Covid-19 related cognitive, structural and functional brain changes among Italian adolescents and young adults: a multimodal longitudinal case-control study

Azzurra Invernizzi⁻, Stefano Renzetti⁻, Christoph van Thriel⁻, Elza Rechtman⁻, Alessandra Patrono⁻, Claudia
Ambrosi⁵, Lorella Mascaro⁶, Giuseppa Cagna², Roberto Gasparotti², Abraham Reichenberg⁷, Cheuk

Ambrosi", Lorella Mascaro", Giuseppa Cagna", Roberto Gasparotti"
Roberto G. Lucchini^{2,9}, Robert O. Wright¹, Donatella Placidi², Mega
¹Department of Environmental Medicine and Public Health, Icahn :
NY, USA
²Depar , Abraham Reichenberg´, Cheuk Y. Tang˘
n K. Horton 1
School of Medicine at Mount Sinai, New
nces and Public Health, University of Bre: ,
Y
sc Roberto G. Lucchini⁴⁹, Robert O. Wright', Donatella Placidi', Megan K. Horton'
¹Department of Environmental Medicine and Public Health, Icahn School of Me
NY, USA
²Department of Medical and Surgical Specialties, Radi $\begin{array}{c} 1 \\ 1 \\ 2 \end{array}$ $\overline{1}$

Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia,
Brescia, Italy
Existing Research Centre for Working Environment and Human Factors, Dortmund, Germany
Departmen $\frac{1}{2}$ Departn
Brescia, l
 $\frac{3}{2}$ Leibniz l
 $\frac{4}{2}$ Departn
 $\frac{5}{2}$ Departn Brescia, Italy
Brescia, Italy
Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
Department of Neu

Freme, Tary

³Leibniz Rese

⁵Department

⁵ASST Spedal

⁷Department

⁵Department of Neuroscience, Neuroradiology Unit, ASST Cremona.

⁶ASST Spedali Civili Hospital, Brescia, Italy

⁴Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
⁵Department of Neuroscience, Neuroradiology Unit, ASST Cremona.
⁶ASST Spedali Civili Hospital, Brescia, Italy
⁷Department o Department of Neuroscience, Neuroradiology Unit, ASST Cremona.
ASST Spedali Civili Hospital, Brescia, Italy
Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United
Department of Diagnostic, ASST Spedali Civili Hospital, Brescia, Italy
Department of Psychiatry, Icahn School of Medicine at Mount Sinai,
Department of Diagnostic, Molecular, and Interventional Radiology,
Jew York, NY, United States
Department of E The Partment of Psychiatry, Icahn School of Psychiatry, Icahn School of Diagnostic, Molecular, and New York, NY, United States
The Speartment of Environmental Health Scie
Pepartment of Environmental Health Scientinian Psy Preminent of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at I
New York, NY, United States
⁹Department of Environmental Health Sciences, Robert Stempel College of Public Health and Socia

Dew York, NY, United States
Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work,
Iorida International University, Miami, FL, United States New York, NY, 20022-2022
"Department of Environment
Florida International Univers
Correspondence: A Inverniza

Porida International University, Miami, FL, United States
Department of Environmental Medicine and Public Health Sciences
Correspondence: A. Invernizzi at Horton Laboratory. Department of Environmental Medicine and Public Florida International International International Correspondence: A. Invernizzi at Horton Laboratory. Depa
Icahn School of Medicine at Mount Sinai, One Gustave Le $\frac{1}{2}$ Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1057, New York, NY, 10029, USA.
Email address: <u>azzurra.invernizzi@mssm.edu</u>

Acknowledgements: Illustration by Jill K. Gregory. Used with permission of ©Mount Sinai Health System. The Email and the mail and the Acknowledgements: Illustration by Jill K. Greg

authors would like to acknowledge Carsten W

support from the National Institutes of Enviro

P01 ES013744, P30ES023515, and the Europe authors would like to acknowledge Carsten Watzl and Doris Urlaub for the performing the ELISA analysis and
support from the National Institutes of Environmental Health Sciences (NIEHS) grants numbers R01 ES019222
R01 ES013 support from the National Institutes of Environmental Health Sciences (NIEHS) grants numbers R01 ES019222, R01 ES013744, P30ES023515, and the European Union through its Sixth Framework Programme for RTD (contract number FO RO1 ES013744, P30ES023515, and the European Union through its Sixth Framework Programme for RTD ROL ESSENSITY AND THE EUROPE SUBSERVIEW IN THE EUROPEAN UNION THROUGH INTERNATIONAL PROPERTY.
Conflict of Interest: None.
Conflict of Interest: None.

(conflict of interest: None.
Food-Conflict of Interest: None.

Abstract

Coronavirus disease 2019 (Coronavirus distribution in the entity of the neurologic outcomes related to COVID-19

focus on severe infection and aging populations. Here, we investigated the neural activities underlying CO

1 changes that persist months after infections. Here, we investigated the neural activities underlying COV
19 related outcomes in a case-control study of mildly infected youth enrolled in a longitudinal study in
Lombardy, It and data-directi statistical methods, we examined dirictences in Lo $_{\text{delta}}$ (i.e., the dirictence in LC values pre- an Lombardy, Italy, a global hotspot of COVID-19. All participants (13 cases, 27 controls, mean age 24 year
completed resting state functional (fMRI), structural MRI, cognitive assessments (CANTAB spatial worki
memory) at ba completed resting state functional (fMRI), structural MRI, cognitive assessments (CANTAB spatial working
memory) at baseline (pre-COVID) and follow-up (post-COVID). Using graph theory eigenvector centrality (
and data-driv memory) at baseline (pre-COVID) and follow-up (post-COVID). Using graph theory eigenvector centrality (f
and data-driven statistical methods, we examined differences in EC_{delta} (i.e., the difference in EC values pre
pos and data-driven statistical methods, we examined differences in EC_{delta} (i.e., the difference in EC values pre-
post-COVID-19) and volumetric_{delta} (i.e., the difference in cortical volume of cortical and subcortical area post-COVID-19) and volumetric_{delta} (i.e., the difference in cortical volume of cortical and subcortical areas pre-
and post-COVID) between COVID-19 cases and controls. We found that EC_{delta} significantly between COVID and post-COVID) between COVID-19 cases and controls. We found that EC_{delta} significantly between COVID-19 and healthy participants in five brain regions; right intracalcarine cortex, right lingual gyrus, left hippocampu and healthy participants in five brain regions; right intracalcarine cortex, right lingual gyrus, left hippocampus,
left amygdala, left frontal orbital cortex. The left hippocampus showed a significant decrease in volumetr and healthy participants in five brain regions; right interests in figure brain gives, remembers, left amygdala, left frontal orbital cortex. The left hippocampus showed a significant decrease in volumetric_{delta} between left amygnancy correlation. The reduced EC_{delta} in the right amygdala associated with COVID-19 status mediater
the association between COVID-19 and disrupted spatial working memory. Our results show persistent
structural the association between COVID-19 and disrupted spatial working memory. Our results show persistent
structural, functional and cognitive brain changes in key brain areas associated with olfaction and cognition.
These result structural, functional and cognitive brain changes in key brain areas associated with olfaction and cogni
These results may guide treatment efforts to assess the longevity, reversibility and impact of the observ
brain and These results may guide treatment efforts to assess the longevity, reversibility and impact of the observed
brain and cognitive changes following COVID-19.
 These results may guide treatment efforts to assess the observed of the observed brain and cognitive changes following COVID-19. brain and cognitive changes following COVID-19.
Keywords: resting-state fMRI; graph theory; eigenvector centrality; multimodal imaging; structural MRI; COVID-

 Keywords: resting-state fMRI; graph theory; eigenvector centrality; multimodal imaging; structural MRI; COVID-
19; spatial working memory; CANTAB. 19; spatial working memory; CANTAB.

