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Summary 

The ε4 allele of apolipoprotein E (APOE) is the strongest genetic risk factor for sporadic 

Alzheimer’s Disease (AD). Knockdown of this allele may provide a therapeutic strategy for AD, 

but the effect of APOE loss-of-function (LoF) on AD pathogenesis is unknown. We searched for 

APOE LoF variants in a large cohort of older controls and patients with AD and identified six 

heterozygote carriers of APOE LoF variants. Five carriers were controls (ages 71-90) and one 

was an AD case with an unremarkable age-at-onset between 75-79. Two APOE ε3/ε4 controls 

(Subjects 1 and 2) carried a stop-gain affecting the ε4 allele. Subject 1 was cognitively normal at 

90+ and had no neuritic plaques at autopsy. Subject 2 was cognitively healthy within the age 

range 75-79 and underwent lumbar puncture at between ages 75-79 with normal levels of 

amyloid. The results provide the strongest human genetics evidence yet available suggesting 

that ε4 drives AD risk through a gain of abnormal function and support knockdown of APOE ε4 

or its protein product as a viable therapeutic option. 
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Introduction 

Advancements in genetic engineering have resulted in treatments for monogenic neurological 

disorders previously considered intractable. The most tangible progress has occurred in spinal 

muscular atrophy (SMA), a neurodegenerative disease caused by the loss-of-function of SMN1. 

The antisense oligonucleotide (ASO) nusinersen increases the attainment of motor milestones 

in infants with SMA by altering splicing of the paralogous SMN2 gene to rescue its function. 

Risdiplam, a small molecule acting on SMN2, and abeparvovec, an AAV-based therapy that 

restores SMN1, have also received FDA approval1. Knockdown approaches using ASOs have 

been employed in familial amyotrophic lateral sclerosis and Huntington’s disease2,3. While these 

ASO trials did not result in clinical efficacy, they significantly reduced the abnormal protein in 

both disorders and informed new trials. These gene-targeting therapies offer hope that similar 

approaches could be successful in Alzheimer’s disease (AD). 

 

Individuals carrying the ε4 allele of apolipoprotein E (APOE) have a significantly elevated risk of 

AD, suggesting that genetic modulation of APOE ε4 could be therapeutic. An APOE ε4/ε4 

individual of European ancestry has a sixteen-fold increase in AD risk and eighteen year earlier 

age at AD onset compared to a European ancestry individual carrying two copies of the more 

prevalent APOE ε3 allele4. A critical question regarding pathogenesis is whether ε4 is inherently 

detrimental (in which case one would want to knock it down) or is less functional than ε3 (in 

which case one might want to increase levels of the protein in ε4 homozygotes). Evidence from 

animal models of AD can be marshaled to support either possibility5,6. The bulk of the animal 

literature supports knockdown of APOE as likely to reduce AD pathogenesis. For example, 

studies have shown that reducing APOE results in reduced amyloid6–8 and tau pathology9 in 

animal models. However, other animal studies support increasing APOE as a potential 

therapeutic approach10–12. 
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Evidence from human studies is generally lacking because APOE loss-of-function (LoF) variants 

are rare. Only one individual carrying an APOE LoF variant has been cognitively assessed and 

reported in the literature13. The patient was a man in the age range 40-44 homozygous for 

APOE c.291del (p.E97fs) and presenting with severe hyperlipidemia. He had negative spinal 

fluid biomarkers for AD but impaired memory14. Despite the normal biomarkers, the cognitive 

impairment and relatively young age make this case ultimately uninformative on the question of 

whether reducing apoE might be beneficial or detrimental in terms of AD pathogenesis. We 

have found no publications describing AD-relevant phenotypes in older subjects heterozygous 

for APOE LoF variants. Here we ask whether APOE LoF variants impact AD pathogenesis. 

 

Results 

To characterize AD phenotypes of APOE LoF individuals, we searched the Alzheimer’s Disease 

Sequencing Project (ADSP) whole-exome and whole-genome sequencing datasets (Table 1) 

for predicted APOE LoF single nucleotide polymorphisms (SNPs) and structural variants (SVs). 

