 0 to 500 ms (63). For HERs computation, the EEG epochs 
selection followed two rules: (i) epochs maximum absolute amplitude < 300 μV on any EEG 
channel, and (ii) the next heartbeat occurred at a latency later than 500 ms.  

 
Statistical analysis 

Statistical comparisons were based on Wilcoxon rank sum and signed rank tests, for 
unpaired and pared comparisons, respectively. P-values were corrected for multiple 
comparisons by using cluster-permutation analyses. Clustered effects were revealed using a 
non-parametric version of cluster permutation analysis (24). Cluster permutation analysis was 
applied to HERs and the MIC values computed between the directed connectivity and cardiac 
sympathetic/parasympathetic activity. Cluster-based permutation test included a preliminary 
mask definition, identification of candidate clusters and the computation of cluster statistics 
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with Monte Carlo’s p-value correction. First, the preliminary mask was defined through 
Wilcoxon test, with alpha = 0.05, to the 992 MIC values corresponding to all the possible pair 
of channel combinations in both directions (Figure 5A). The identification of neighboring 
points was based on the default Biosemi neighborhood definition for 32 channels, and the 
neighboring connections were defined as shown in Figure 5B. A minimum cluster size of 5 
neighbors was imposed. Cluster statistics were computed from 10,000 random partitions. The 
proportion of random partitions that resulted in a lower p-value than the observed one was 
considered as the Monte Carlo p-value, with significance at alpha = 0.05. The cluster statistic 
considered is the Wilcoxon’s absolute maximum Z-value obtained from all the samples of the 
identified networks, separately (Figure 5C). 
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Figure 5. Network cluster permutation pipeline. (A) The connections that resulted in a p-value lower than the 
defined critical alpha are retained for constructing a preliminary mask for further analysis. (B) Neighboring 

connections are grouped by following the neighboring rule displayed. (C) Cluster statistics are computed for all 
the averaged connections that belong to the cluster and corrected for 10,000 permutations. 

 

Resource availability 
The data is part of a publicly available dataset “UC San Diego Resting State EEG Data 

from Patients with Parkinson's Disease”, gathered from OpenNeuro.org the 21st of November 
of 2022 (56, 64, 65). 
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The utilized code come from different toolboxes for MATLAB. The functions for the 
computation of cardiac sympathetic and parasympathetic indices (21) are available at 
https://github.com/diegocandiar/robust_hrv. The functions for the computation of time-
varying connectivity and brain-heart coupling are available at 
https://github.com/diegocandiar/heart_brain_conn. The functions for the computation of MIC 
values (23) are available at https://github.com/minepy. The functions to perform cluster 
permutation analyses (24) are available at 
https://github.com/diegocandiar/eeg_cluster_wilcoxon. The data analysis was performed using 
Fieldtrip toolbox (57), available at https://github.com/fieldtrip/fieldtrip 
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