Introduction

unique health, social and economic impacts¹. Although primarily associated with respiratory symptoms,
growing evidence suggests that COVID-19 is a multiorgan disease with impacts on the central nervous system,
leading to growing evidence engagests that COVID-19 increases that a headaches, anosmia, and altered cognition demonstrating the
potential neurotoxic impact of the virus^{2–4}. The underlying mechanisms through which COVID-19 impacts
 potential neurotoxic impact of the virus^{2–4}. The underlying mechanisms through which COVID-19 impacts
neural and cognitive functioning are not well established.
Magnetic resonance imaging (MRI) may prove useful in unders

neurobiological mechanisms underpinning COVID-19 related brain changes. Several MRI studies have shown significant anatomical brain changes between COVID-19 patients and healthy controls⁵⁻⁷. Changes include
reduced gray matter thickness and decreased cerebral volume; specific brain areas have been reported in Magnetic resonance imaging (MMI) may preserve in the extendion provided in the second MRI studies has infinite and antomical brain changes between COVID-19 patients and healthy controls⁵⁻⁷. Changes reduced gray matter th neurological mechanisms underpinning COVID-19 patients and healthy controls^{5–7}. Changes include
reduced gray matter thickness and decreased cerebral volume; specific brain areas have been reported in
patients recovered f patients recovered from mild and severe forms of COVID-19. Reduced volume in the orbitofrontal cortex,
parahippocampal gyrus, hippocampus and amygdala are associated with COVID-19 positivity^{2,5,6} and, in sec
cases, with parahippocampal gyrus, hippocampus and amygdala are associated with COVID-19 positivity^{2,5,6} and, in secases, with cognitive deficits^{5,8}. Despite the many studies that investigate COVID-19 related structural brai
chang cases, with cognitive deficits^{5,8}. Despite the many studies that investigate COVID-19 related structural brain changes, less is known about possible functional brain changes related to COVID-19. Resting-state fMRI (rs-fM changes, less is known about possible functional brain changes related to COVID-19. Resting-state fMRI (rscortical and subcortical brain areas. Here, we leverage anatomical and rs-fMRI to better understand neural cortical and subcorrelations underlying COVID-19 related brain changes. Our multimodal study includes MRI scans from
COVID-19 positive cases and controls data collected before and after the infection.
While most studies of

mechanisms underlying COVID-19 related areas and collected before and after the infection.

While most studies of COVID-19 related brain and cognitive changes focus on severe infection or aged

populations, most cases reco While most studies of COVID-19 related brain and cognitive changes focus on sever
populations, most cases recorded worldwide were of mild to moderate illness in ad
adults^{8–11}. This population reported long-lasting sympt populations, most cases recorded worldwide were of mild to moderate illness in adolescents and youn adults^{8–11}. This population reported long-lasting symptoms including fatigue, headache, loss of concent and memory prob adults^{8–11}. This population reported long-lasting symptoms including fatigue, headache, loss of concentra
and memory problems¹¹. Over 25% of mild COVID-19 cases reported visuoperceptual and visual organiza
deficits an adults^{8–11}. This population reported long-lasting symptoms including fatigue, headache, loss of concentration
and memory problems¹¹. Over 25% of mild COVID-19 cases reported visuoperceptual and visual organization
defi and memory problems¹¹. Over 25% of mild COVID-19 cases reported visuoperceptual and visual organization deficits and linked these changes with structural brain alterations^{8,10}. In particular, spatial working memory (SW deficits and linked these changes with structural brain alterations^{9,10}. In particular, spatial working memory
(SWM), a critical cognitive function involving the ability to store and manipulate spatial information in the (SWM), a critical cognitive function in the ability of the ability function in the short of the manipulate spatial information in the short and divideo and strengthening of regional neurocircuitry and pathways between key adulthood are key periods for brain growth and development²². Defining and strengthening of regional
neurocircuitry and pathways between key brain areas such as amygdala, frontal lobe etc, is happening dui
adolescence. T adolescence. These brain areas play a crucial role in various cognitive and executive functions, including
occipital, parietal and frontal lobes¹². Further, adolescence and young adulthood are crucial periods for shapir
 occipital, parietal and frontal lobes¹². Further, adolescence and young adulthood are crucial periods for s
behavior and interactions that rely on well-integrated cognitive mechanisms, executive and working mer
function occipital, parietal and frontal lobes²². Further, adolescence and young adulthood are crucial periods for shaping
behavior and interactions that rely on well-integrated cognitive mechanisms, executive and working memory
 functions^{16–18}. These brain mechanisms are deeply shaped by social interactions that have been completely altered (i.e., social isolation and distancing) due to the COVID-19 pandemic. Thus, it is crucial to understand w altered (i.e., social isolation and distancing) due to the COVID-19 pandemic. Thus, it is crucial to understand
what are the implications of mild COVID-19 in adolescents and young adults which is the largest and
understudi

what are the implications of COVID-19 cases.
Understudied population of COVID-19 cases.
In this longitudinal multimodal MRI study, we compare pre- and post-anatomical, functional and cog
outcomes in COVID-19 positive and h In this longitudinal multimodal MRI study, we
outcomes in COVID-19 positive and healthy a
hotspot of COVID-19 during the pandemic. In this longitudinal multimodal MRI study, we compare pre- and post- anatomical, functional and cognitive hotspot of COVID-19 during the pandemic.
 $\frac{d}{dt}$, and young advantage and young advantage and young advantage and young advantage and young in Lombardy, Italy, Italy, a global setting in Lombardy, Italy, a global settin hotspot of COVID-19 during the pandemic.

Materials and Methods

Participants

The Public Health Impact of Metal Exposure (PHIME) study is a longitudinal cohort study of adolescents and young adults living in northern Italy. Details of the study have been described elsewhere^{19,20}. Inclusion criteri young adults living in northern Italy. Details of the study have been described elsewhere^{49,20}. Inclusion criteria
were: birth in the areas of interest; family residence in Brescia for at least two generations; residence were interest; family residence in the areas of interest; family and the patic, metabolic, endocrine or psychiatric disorder; having clinically diagnosed motor deficits or cognitive impairment and having visual deficits th statute disorder; having clinically diagnosed motor deficits or cognitive impairment and having visual
deficits that are not adequately corrected. Detailed description of this recruitment process and study design
can be fo deficits that are not adequately corrected. Detailed description of this recruitment process and study des
can be found in previous publications^{20,21}. Between 2016-2021, a convenience-based sample of 207 PHIN
participan can be found in previous publications^{20,21}. Between 2016-2021, a convenience-based sample of 207 PHIME
participants (53% female, ages 13-25 years) participated in a sub-study including multi-modal MRI scans and
measures participants (53% female, ages 13-25 years) participated in a sub-study including multi-modal MRI scans and
measures of memory and motor functions (Cambridge Neuropsychological Test Automated Battery
(CANTAB))²². All pa participants (53% female) and motor functions (Cambridge Neuropsychological Test Automated Battery (CANTAB)²². All participants satisfied the eligibility criteria for MRI scanning (i.e., no metal implants or shrapnel, cl (CANTAB))²². All participants satisfied the eligibility criteria for MRI scanning (i.e., no metal implants or shrapnel, claustrophobia, prior history of traumatic brain injury, and body mass index (BMI) \leq 40). 202 p shrappel, participants completed the MRI and CANTAB tests. These data serve as the baseline in our study.
PHIME COVID-19 substudy