All SNPs on APOE were extracted, annotated with predicted variant type, and filtered for 

predicted high impact variants affecting the canonical transcript (Supplementary Table 1). The 

most common end-truncation variant, rs121918396 (p.W228*), was expressed in human 

hepatocytes and shown not to affect apoE protein level (Figure S1); thus predicted end-

truncation variants were not explored further. We identified five participants carrying APOE LoF 

SNPs – three carriers of rs777551553 (p.W5*), one carrier of rs923895447 (p.L8*) and one 

carrier of 19:44907831:C:T (p.Q39*). These five carriers were normal at their last cognitive 

assessment (mean age at last assessment = 82, range 71-90). We also searched the ADSP SV 

dataset for insertions, deletions, duplications, inversions, and translocations overlapping APOE 

and further filtered these SVs for those predicted to be LoFs (Supplementary Table 1). We 

identified one individual with AD carrying a 1,798 base pair deletion (19:44905303-44907102) 

that eliminates the bulk of the APOE promoter region and exons 1 and 2 (including the start 
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codon and the signal peptide). APOE genotype, age, and diagnoses of the six APOE LoF 

variant carriers are shown in Figure 1a with variant positions shown in Figure 1b. 

 

Subject 1 (carrier of rs777551553_A (p.W5*)) demonstrated striking resistance to amyloid 

pathology given his age at death (age 90+) and ε3/ε4 genotype. While he had evidence of 

hyperphosphorylated tau pathology (Braak stage IV of VI) there was no appreciable amyloid β 

(Aβ) pathology in the brain (CERAD neuritic plaque score 0 of 3, Thal Aβ stage 0 of 515, and no 

cerebral amyloid angiopathy). The absence of amyloid pathology and moderate extent of tau 

pathology at advanced age make this individual an outlier among ε3/ε4 heterozygotes (Figure 

2). rs777551553_A was heterozygous and in phase with ε4 in this individual (Figure S2a, b). 

Sanger sequencing of reverse-transcribed mRNA detected both ε3 and ε4 transcripts (Figure 

S2c), as expected of a stop-gain variant. This variant would prematurely terminate translation to 

create a truncated 5 amino acid peptide, resulting in an effective ε3/- genotype. 

 

Subject 2 (also an ε3/ε4 carrier of rs777551553_A (p.W5*)), was cognitively normal at 79. 

Whole-genome long-read sequencing established that rs777551553_A was in phase with ε4 

(Figure S3). This subject underwent lumbar puncture at age 75-79 and had normal levels of Aβ 

and tau. In a meta-analysis of amyloid biomarker studies, by age 75 roughly 2/3rds of ε3/ε4 

controls were amyloid-positive by spinal fluid measurement (Supplementary Figure 3B in 

Jansen et al.16). This underestimates the “protected” status of Subject 2 because it does not 

account for the fact that many ε3/ε4 individuals either have mild cognitive impairment or AD by 

age 75. 

 

Three other carriers of early APOE stop-gain mutations were cognitively normal. Subject 3 is a 

85-89 year-old ε3/ε3 female, Subject 4 is a 70-74-year-old ε3/ε4 female, and Subject 5 is an 80-

84-year-old ε3/ε3 female. Subject 4 did not have mRNA or DNA available for phasing. 
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Subject 6 is an ε3/ε4 AD patient with a deletion including the APOE promoter, start codon, and 

two of four exons. PCR and Sanger sequencing of the patient’s post-mortem frontal cortex 

tissue confirmed the deletion (Figure S4a) and established that the deletion was heterozygous 

and in phase with ε3 (Figure S4b, c). Only the ε4 allele was detected on Sanger sequencing of 

reverse transcribed mRNA (Figure S4d), indicating that this deletion abolishes transcription of 

ε3.  

 

Neuropathology in Subject 6 was consistent with AD (CERAD score = 2, Braak Stage VI). This 

individual had symptom onset at age 75-79, was diagnosed within age range 75-79 and died 

between ages 85-89. Mean age of onset is 69.73 for ε4 homozygotes (N=1,689) and 73.55 for 

ε3/4 heterozygotes (N=6,223) in the Alzheimer’s Disease Genetics Consortium (ADGC) and 

ADSP. Although this patient exclusively expressed the ε4 allele, their disease onset was later 

than that of a typical ε4/ε4 homozygote suggesting that an ε4/- individual has a preferable 

disease course to an ε4/ε4 individual. Thus, partial knockdown of ε4 in ε4/ε4 patients may 

improve the trajectory of AD. 