PHIME COVID-19 substudy

Beginning in March 2021, we invited all 207 participants to an in-person follow-up study (PHIME COVID-19) involving repeated identical MRI protocol and cognitive assessment as administered at baseline (PHIME stu
40 (19%) agreed to participate. Of these 40 participants, 16 reported having been infected with SARS-CoV-2
(COVID + 40 (19%) agreed to participate. Of these 40 participants, 16 reported having been infected with SARS-CoV-2 (COVID +) based on positive real-time reverse transcription polymerase chain reaction (RT-PCR) for SARS-CoV-2 RNA (COVID +) based on positive real-time reverse transcription polymerase chain reaction (RT-PCR) for SARS-CoV
RNA detection that was performed on a nasopharyngeal swab sample at the time of diagnosis. Based on
literature su (COVID + in the set of diagnosis. Based on literature suggesting SARS-CoV-2 antibodies titers decrease after 12 months^{23,24}, only participants with a positive RT-PCR test within 12 months of follow-up data acquisition we Iterature suggesting SARS-CoV-2 antibodies titers decrease after 12 months^{23,24}, only participants with a positive RT-PCR test within 12 months of follow-up data acquisition were considered COVID + (Figure 1).
these cri positive RT-PCR test within 12 months of follow-up data acquisition were considered COVID + (Figure 1). Using
these criteria, we identified 13 COVID+ and 27 COVID- subjects. Notably, four participants (1 COVID- and 3
COVID was performed only on COVID+ participants (available on 13 participants over 16 infected with SARS-CoV-2; COVID+ subjects that were positive but outside the 12 months threshold used to define COVID-19 status)
reported mild COVID-19 symptoms and were treated as COVID- (see Table 1). Additional serological screen
was performed The multiplet of the 12 subjects that were treated as COVID- (see Table 1). Additional serological scree
was performed only on COVID+ participants (available on 13 participants over 16 infected with SARS-COV-
Figure 1), re was performed only on COVID+ participants (available on 13 participants over 16 infected with SARS-CoV-2;
Figure 1), retrospectively. Serum samples were tested using Euroimmun (Anti-SARS-CoV-2-NCP ELISA (IgG),
Order No. E Figure 1), retrospectively. Serum samples were tested using Euroimmun (Anti-SARS-CoV-2-NCP ELISA (IgG), Order No. El 2606-9601-2 G) assay with 80% sensitivity and 99.8%²⁵. Results reported in Figure 1 are based or
atio o Order No. El 2606-9601-2 G) assay with 80% sensitivity and 99.8%²⁵. Results reported in Figure 1 are based or
atio of specimen absorbance reported to the cut-off value defined by the manufacturer. None of the COVII
posi ratio of specimen absorbance reported to the cut-off value defined by the manufacturer. None of the COVID-19
positive participants were hospitalized or suffered from pneumonia.
Written informed consent was obtained from pa

ratio of permitted to specialized or suffered from pneumonia.
The manufacturer positive participants were hospitalized or suffered from pneumonia.
Written informed consent was obtained from parents and young adults, partic positive participants were hospitalized or suffered from particle informed and
Written informed consent was obtained from parents and young adu
written assent. Study procedures were approved by the Institutional
California written assent. Study procedures were approved by the Institutional Review Board of the University of
California, Santa Cruz and the ethical committees of the University of Brescia, and the Icahn School of Me
at Mount Sina California, Santa Cruz and the ethical committees of the University of Brescia, and the Icahn School of N
at Mount Sinai.
The University of Brescia, and the Icahn School of N California, Santa Cruz and the ethical committees of the University of Bresch, and the Icahn Distribution of Medicine
at Mount Sinai.

Figure 1 - COVID+ group definition. PHIME COVID-19 participants were included in the COVID+ group based on: 1) a positive RT-PCR for SARS-CoV-2 RNA detection and, 2) time of diagnosis within 12 months of data acquisition. The relation between the ratio of anti-SARS-CoV-2-NCP (IgG) detected using an ELISA assay and the time between a positive RT-PCR and data acquisition is reported in the figure for each single positive PHIME COVID-19 participant (blue dot). Three COVID+ participants are not included in the figure since the ELISA test is not available. Black dotted line represents the 12 month cut-off used as threshold for participant inclusion in the COVID+ group.

Neuropsychological assessment

Trained neuropsychologists administered the standard Cambridge Neuropsychological Test Automated Battery (CANTAB)²² to assess domains of cognitive, memory and motor functioning. To test our hypothesis on the
. impact of COVID-19 on the brain and working memory functions, we used the CANTAB Spatial Working Memory (SWM) test. This test provides a comprehensive evaluation of an individual's ability to retain and manipulate spatial information in working memory. The SWM task detects frontal lobe activity and executive dysfunctions. The participants are shown different colored squares (boxes) on a screen and asked to identify yellow tokens within a box. Participants are instructed to search for tokens by opening boxes (touching each box on the screen) and advised to not return to the same box that already contained a token. These tokens are then used to automatically fill an empty column located on the right side of the screen. The complexity of the
task gradually increases as the number of boxes to be searched reaches a maximum of twelve. To discourage task gradually increases as the number of boxes to be searched reaches a maximum of twelve. To discourage the use of stereotypical search strategies, the color and position of the boxes are changed between trials. Several outcome measures are provided by SWM test, including error rates, instances of selecting empty boxes, revisiting boxes that already contain a token, as well as measures of strategy implementation and latency. Here, we focused on the "between error", number of times that a participant selected a box that already contained a token, and "strategy", number of times that a participant selected a new and different box looking for a new token. Both variables are available for 39 participants who completed the CANTAB.

MRI and fMRI data acquisition

Magnetic resonance imaging (MRI) and functional MRI (fMRI) data acquisition was performed on a high-Neuroimaging Division of ASST Spedali Civili Hospital of Brescia. For each participant, a high-resolution
weighted structural scan was acquired using a MPRAGE sequence (TR =2400 ms, TE= 2.06 ms, TI=230
acquisition matrix= weighted structural scan was acquired using a MPRAGE sequence (TR =2400 ms, TE= 2.06 ms, TI=230 ms, acquisition matrix=256x256 and 224 sagittal slices with final voxel size=0.9 mm³). Fifty contiguous oblique-axi section acquisition matrix=256x256 and 224 sagittal slices with final voxel size=0.9 mm³). Fifty contiguous oblique sections were used to cover the whole brain where the first four images were discarded to allow the magnetizatio acquisition matrix=256x256 and 224 sagittal slices with final voxel size=0.9 mm³). Fifty contiguous oblique-axial
sections were used to cover the whole brain where the first four images were discarded to allow the
magnet Sections were used to cover the whole brain where the mst four images were ulstanded to allow the magnetization to reach equilibrium. For each subject, a single 10-minute continuous functional seque
a T2*weighted echo-planar imaging (EPI) sequence (TR=1000 ms, TE=27 ms, 70 axial slices, 2.1 mm th
matrix size 108x108, c magnetization to reach equinous and T2*weighted echo-planar imaging (EPI) sequence (TR=1000 ms, TE=27 ms, 70 axial slices, 2.1 mm thickness, matrix size 108x108, covering the brain from vertex to cerebellum) was acquired. a T2* Weighted echo-planar imaging (EPI) sequence (TREF100) was acquired. During resting-state scans, lights of the MRI room were off and participants were instructed to stay awake, relax and daydream (not think
about anyt matrix size 108x108, covering the brain from vertex to cover instructed to stay awake, relax and daydream (not thin
about anything) with their eyes open. They were presented with an image of a night skyline figure projecte about anything) with their eyes open. They were presented with an image of a night skyline figure projected on
a MRI compatible monitor. Padding was used for comfort and reduction of head motion. Earplugs were used to
redu a MRI compatible monitor. Padding was used for comfort and reduction of head motion. Earplugs were used to reduce noise. Data were read by a board-certified radiologist to determine the quality and possible incidental find reduce noise. Data were read by a board-certified radiologist to determine the quality and possible incidental
findings - no findings were reported.
MRI and fMRI data analyses reduce noise. Data were reported.

Findings - no findings were reported.

MRI and fMRI data analyses

MRI and fMRI data analyses

Image pre-processing, eigenvector calculations, and statistical analyses were performed using FreeSurfer Image pre-pre-processing, eigenvector calculations, and the processing of the performance of limaging
Individuals (V7.1.1; https://surfer.nmr.mgh.harvard.edu/), SPM12 (Wellcome Department of limaging
Neuroscience, London, Neuroscience, London, UK), Brain Connectivity toolbox ^{26,27} and customized scripts, implemented in
2016b (The Mathworks Inc., Natick, Massachusetts) and R (v3.4).
MRI processing and analysis Neuroscience, London, UK), Brain Connectivity toolbox ^{20,27} and customized scripts, implemented in MatLab
2016b (The Mathworks Inc., Natick, Massachusetts) and R (v3.4).
MRI processing and analysis 2016b (The Mathworks Inc., Natick, Massachusetts) and R (v3.4).
MRI processing and analysis
T1-weighted scans were preprocessed using FreeSurfer to perform cortical and subcortical reconstruction and

MRI processing and analysis

segmentation²⁸⁻³¹. The standard cross-sectional pipeline available in Freesurfer v. 7.1.1 including intensity normalization, automated topology corrections, and automatic segmentation of cortical and subcortical brain areas was applied to each subject. Total intracranial volume (TIV) was also extracted 31 .

fMRI Image preprocessing

For each subject, the structural MRI was co-registered and normalized against the Montreal Neurological Institute (MNI) template and segmented to obtain white matter (WM), gray matter (GM) and cerebrospinal
fluid (CSF) probability maps in the MNI space. FMRI data were spatially realigned, co-registered to the MNI-152
EPI te Institute (CSF) probability maps in the MNI space. FMRI data were spatially realigned, co-registered to the MNI-1
EPI template and subsequently normalized utilizing the segmentation option for EPI images in SPM12. All
norm EPI template and subsequently normalized utilizing the segmentation option for EPI images in SPM12. All
normalized data were denoised using ICA-AROMA³². Additionally, spatial smoothing was applied (8 millimeters)
to the EPI template and subsequently normalized and subsequently in Spatial smoothing was applied (8 millimeters)
to the fMRI data. As a further quality check of fMRI data, large head motion in any direction or rotation (> 3mm
or or 3°) was used as exclusion criteria in our study - no participants were excluded in this study. No global signal
regression was applied.
Based on the Harvard-Oxford³³ atlas, 111 regions of interest (ROI; 48 left and 48

or 3°) regression was applied.
Based on the Harvard-Oxford³³ atlas, 111 regions of interest (ROI; 48 left and 48 right cortical areas; 7 left and
right subcortical regions and 1 brainstem) were defined. In the Harvard-Ox regression was applied.
Based on the Harvard-O
right subcortical regions right subcortical regions and 1 brainstem) were defined. In the Harvard-Oxford atlas, brain areas were defined right subcortical regions and 1 brainstem) were defined. In the Harvard-Oxford atlas, brain areas were defined

using T1-weighted images of 21 healthy male and 16 healthy female subjects (ages 18-50). The T1-weighted images were segmented and affine-registered to MNI152 space using FLIRT (FSL), and the transforms were then applied t applied to the individual brain areas' labels. Finally, these were combined across subjects to form population
probability maps for each ROI³³. For each ROI, a time-series was extracted by averaging across voxels per ti probability maps for each ROI³³. For each ROI, a time-series was extracted by averaging across voxels per time
point. To facilitate statistical inference, data were "pre-whitened" by removing the estimated autocorrelati point. To facilitate statistical inference, data were "pre-whitened" by removing the estimated autocorrelation structure in a two-step generalized linear model (GLM) procedure^{34,35}. In the first step, the raw data were structure in a two-step generalized linear model (GLM) procedure^{34,33}. In the first step, the raw data were filtered against 6 motion parameters (3 translations and 3 rotations). Using the resulting residuals, the autoco filtered against structures present in the data were estimated using an Auto-Regressive model of orde
(AR(1)) and then removed from the raw data. Next, the realignment parameters, white matter (WM) are
cerebrospinal fluid $(AR(1))$ and then removed from the raw data. Next, the realignment parameters, white matter (WM) and cerebrospinal fluid (CSF) signals were removed as confounders on the whitened data.

Local and global functional connectivity analysis

Eigenvector centrality mapping (ECM) is a measure to spatially characterize connectivity in functional brain imaging by attributing network properties to voxels^{26,36–38}. The ECM method builds on the concept of eigenvector centrality, which characterizes functional networks active over time and attributes a voxel-wise centralit imaging by attributing network properties to voxels^{26,36}³⁸. The ECM method builds on the concept of eigenvector centrality, which characterizes functional networks active over time and attributes a voxe
centrality valu eigenvector centrality, which characterizes functional network. In our study, fast ECM (fECM)³⁹ toolbox was used to estimate voxel-
wise eigenvector centralities (EC) from the time course data extracted based on the Harv neighbor ROI within a functional network. In our study, fast ECM (fECM)³⁹ toolbox was used to estimate voxel-
wise eigenvector centralities (EC) from the time course data extracted based on the Harvard-Oxford ROIs
defini We definition per subject. ECM is estimated from the adjacency matrix, which contains the pairwise correlation
between the ROIs. To obtain a real-valued EC value, we added +1 to the values in the adjacency matrix. Se
EC va between the ROIs. To obtain a real-valued EC value, we added +1 to the values in the adjacency matrix. Seve
EC values can be attributed to an individual node by the ECM method³⁹, but only the eigenvector with the
highest EC values can be attributed to an individual node by the ECM method³⁹, but only the eigenvector with the highest eigenvalue (EV) will be used for further analyzes for each node. The highest EV values were averaged acros highest eigenvalue (EV) will be used for further analyzes for each node. The highest EV values were averaged
across subjects at group level.
<u>Functional connectivity (FC)</u> was computed for each participant applying the pai

highest eigenvalue (EV) will be used for the used for each node. The highest EV values were averaged across subjects at group level.
Functional connectivity (FC) was computed for each participant applying the pairwise temp Functional connectivity (FC) was
correlation between ROIs and
The difference in median FC-va
values between groups (COVIE Functional connectional connectivity (FC) was correlation between ROI's and a Fisher's z-transformation. The ROI's z-values were averaged across particles the difference in median FC-values pre- and post-COVID-19 (FC_{delta} The difference in median FC-values pre- and post-COVID-19 (FC_{delta}) is calculated and used to compare FC-values between groups (COVID+ vs COVID-).
Statistical analyses The difference in median FC-values between groups (COVID+ vs COVID-).
The difference is calculated and post-COVID-19 (FCD-values of comparison of comparison of comparison of compar
The Statistical analyses

values of the covid-
Statistical analyses
Descriptive statistics

Descriptive statistics

Pairwise Student t-tests with Welch's correction for continuous variables were used to examine differences in

Pair interestation views that it is the student to the student transfer to the studies and then, a linear color
Pairwise Student t-tests was used to check the normality of the brain structural data and then, a linear
regre kolmogorov- Smirnov test was used to check the normality
regression was applied to adjust for sex, years between pre
Student t-tests were used to examine differences in brain s regression was applied to adjust for sex, years between pre- and post-COVID scans and pre-COVID age. Pa
Student *t*-tests were used to examine differences in brain structural metrics and TIV pre- and post-COVID
between gro Student *t*-tests were used to examine differences in brain structural metrics and TIV pre- and post-COVID-19
between groups. Stadent t-test were used to examine differences in brain structural metrics and the post-Covid-1919-1919-1919-
between groups. between groups.