 

Discussion 

The cognitive phenotypes of APOE LoF carriers support the hypothesis that APOE ε4 increases 

risk through a gain of function. The variants identified in this study result in the following APOE 

loss of function mechanisms: stop-gain in the 18 amino acid APOE signal peptide that would 

preclude further translation of apoE (p.W5*, p.L8*, Subjects 1, 2, 3, 4); stop-gain early in the 

APOE coding region that would result in a severely truncated peptide without apoE’s key 

binding regions (p.Q39*, Subject 5); and deletion involving the APOE promoter and exons 1 and 

2 (including the start codon and signal peptide) that abolishes APOE transcription altogether 

(19:44905303-44907102, Subject 6). If APOE ε4 increases risk owing to diminished protein 
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function or availability, the APOE LoF variants detailed here should be associated with 

increased risk of AD. Instead, of the six subjects reported here, five were older controls ranging 

in age from 71-90. The sole AD case had loss of ε3 resulting in an effective ε4/- genotype. If 

APOE ε4 increased risk due to diminished function we would expect such an ε4/- genotype to 

result in comparable or even increased risk compared to ε4/ε4 homozygotes. Instead, this 

patient had a later age-at-onset similar to patients with the ε3/ε4 genotype. The phenotypes of 

these carriers are most consistent with a model in which loss of APOE ε4 enhances AD 

resistance, suggesting that APOE ε4 increases AD risk through a gain-of-function.   

 

Most compellingly, we describe two older controls with LoF variants in-phase with ε4 resulting in 

an effective ε3/- genotype. Subject 1 was cognitively normal at 90 and had no appreciable 

amyloid pathology. When compared to neuropathological profiles of age- and genotype-

matched peers this subject is a clear outlier (Figure 2). Subject 2 was cognitively normal within 

age range 75-79 and had a normal spinal fluid biomarker profile within this age range (seen in 

only 1/3 of APOE ε3/ε4 controls over 75). 

 

Taken together, these findings support reducing apoE as a therapeutic option in AD. Regarding 

safety, the identification of 6 long-lived individuals with heterozygous APOE LoF variants 

suggests that partial knockdown of APOE should be well-tolerated. The resistant phenotypes of 

two APOE ε3/ε4 individuals with a LoF variant on their ε4 allele provides the first human 

genetics data suggesting that knocking down APOE ε4 could reduce AD pathogenesis. 
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     Sex  Age                                                                    APOE   

 Cohort Dx N  Female 

(%) 

 Median 

age [IQR] 

 22 

N (%)  

23 

N (%) 

33 

N (%) 

34 

N (%) 

44 

N (%) 

24 

N (%) 

 ADSP WES AD 8723  61.8%  75[70-82]  29(0.3%) 540(6.2%) 3884(44.5%) 3462(39.7%) 568(6.5%) 237(2.7%) 

CN 9617  63.4%  84[76-89]  83(0.9%) 1530(15.9%) 5762(59.9%) 1864(19.4%) 133(1.4%) 244(2.5%) 

 Other 2163  51.4%  75[69-82]  17(1.0%) 209(11.8%) 984(55.7%) 455(25.8%) 60(3.4%) 41(2.3%) 

 Total 20503  61.5%  79[72-87]  129(0.6%) 2279(11.3%) 10630(52.9%) 5781(28.8%) 761(3.8%) 522(2.6%) 

ADSP 

WGS 

AD 12133  60.4%  72[64-80]  27(0.2%) 558(4.6%) 5003(41.2%) 4943(40.7%) 1327(10.9%) 270(2.2%) 

CN 16988  63.7%  73[66-81]  78(0.5%) 1605(9.4%) 10735(63.2%) 3900(23.0%) 357(2.1%) 311(1.8%) 

  Other 7240  55.8%  75[69-81]  33(0.5%) 645(8.9%) 4111(57.0%) 1953(27.1%) 316(4.4%) 151(2.1%) 

  Total 36361  61.0%  73[65-80]  138(0.38%) 2808(7.7%) 19849(54.6%) 10796(29.7%) 2000(5.5%) 732(2.0%) 

 
 

Table 1: Demographics of ADSP cohorts 

Abbreviations: Whole-exome sequencing (WES), Whole-genome sequencing (WGS), Diagnosis 

(Dx), Alzheimer’s Disease (AD), Control (CN) 
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Figure 1. APOE loss-of-function carrier demographics and variant positions 

(a) Carrier demographics. Six carriers of high confidence APOE loss-of-function variants were 

identified among 26,605 older controls and 20,856 AD cases sequenced as part of the 

Alzheimer’s Disease Sequencing Project. (b) Three distinct single nucleotide polymorphisms 

and one structural variant were identified. Genomic coordinates are based on hg38. 