Permutation statistics

We quantify possible functional hubs by comparing the EC_{delta} (i.e., the difference in EC values pre- and post-COVID-19) values across groups using a family-wise error corrected (FWE) permutation test. Permuted labels based on group definitions (COVID + and COVID -) were repeated 1000 times per subject. Only ROIs with EC values that differ significantly were considered functional hubs. For both local and global functional connectivity analysis (EC and FC metrics), the FWE correction was applied for the number of group level comparisons and for the total number of ROIs analyzed. Linear regressions were applied to adjust for sex, years between pre- and post-COVID scans, and pre-COVID age. Only p-values adjusted and FWE corrected are reported.

Mediation analysis

To test the mediating role of brain metrics between COVID-19 and spatial working memory accounting for the longitudinal design of the study, a two-waves mediation analysis was applied (Figure 1, panel B)40,41. This extension of the traditional mediation analysis (Figure 1, panel A) accounts for longitudinal mediated effects of data⁴⁰. A linear regression model was applied to test the effect of COVID-19 on the logit-transformed mediator
. (each brain area) measured at the second visit and adjusted for the baseline measurement. A negative binomial
and a linear regression were considered for the full models where the between errors and the strategy scores and a linear regression were considered for the full models where the between errors and the strategy scores (representing the SWM metrics) were considered as outcomes, respectively. Only brain areas identified as hubs in the permutation analysis and with significant association with COVID-19 were included in this analysis. Models were adjusted for sex, years between pre- and post-COVID scans and pre-COVID age. The statistical
significance level was set to 5% and all tests were two-sided. Statistical analyses were performed using R s ignificance level was set to 5% and all tests were two-sided. Statistical analyses were performed using R (Version 4.3.1), the mediation analysis was conducted using the mediation⁺² R package (Version 4.5.0).

Figure 2 - Schematic depicting mediation models used. A. Classical mediation and regression models. The objective of the media ation analysis was to determine if the indirect effect (path a*b) was different from zero, suggesting that the mediating variable (i.e., brain

metrics) altered the strength of the relationship between X and Y (i.e., COVID-19 status and spatial working memory metrics). Three linear regression equations were used to assess the mediation in the traditional cross sectional experimental design: Y regressed on X,
M regressed on X, and Y regressed on both X and M . The letters a, b, c, and c' refer respective model, with e representing the error term. B. Given the longitudinal design of our study, we extended the traditional respective model, with e representing the error term. B. Given the longitudinal design of our study, we extended the traditional mediation analysis presented in panel A using a pre- and post-test control group design. Diagram includes: the pre-test covariance between mediator (M_{pre}) and dependent variable (Y_{pre}), σ_{MpreYpre}; the effect of the mediator measured pre-COVID (M_{pre}) on the mediator measured post-COVID (M_{post}) (stability of mediator s_{MpreMpost}); effect of the outcome measured pre-COVID (Y_{pre}) on the outcome measured post-COVID (Y_{post}) (stability of outcome s_{YpreYpost}); the effect of M_{pre} on Y_{post} (cross-lagged relation, b_{MpreYpost}); the effect of X on M_{post} , a_{MpostX}; the effect of X on Y_{post}, c'_{YpostX}; and the effect of M_{post} on Y_{post}, b_{MpostYpost}.

Demographic characteristics
Table 1 reports the clinical and demographic characteristics of the 40 COVID-PHIME participants included in this
study stratified by COVID-19 status; positive (COVID +) and negative (COVID -). P Table 1 reports the clinical and demographic (COVID +) and negative (COVID -). Participants were adolescents or
young adults at the time of the first imaging data acquisition (20.44 ± 2.5 years) and the majority were femal statution of the first imaging data acquisition (20.44 ± 2.5 years) and the majority were females
(65%). Years between pre- and post-COVID assessments, COVID symptoms and vaccine status significantly
differ between groups. young adults at the time of the time of the first and the first including the first including the first imaging
(65%). Years between pre- and post-COVID assessments, COVID symptoms and vaccine status significantly
differ b (filter between groups. A complete overview of COVID symptoms reported by COVID+ participants can be
found in Supplementary Materials (Table S1).
Table 1 - Sociodemographic and clinical characteristics of PHIME-COVID parti

found in Supplementary Materials (Table S1).
Table 1 - Sociodemographic and clinical characteristics of PHIME-COVID participants who were selected for the curr
study (N=40). found in Supplementary Materials (Table S1).
Table 1 - Sociodemographic and clinical characteri
study (N=40). Table 1 - Sociodemographic and clinical characteristics of PHIME-COVID participants who were selected for the current study (N=40).

Note: Mean, standard deviation (sd), range (minimum and maximum values), and percentage (%) are reported. P-values were derived using Student's t-tests and Wilcoxon rank sum test for continuous variables (if the variables of OND) -
Bireline-d'exemployee was not included was not to be also and the variable was not included was normally distributed or not, respectively) and tests for categorical variables to assess the differences between COVID+ and COVID-.

*COVID-PHIME participants reported mild-COVID symptoms. These participants reported symptoms outside of the 12 months threshold used to define COVID positivity.

Structural and functional differences between COVID+ and COVID-

EC values in permutation tests (COVID+ vs. COVID-) revealed five functional hubs where ECdelta values differed significantly between COVID+ and COVID- groups including: right intracalcarine cortex, right lingual gyrus, left hippocampus, left amygdala, and left frontal orbital cortex (Table 2, Figure 3A and 3B).

Figure 3 - Functional hubs differ in EC_{delta} between COVID+ and COVID- participants. Panel A reports the identified ROI for which EC_{delta} (differences in eigenvector centrality (EC) between pre- and post-COVID) differed significantly between PHIME
participants with and without COVID-19 (i.e., functional hubs). Panel B reports the average EC participants with and without COVID-19 (i.e., functional hubs). Panel B reports the average ECdelta values for each functional hub identified. Blue bars indicate EC values of COVID+ participants, while orange bars indicate COVID- participants.

Table 2 - Statistical differences in ECdelta values between COVID+ and COVID- participants.

J Table 2 reports the full name of the brain regions interest (ROIs), ROI's hemisphere, ROI's abbreviation and p-values of the identified ROIs for which EC_{delta} differed significantly between PHIME participants with and without COVID-19 (i.e., functional hubs). Only p-values FWE corrected, adjusted for sex, years between scans and age at the first visit (pre-COVID) are reported.

For brain areas identified as functional hubs, structural differences between groups were investigated using volumetric values adjusted for TIV (Table 3, Figure 4). Only the left hippocampal volume was reduced in COVID+ compared to healthy participants (p=0.034, Table 4).

We also compared whole brain connectivity between COVID+ and healthy participants by plotting the averaged
FC scores across all ROIs pre- and post-COVID and the difference in functional connectivity metric between pre-FC scores across all ROIs pre- and post-COVID and the difference in functional connectivity metric between preand post-COVID (Figure S1, supplementary material). No significant differences were found (FCdelta p= 0.786).

 $\overline{}$ Figure 4 - Volumetric difference in the hippocampus between COVID+ and COVID- participants. The left hippocampal Volumetricdelta (difference in volumetric metrics between pre- and post-COVID) statistically differs between PHIME participants with and without COVID-19. The blue box indicates volumetric values of COVID+ participants, while the orange box indicates volumetric values of COVID- participants. Black lines indicate the median value.

 Table 3 - Statistical differences in Volumetricdelta between COVID+ and COVID- participants.

Table 3 reports the statistical differences in Volumetric_{delta} (difference in volumetric metrics between pre- and post-COVID) Table 3 reports the statistical differences in Volumetricdelta (difference in volumetric metrics between pre- and post-COVID) between PHIME participants with and without COVID-19. Only brain areas that are previously identified as functional hubs (i.e., brain areas for which EC_{delta} differed significantly between PHIME participants with and without COVID-19) are included in this analysis. The table reports the full name of the brain regions interest (ROIs), ROI's hemisphere and p-values. Only p-values adjusted for sex, years between scans, age at the first visit (pre-COVID) and total intracranial volume are reported.

Mediation analysis

l, We observed significant associations between COVID-19 status and brain metrics in only one of the five functional hubs; the left amygdala (p-values for interaction= 0.032). Mediation analyses were performed to quantify possible indirect effects of the brain on the association between COVID-19 and spatial working memory in the functional hubs significantly associated with COVID-19. Results indicate that the left amygdala mediated the association between COVID-19 and SWM "between errors" (p-values for indirect effect= 0.028). No significant associations were found for SWM "strategy" SWM.

Table 4 – Two-waves mediation analysis of the effect of COVID-19 on the cognitive scores (between errors and strategy metric obtained from SWM test) considering the brain area selected as functional hub (EC values) as mediators.

Two-waves mediation analysis performed to assess the direct, indirect and total effects of COVID-19 on SWM. EC brain values at baseline (pre-COVID), sex, years between pre- and post-COVID scans, pre-COVID age and SWM at baseline were
used as covariates in the models. Only brain areas identified as hubs in permutation analyzes were entere used as covariates in the models. Only brain areas identified as hubs in permutation analyzes were entered as outcomes in this analysis. Then mediation analyses were performed using a pre-post test design. The moderating effects of brain metrics (eigenvector centrality value of a single brain area defined using the Harvard-Oxford atlas between COVID-19 and cognitive domains, in this case SWM.

Discussion

and cognitive data to investigate local connectivity and structural differences associated with mild COVID-19.
We identified connectivity differences in five cortical and subcortical brain areas between participants with We identified connectivity differences in five cortical and subcortical brain areas between participants with a
without mild SARS-CoV-2 infection. Additionally, we observed reduced volume in the left hippocampus of
COVID+ Without mild SARS-CoV-2 infection. Additionally, we observed reduced volume in the left hippocampus of
COVID+ compared to COVID- subjects. We observed a significant association between mild SARS-CoV-2
infection and functi WHOT COVID-1 compared to COVID-subjects. We observed a significant association between mild SARS-CoV-2
infection and functional metrics in one subcortical brain area, the left amygdala. Previous literature linked
COVID-19 The comparison and functional metrics in one subcortical brain area, the left amygdala. Previous literature link
COVID-19 to structural and functional brain changes and cognitive deficits^{6,43-45}. Our results suggest that COVID-19 to structural and functional brain changes and cognitive deficits^{6,43–45}. Our results suggest that decreased functional connectivity in the amygdala competitively mediated the COVID-19 associated disrup in cogn

in cognitive function, specifically spatial working memory. These results add to the previous literature
documenting structural and cognitive changes associated with COVID-19 and further contribute to our
understanding of documenting structural and cognitive changes associated with COVID-19 and further contribute to our understanding of the neurobiological underpinnings of mild COVID-19 in adolescents and young adults One out of four mild anderstanding of the neurobiological underpinnings of mild COVID-19 in adolescents and young adults.
One out of four mild COVID-19 subjects reported persistent deficits in higher cognitive functions like
concentration, mem One out of four mild COVID-19 subjects reported persistent deficits in higher cognitive functions like
concentration, memory, visuospatial and visuoconstructive abilities^{10,46}. Our study focused on the spatia
working me concentration, memory, visuospatial and visuoconstructive abilities^{10,46}. Our study focused on the spa
working memory (SWM), a critical cognitive function that involves the capacity to store and manipula
information in concentration, memory, visuospatial and visuoconstructive abilities^{20,40}. Our study focused on the spatial
working memory (SWM), a critical cognitive function that involves the capacity to store and manipulate s
informa working with the short term. Studies suggest SWM is impacted by COVID-19^{8,10} and linked with brain changes⁸. Our results suggest functional connectivity in one key area for cognitive functions, the amygdala, competiti changes"
competit
effect is :
the visua
consister
domain c
needed t
everyday ively mediates the association between COVID-19 positivity and SWM (Table 4), as only the indirectional statistically significant⁴⁷⁻⁴⁹. The amygdala is involved in the integration, interpretation, and storage l informat effect is statistically significant⁴⁷⁻⁴⁹. The amygdala is involved in the integration, interpretation, and storage of
the visual information perceived, as well as in short memory and executive functions⁵⁰. Our results the visual information perceived, as well as in short memory and executive functions⁵⁰. Our results are consistent with previous studies reporting deficits in several cognitive functions, including visual and ve domain o domain of short term memory, attention and memory associated with COVID-19^{8,51–53}. Future studies are
needed to comprehensively understand the impact of COVID-19 on cognitive functions that are key for
everyday life acti domain of short term memory, attention and memory associated with COVID-19^{9,91–33}. Future studies are
needed to comprehensively understand the impact of COVID-19 on cognitive functions that are key for
everyday life acti

neeryday life activities (i.e., movement planning, driving, etc.) and their link with the underlying neural
mechanisms.
No significant overall functional connectivity disruption nor brain volume reduction were observed ame everyday life activities (i.e., move internally planning, and in general with the underlying manual mechanisms.
No significant overall functional connectivity disruption nor brain volume reduction were observed ame
partici Mo significant
participants w
in non-hospit.
cortical and su
Combining rs-|
|
|
| (participants who tested positive for SARS-CoV-2 infections (Figure S1). These results align with previous stu
in non-hospitalized elderly populations^{5,8,46,54,55} suggesting that mild COVID-19 may impact specific brain
co