13 
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Figure 2.  Loss of APOE ε4 is associated with absent amyloid pathology and reduced tau 

pathology in a 90+ year-old control. 

Subject 1 is a neuropathological outlier among age-matched ε3/ε4 individuals in their (a) 

CERAD staging of amyloid plaque density; (b) Thal staging of amyloid plaque regional 

distribution; (c) Cerebral amyloid angiopathy staging; and (d) Braak staging of neurofibrillary 

tangles (tau pathology). 

  

14 
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Online Materials and Methods 

Single nucleotide polymorphism identification 

36,361 whole-genomes were downloaded from NIAGADS 10th release, 20,504 whole-exomes 

were downloaded from NIAGADS 4th release (https://dss.niagads.org/datasets/ng00067/#data-

releases) and Plink 1.917 was used to extract all SNPs in the range chr19:44905796-44909393 

corresponding to APOE. ENSEMBL Variant Effect Predictor (VEP)18 was used to annotate all 

SNPs with variant consequence and LoF flags19. We filtered for SNPs annotated as high impact 

(transcript ablation, splice acceptor variants, splice donor variants, stop gains, frameshift 

variants, stop loss, start loss, or transcript amplification) and causing LoF on the canonical 

transcript. Whole genomes and exomes were from patients with AD, healthy older controls, and 

a mix of subjects with other diagnoses including mild cognitive impairment, corticobasal 

degeneration, and other dementia not otherwise specified. 

  

Structural variant identification 

ADSP release 3 (R3) individual-level VCF structural variant (SV) calls from software packages 

Manta, Smoove, and joint genotyping VCF from Biograph were downloaded from NIAGADS 8th 

(Manta, Smoove) and 9th releases (Biograph) (https://dss.niagads.org/datasets/ng00067/#data-

releases). Insertions (SVTYPE INS), deletions (SVTYPE DEL), inversions (SVTYPE INV or 

intra-chromosomal SVTYPE BND with INFO/EVENT field), duplications (SVTYPE DUP), and 

translocations (SVTYPE TRA or inter-chromosomal SVTYPE BND with INFO/EVENT field) up 

to 20 kilobases in length that overlap APOE (hg38; chr19: 44905796-44909393) were identified 

via the following approach. Variants matching the above criteria on chromosome 19 with start 

position within the range (44905796, 44909393), as well as variants on chromosome 19 with 

start position within the range (44905796 – 20000, 44909393) and end position within the range 

(44905796, 44909393 + 20000), were isolated. Breakend calls not matching a variant type 

described above (i.e. SVTYPE BND calls without INFO/EVENT field) were excluded. 
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Distribution of Tau Braak staging and neuritic plaques density in function of age-at-death in 

ε3/ε4 

The uniform data set (UDS) obtained from the National Alzheimer’s Coordinating Center 

(NACC), December 2020 data freeze, was queried for individuals with APOE genotype, 

recorded age-at-death and neuropathological assessment available in NACC UDS (5,168 

individuals). To assess where the W5*-ε3/ε4 carrier stands compared to other ε3/ε4 subjects, 

we subset this dataset to ε3/ε4 individuals who died after 60 years old, leading to 1,758 

individuals with CERAD (Consortium to Establish a Registry for Alzheimer’s Disease) score of 

neuritic plaques density and 1,750 individuals with tau Braak staging. The density plots (Figure 

2) were made with the kdeplot function of the seaborn (v.0.12) package in Python (v.3.7.7). 

 

DNA/RNA extraction from brain tissue 

Genomic DNA and RNA were isolated from frozen post-mortem brain using the AllPrep 

DNA/RNA Mini Kit (Qiagen). Subject 6 nucleic acids were extracted from frontal lobe tissue and 

Subject 1 nucleic acids were extracted from cerebellum tissue. Nucleic acid concentrations were 

measured by NanoPhotometer (Implen), and DNA was stored at -20°C and RNA was stored at -

80°C prior to use. 

  

Reverse transcriptase (RT) reaction 

Total RNA (100 ng) was used for each 20 μL RT reaction, and cDNA synthesis was performed 

with random primers using the PrimeScript RT Reagent Kit (Takara Bio USA). 

  

DNA cloning 

A primer pair AE-Ex1_F_pGL4-XhoI and AE-3’UTR_R_pGL4-Hind3 (Supplementary Table 2) 

was used to amplify full-length APOE cDNA that was reverse transcribed from Subject 1 RNA. 
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The PCR profile consisted of 15 min at 95°C, 35 cycles of 20 sec at 95°C, 20 sec at 55°C, and 3 

min at 72°C. The amplified fragment was inserted into pGL4.10[luc2] vector (Promega) that was 

cut with XhoI and HindIII using the In-Fusion® HD Cloning Kit (Takara Clontech). The In-Fusion 

ligation mix was transformed into Stellar™ Competent Cells (Takara Clontech). The cells were 

plated on LB Agar Plate containing 100 ug/ml ampicillin and was incubated at 37°C for 16 

hours. 

  

Sanger sequencing 

DNA was PCR amplified using the primers AE-Ex1_F_pGL4-XhoI and AE-3’UTR_R_pGL4-

Hind3 (Supplementary Table 2). The PCR profile consisted of 15 min at 95°C, 35 cycles of 20 

sec at 95°C, 20 sec at 55°C, and 3 min at 72°C. The PCR amplified DNAs were sequenced 

using the BigDye™ Terminator v3.1 Cycle Sequencing Kit (ThermoFisher Scientific). Primers 

Ch19_50103673_F and Ch19_50103049_R were used to obtain sequencing reads for SNP 

rs429358 and for the mutation located at rs777551553 on the APOE gene, respectively. The 

sequencing profile consisted of 1 min at 96°C, 35 cycles of 30 sec at 96°C, 10 sec at 55°C, and 

4 min at 60°C. 

 

Long-read whole genome sequencing 

Whole blood collected in EDTA and stored at -80C was used to extract genomic DNA using 

PureGene kit (Qiagen) for Subject 2. A sequencing library was prepared using Oxford Nanopore 

Rapid sequencing protocol (Oxford Nanopore Technologies, UK). The library was distributed 

over 3 R9 PromethION flow-cells and sequenced for a total of 24 hours on a PromethION48 

sequencing device, achieving a total output of 116 gigabases of data. Fast5 files were base 

called using Guppy V6.4.2 Super Accurate(ONT) and aligned using MiniMap220. 

 

Determination of mean AAO by APOE genotype 
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Genetic and phenotypic data from AD-related cohorts from the Alzheimer’s Disease Genetics 

Consortium (ADGC) and Alzheimer’s Disease Sequencing Project (ADSP) were processed as 

previously described21. This includes state-of-the-art quality control of APOE ε4 status and 

resolving of phenotypes and age information across duplicated samples. Unique, non-duplicate 

subjects (identified using identity-by-descent; Plink v1.9) that were non-Hispanic and of 

European ancestry (SNPWeights v2.122) were retained to determine mean age-at-onset across 

APOE strata. 

 

Cell culture, transfection and monoclonal heterozygous p.W228* line generation 

Human hepatocyte line HepG2 cells were grown in Dulbecco's Modified Eagle Medium (DMEM) 

(Gibco) supplemented with 10% fetal bovine serum (FBS) (Gibco) and 1% 

Penicillin/Streptomycin (Gibco) at 37 ℃, 5% CO2. For prime editing, 150,000 cells were seeded 

one day prior to transfection at a density of 150,000 cells/well in 24-well plate. On the day of 

transfection, using 1�μL jetOPTIMUS (Polyplus) per well, following the manufacturer’s 

instructions. Cells were transfected with 750�ng of the pCMV-PE2 (Addgene #132775), 83�ng 

of the pegRNA and 83 ng of the nicking sgRNA per well. 72 hr post transfection, single cells 

were sorted into 96-well plates using BD FACSAria II SORP and cultured until confluency. 