in non-hospitalized elderly populations^{5,8,46,54,55} suggesting that mild COVID-19 may impact specific brain cortical and subcortical areas rather than the whole-brain, regardless of the age at diagnosis.
Combining rs-fM Combining rs-fMRI data together with a graph-theory based method, we identified five functi
right intracalcarine cortex, the right lingual gyrus, the left frontal orbital cortex, the left hippo
amygdala. Notably, three of Craighters right intracalcarine cortex, the right lingual gyrus, the left frontal orbital cortex, the left hippocampus and left
amygdala. Notably, three of these functional hubs, frontal orbital cortex, hippocampus and amygdala, und and memory performance⁵⁹⁻⁶¹. Altered connectivity between these cortical areas and the hippocampus have significant growth, maturation and connectivity changes across adolescence and young adulthood⁵⁶. Located in
the primary visual cortex, the intracalcarine cortex and lingual gyrus process, integrate and interpret the vi of the perceptual learning and recognition of complex, non-conscious visuospatial sequences, visual memory
and memory performance^{59–61}. Altered connectivity between these cortical areas and the hippocampus have
previousl in the perceptual learning and memory performance^{59–61}. Altered connectivity between these cortical areas and the hippocampus have previously been associated with poor recollection, memory performance^{62,63} and cogniti previously been associated with poor recollection, memory performance^{62,63} and cognitive decline^{64,65,66}. We observed increased functional connectivity in the intracalcarine cortex and lingual gyrus together with unbal observed increased functional connectivity in the intracalcarine cortex and lingual gyrus together with
unbalanced connectivity coupling with subcortical areas combined with poor SWM functions only in the
positive COVID-19 positive COVID-19 group (Figure 3b, Table 2). Our findings are in line with previous studies reported in
structural and functional alterations in lingual gyrus and intracalcarine cortex throughout different phase
SARS-CoV positive Contributional alterations in lingual gyrus and intracalcarine cortex throughout different phand SARS-CoV-2 infection^{8,67–70} and further support the role of these areas in low-level perceptual learning memory pe SARS-CoV-2 infection^{8,67-70} and further support the role of these areas in low-level perceptual learning and
memory performance.
 $\frac{d}{dt}$ SARS-CoV-2 infection8,67–70 and further support the role of these areas in low-level perceptual learning and memory performance.

Beside containing the secondary taster and integrating and indifferent cognitive functions (i.e.,
attention, emotional and social behavior, decision making and conflict-error monitoring)^{71–73}, which have bee
highly impai attention, emotional and social behavior, decision making and conflict-error monitoring)^{71–73}, which have
highly impaired in COVID-19 subjects. Highly connected with temporal lobe areas (i.e. amygdala, hippocar
and ento highly impaired in COVID-19 subjects. Highly connected with temporal lobe areas (i.e. amygdala, hippocampus and entorhinal cortex) and with other cortical regions like the cingulate cortex, the orbitofrontal cortex has be and entorhinal cortex) and with other cortical regions like the cingulate cortex, the orbitofrontal cortex has
been indicated as one of the main brain areas involved in the neuroinvasive pathway of SARS-CoV-2 infection⁷⁴ and entropies are of the main brain areas involved in the neuroinvasive pathway of SARS-CoV-2 infection^{74–77}. Decreased functional connectivity observed in this areas only in the positive COVID-19 group (Figure 3b, Tabl The 2) further support this theory together with previous studies that identified structural, functional, and metabolic changes in the orbitofrontal regions in individuals with acute, mild and long-term COVID-19, spanning metabolic changes in the orbitofrontal regions in individuals with acute, mild and long-term COVID-19,
spanning different age groups and including both hospitalized and non-hospitalized participants^{5,78–83}. Future
studie spanning different age groups and including both hospitalized and non-hospitalized participants^{5,78–83}. F
studies should further investigate this neuroinvasive pathway of SARS-CoV-2 by including additional olf
structure

studies should further investigate this neuroinvasive pathway of SARS-CoV-2 by including additional olfactory
structures (i.e., olfactory bulbs) and detailed symptoms report.
Two out of the five identified functional hubs structures (i.e., olfactory bulbs) and detailed symptoms report.
Two out of the five identified functional hubs were located in the subcortical brain structures (Figure 3). Close
connected with olfactory bulbs and orbitofr structures (i.e., olderty, and cycling a securities) suppressively structure processed in the connected with olfactory bulbs and orbitofrontal areas, the left significant association with COVID-19 positivity and hypo-conne - 「 c 。
。
。 the left hippocampus positively associated with COVID-19 status (Figure 3, 4; Table 2,3). Interestingly, only this
subcortical brain area shows a significantly reduced cortical volume in our COVID+ group. Linked with cogni significant association with COVID-19 positivity and hypo-connectivity among the COVID+ group defined as
decreased functional connectivity (Figure 3b, Table 2). Further, we found structural and functional changes
the left signment association with CoVID-19 status, we found structural and functional changes
decreased functional connectivity (Figure 3b, Table 2). Further, we found structural and functional changes
the left hippocampus positiv the left hippocampus positively associated with COVID-19 status (Figure 3, 4; Table 2,3). Interestingly, only this
subcortical brain area shows a significantly reduced cortical volume in our COVID+ group. Linked with cogni subcortical brain area shows a significantly reduced cortical volume in our COVID+ group. Linked with cognitive,
spatial and working memory functions as well as learning, hippocampal areas have been severely impacted by
C spatial and working memory functions as well as learning, hippocampal areas have been severely impacted by
COVID-19 leading to alterations in its cortical volume, microstructure and functional connectivity^{56,84-87} acros

Spatial and the memory functions as in the contract of the memory of the different areas proups and COVID-19 phases.

Our findings are in line with previous studies that have reported structural and functional alterations Moreon age groups and COVID-19 phases.

Our findings are in line with previous studie

amygdala and hippocampus throughout diff⁹⁰

that faced unique social stressors (i.e., social unclear if these brain changes are due t (こうこくしょう amygdala and hippocampus throughout different phases of SARS-CoV-2 infection and among populations^{5,45,88–90} that faced unique social stressors (i.e., social isolation, lockdown), during COVID-19 pandemic. However, it i ⁹⁰ that faced unique social stressors (i.e., social isolation, lockdown), during COVID-19 pandemic. However, it is
still unclear if these brain changes are due to SARS-CoV-2 infection or to the psychosocial stressors ex still unity COVID-19 pandemic triggering resilience effects¹⁰. Both amygdala and hippocampal areas are key in predicting vulnerability and resilience to stress-related disorders like post-traumatic stress disorder (PTSD These areas are also heavily involved in personality, emotional, and behavioral regulation^{94,95}, fear processing
and fear conditioning^{96,97}, and the formation of memories related to stressful events⁹⁸. Future studie and fear conditioning^{96,97}, and the formation of memories related to stressful events⁹⁸. Future studies should
include stress metrics to understand the involvement of amygdala and hippocampus in psychosocial stress
re and fear conditioning²⁰⁰², and the formation of memories related to stressful events²⁰. Future studies should
include stress metrics to understand the involvement of amygdala and hippocampus in psychosocial stress
resp

include stress metric in an anti-transfer metric metric amy galaxie and hippocal in properties to the increasi
responses, shedding light on their potential as neural basis for individual variations in stress reactivity,
vu vulnerability⁸⁹ and predisposition to stress-related disorders in adolescents and young adults.
Our work identified specific cortical and subcortical brain areas affected by mild COVID-19 in adolescer
young adults, achie From a dults, achieved through the use of rs-fMRI, MRI, and cognitive data using a reliable functional-
connectivity based approach. A notable strength of our research is the availability of baseline imaging and
cognitive prior seed selection of hypothesis-driven approaches, thus proving a comprehensive and unbiased ass cognitive tests conducted before and after infection. By leveraging the longitudinal nature of our multi-mo
study, which includes high quality pre- and post-morbidity imaging and cognitive assessments, we were ab
assess th compute the includes high quality pre- and post-morbidity imaging and cognitive assessments, we were able to
study, which includes high quality pre- and post-morbidity imaging and cognitive assessments, we were able to
ass assess the impact of the COVID-19 pandemic in the adolescent and young adult population. Moreover, we employed graph-based network metrics derived from rs-fMRI to investigate alterations in both brain and cognitive functio employed graph-based network metrics derived from rs-fMRI to investigate alterations in both brain and
cognitive functions resulting from mild COVID-19. These metrics offer the advantage of being unconstraine
prior seed se employe functions resulting from mild COVID-19. These metrics offer the advantage of being unconstrain
prior seed selection of hypothesis-driven approaches, thus proving a comprehensive and unbiased assess
of the observed cogning transmitted functions resulting from millions results in the anti-mild comprehensive and unbiased assessment
of the observed brain changes.
Limitations of our study design include the small sample size and lack of

prior seed selection of the observed brain changes.