  

To assess prime editing, loci were amplified from isolated single clone genomic DNA samples 

via two rounds of PCR then deep sequenced. Briefly, the first round PCR (PCR1) amplified the 

genomic sequence of interest using primers containing Illumina forward and reverse adapters: 

NGS-ApoE-F: 5’ CCATCTCATCCCTGCGTGTCTCCCAAGCTGCGTAAGCGGCTCCTC 3’ 

NGS-ApoE-R: 5’ CCTCTCTATGGGCAGTCGGTGATGCACCTGCTCCTTCACCTCGTC 3’ 

The second round PCR step (PCR2) added unique i7 and i5 index combinations to both ends of 

the PCR1 product: 
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CL_AmpNGS_BC_F: 5’ AATGATACGGCGACCACCGAGATCTACAC[8nt-

barcode]ACACTCTTTCCCTACACGACGCTCTTCCGATCT[0-11nt 

stager]CCATCTCATCCCTGCGTGTCTCC 3’ 

 

CL_AmpNGS_BC_R: 5’ CAAGCAGAAGACGGCATACGAGAT[[8nt-

barcode]GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT[0-11nt 

stager]CCTCTCTATGGGCAGTCGGTGATg 3’ 

 

The amplified products were quantified with Qubit™ dsDNA HS Assay Kit (Thermo Fisher 

Scientific) and normalized by concentration, followed by sequencing using Illumina Miseq 

Reagent Kit v3 then analyzed with the CRISPResso2. 

  

ELISA Measurement of apoE protein level in prime-edited p.W228* cells 

Monoclonal gene-edited cells that harbor both the wild-type and the p.W228* alleles at the 

APOE  locus were maintained in culture for at least 48 hours. Afterwards, the cells were 

harvested and lysed with RIPA buffer (Cell Signaling Technology) to extract the total proteins. 

Lysate containing the protein extracts were then subjected to ELISA detection using human 

apoE ELISA kit (Mabtech) following manufacturer’s recommended protocols. Data were 

analyzed using Prism9.  
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(NWO) Netherlands Consortium for Healthy Aging (NCHA), project 050-060-810. All studies are 
grateful to their participants, faculty and staff. The content of these manuscripts is solely the 
responsibility of the authors and does not necessarily represent the official views of the National 
Institutes of Health or the U.S. Department of Health and Human Services. 
The FUS cohorts include: the Alzheimer’s Disease Research Centers (ADRC) (P30 AG062429, 
P30 AG066468, P30 AG062421, P30 AG066509, P30 AG066514, P30 AG066530, P30 
AG066507, P30 AG066444, P30 AG066518, P30 AG066512, P30 AG066462, P30 AG072979, 
P30 AG072972, P30 AG072976, P30 AG072975, P30 AG072978, P30 AG072977, P30 
AG066519, P30 AG062677, P30 AG079280, P30 AG062422, P30 AG066511, P30 AG072946, 
P30 AG062715, P30 AG072973, P30 AG066506, P30 AG066508, P30 AG066515, P30 
AG072947, P30 AG072931, P30 AG066546, P20 AG068024, P20 AG068053, P20 AG068077, 
P20 AG068082, P30 AG072958, P30 AG072959), Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) (U19AG024904), Amish Protective Variant Study (RF1AG058066), Cache County Study 
(R01AG11380, R01AG031272, R01AG21136, RF1AG054052), Case Western Reserve 
University Brain Bank (CWRUBB) (P50AG008012), Case Western Reserve University Rapid 
Decline (CWRURD) (RF1AG058267, NU38CK000480), CubanAmerican Alzheimer’s Disease 
Initiative (CuAADI) (3U01AG052410), Estudio Familiar de Influencia Genetica en Alzheimer 
(EFIGA) (5R37AG015473, RF1AG015473, R56AG051876), Genetic and Environmental Risk 
Factors for Alzheimer Disease Among African Americans Study (GenerAAtions) 
(2R01AG09029, R01AG025259, 2R01AG048927), Gwangju Alzheimer and Related Dementias 
Study (GARD) (U01AG062602), Hillblom Aging Network (2014-A-004-NET, R01AG032289, 
R01AG048234), Hussman Institute for Human Genomics Brain Bank (HIHGBB) 
(R01AG027944, Alzheimer’s Association “Identification of Rare Variants in Alzheimer Disease”), 
Ibadan Study of Aging (IBADAN) (5R01AG009956), Longevity Genes Project (LGP) and 
LonGenity (R01AG042188, R01AG044829, R01AG046949, R01AG057909, R01AG061155, 
P30AG038072), Mexican Health and Aging Study (MHAS) (R01AG018016), Multi-Institutional 
Research in Alzheimer’s Genetic Epidemiology (MIRAGE) (2R01AG09029, R01AG025259, 
2R01AG048927), Northern Manhattan Study (NOMAS) (R01NS29993), Peru Alzheimer’s 
Disease Initiative (PeADI) (RF1AG054074), Puerto Rican 1066 (PR1066) (Wellcome Trust 
(GR066133/GR080002), European Research Council (340755)), Puerto Rican Alzheimer 
Disease Initiative (PRADI) (RF1AG054074), Reasons for Geographic and Racial Differences in 
Stroke (REGARDS) (U01NS041588), Research in African American Alzheimer Disease 
Initiative (REAAADI) (U01AG052410), the Religious Orders Study (ROS) (P30 AG10161, P30 
AG72975, R01 AG15819, R01 AG42210), the RUSH Memory and Aging Project (MAP) (R01 
AG017917, R01 AG42210Stanford Extreme Phenotypes in AD (R01AG060747), University of 
Miami Brain Endowment Bank (MBB), University of Miami/Case Western/North Carolina A&T 
African American (UM/CASE/NCAT) (U01AG052410, R01AG028786), and Wisconsin Registry 
for Alzheimer’s Prevention (WRAP) (R01AG027161 and R01AG054047). 
The four LSACs are: the Human Genome Sequencing Center at the Baylor College of Medicine 
(U54 HG003273), the Broad Institute Genome Center (U54HG003067), The American Genome 
Center at the Uniformed Services University of the Health Sciences (U01AG057659), and the 
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Washington University Genome Institute (U54HG003079). Genotyping and sequencing for the 
ADSP FUS is also conducted at John P. Hussman Institute for Human Genomics (HIHG) Center 
for Genome Technology (CGT). 
Biological samples and associated phenotypic data used in primary data analyses were stored 
at Study Investigators institutions, and at the National Centralized Repository for Alzheimer’s 
Disease and Related Dementias (NCRAD, U24AG021886) at Indiana University funded by NIA. 
Associated Phenotypic Data used in primary and secondary data analyses were provided by 
Study Investigators, the NIA funded Alzheimer’s Disease Centers (ADCs), and the National 
Alzheimer’s Coordinating Center (NACC, U24AG072122) and the National Institute on Aging 
Genetics of Alzheimer’s Disease Data Storage Site (NIAGADS, U24AG041689) at the 
University of Pennsylvania, funded by NIA. Harmonized phenotypes were provided by the 
ADSP Phenotype Harmonization Consortium (ADSP-PHC), funded by NIA (U24 AG074855, 
U01 AG068057 and R01 AG059716) and Ultrascale Machine Learning to Empower Discovery 
in Alzheimer’s Disease Biobanks (AI4AD, U01 AG068057). This research was supported in part 
by the Intramural Research Program of the National Institutes of health, National Library of 
Medicine. Contributors to the Genetic Analysis Data included Study Investigators on projects 
that were individually funded by NIA, and other NIH institutes, and by private U.S. organizations, 
or foreign governmental or nongovernmental organizations. 
The Alzheimer’s Disease Genetics Consortium (ADGC) supported sample preparation, 
sequencing and data processing through NIA grant U01AG032984. Sequencing data generation 
and harmonization is supported by the Genome Center for Alzheimer’s Disease, 
U54AG052427, and data sharing is supported by NIAGADS, U24AG041689. Samples from the 
National Centralized Repository for Alzheimer’s Disease and Related Dementias (NCRAD), 
which receives government support under a cooperative agreement grant (U24 AG021886) 
awarded by the National Institute on Aging (NIA), were used in this study. We thank contributors 
who collected samples used in this study, as well as patients and their families, whose help and 
participation made this work possible. 
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