Limitations of our study design include the small sample size and lack of an external control group outside the

PHIME cohort. Our small sample size prohibited seeing to of the observed brain changes.
Limitations of our study design
PHIME cohort. Our small sample DHIME cohort. Our small sample size prohibited seeing total effects of COVID-19 on SWM metric that might be
PHIME cohort. Our small sample size prohibited seeing total effects of COVID-19 on SWM metric that might be
1 PHIME cohort. Our small sample size prohibited seeing total effects of COVID-19 on SWM metric that might be

atter might improve statistical power and allow us to identify additional functional and structural brain areas
associated with COVID-19 as well as a direct effect of COVID-19 on cognitive metrics. In addition, our cohort
 size might improve statistical power and allow us to identify additional functional and structural brain areas
associated with COVID-19 as well as a direct effect of COVID-19 on cognitive metrics. In addition, our cohort
l lacks diversity and consisted only of white participants aged between 13-25 years, meaning that the findings
cannot be generalized to other populations. While it would be beneficial to repeat our analysis in a larger
datas cannot be generalized to other populations. While it would be beneficial to repeat our analysis in a larger
dataset, there is no such dataset that includes multi-modal imaging, cognitive and COVID-19 symptomatology
collect cannot be generalized to other populations. The populations collected in Italy, specifically, in the global hotspot of COVID-19. In addition, the average time interval bet

MRI scans is long (~3 years) in comparison to the nature is no such that as experiment that is no such a such as the average time interval between
MRI scans is long (~3 years) in comparison to the average time between documented infections and the secon
MRI scan (12 month MRI scans is long (~3 years) in comparison to the average time between documented infections and the second
MRI scan (12 months at maximum). The relatively long time between MRI studies increases the potential for
confound MRI scan (12 months at maximum). The relatively long time between MRI studies increases the potential for
confounding factors, such as age-related changes in functional or cognitive functions. An additional longer-term
fol confounding factors, such as age-related changes in functional or cognitive functions. An additional longer-te
follow-up study will assess the reversibility of the observed post-infectious changes and disentangle them fro
 follow-up study will assess the reversibility of the observed post-infectious changes and disentangle them from
the above mentioned confounding variables. On the basis of the study frame, SARS-CoV-2 infections among
partic Follow-up study frames in the reversibility of above mentioned confounding variables. On the basis of the study frame, SARS-CoV-2 infections among
participants were presumably caused by one of the many SARS-CoV-2 variants the above mentioned conformation of the many SARS-CoV-2 variants (alpha, beta or gamma). Furthermaly caused by one of the many SARS-CoV-2 variants (alpha, beta or gamma). Furthermaly randysis of these data, including corre

participants were presumed by the mand of the mand state of the mand with extending to the mand state of subgroups.
To conclude, this is a multimodal longitudinal case-control study using cognitive assessment, rs-fMRI and analysis of subgroups.
To conclude, this is a multimodal longitudinal case-control study using cognitive assessment, rs-fMRI and
data to provide novel insights into the underlying neural and cognitive mechanisms of adolesc To conclude, this is a multir
data to provide novel insigh
adults living in a global hots
structural changes in specif
volume and FC connectivity To conclude the multimodal intervals into the underlying neural and cognitive mechanisms of adolescents and young
adults living in a global hotspot of COVID-19 during the pandemic. Our results show persistent functional an adults living in a global hotspot of COVID-19 during the pandemic. Our results show persistent functional and
structural changes in specific brain areas in participants COVID-19 positive. These changes involved gray matte
 structural changes in specific brain areas in participants COVID-19 positive. These changes involved gray matt
volume and FC connectivity in cortical and subcortical areas previously shown to be associated with mild and
se volume and FC connectivity in cortical and subcortical areas previously shown to be associated with mild and
severe COVID-19. These changes are associated with COVID-19 status, as well as with a drop in cognitive
functions severe COVID-19. These changes are associated with COVID-19 status, as well as with a drop in cognitive
functions, in particular SWM metrics. Future studies to assess the longevity and reversibility of the observed
brain a sections, in particular SWM metrics. Future studies to assess the longevity and reversibility of the obsen
brain and cognitive changes following infections are still needed to advance our understanding in future
developmen functions, in particular Sections, the longestons are still needed to advance our understanding in future
development of post-COVID infection and to help intervention and treatment. brain and cognition changes for any infection and to help intervention and treatment.
development of post-COVID infection and to help intervention and treatment. development of post-COVID infection and to help intervention and treatment.
 $\frac{d}{dt}$

References

-
- 1. Chen, N. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus

1. Chen, N. et al. Change, H. R. Brain changes after COVID-19 how concerned should we be? Nat. Rev

18, (2022).

3. C pneumonia in Wuhan, China: a descriptive study. *Lundet 395*, (2020).
Kremer, S. & Jäger, H. R. Brain changes after COVID-19 - how concern
18, (2022).
Crivelli, L. *et al.* Changes in cognitive functioning after COVID-19
- 2. Kremer, S. & Jäger, H. R. Brain changes are COVID-19 how concerned should we be? Nat. Rev. Neurol.

2. Crivelli, L. *et al.* Changes in cognitive functioning after COVID-19: A systematic review and meta-analysis.

4. 18, (2022).
Crivelli, L. *et al.* Changes in cognitive functioning after COVID-19: A systematic review and meta-analysis.
Alzheimers. Dement. 18, (2022).
Zubair, A. S. *et al.* Neuropathogenesis and Neurologic Manifestati
-
-
- 3. Crivelli, L. et al. Changes in cognitive functioning after COVID-19: A systematic review and meta-analysis.

4. Zubair, A. S. et al. Neuropathogenesis and Neurologic Manifestations of the Coronaviruses in the Age of

Co Alzheimers. Dement. **20,** (2022).
Zubair, A. S. et al. Neuropathoge
Coronavirus Disease 2019: A Rev
Douaud, G. *et al.* SARS-CoV-2 is a
(2022).
Salomon, T. *et al.* Brain volumett
and lockdown. Neuroimage 239,
Manan, H. A. 4. *Zubair, A. S. et al. Neuropathogenesis and Neurologic Mannesidations of the Coronaviruses in the Age of*
Coronavirus Disease 2019: A Review. *JAMA Neurol.* **77**, (2020).
5. Douaud, G. *et al.* SARS-CoV-2 is associated Coronavirus Disease 2019: A Review. JAWA Neurol. 77, (2020).

Douaud, G. *et al.* SARS-CoV-2 is associated with changes in brai

(2022).

Salomon, T. *et al.* Brain volumetric changes in the general popu

and lockdown. *Ne* 5. Bouaud, G. et al. SARS-Cov-2 is associated with changes in brain structure in OK Biobank. Nature 604,

6. Salomon, T. et al. Brain volumetric changes in the general population following the COVID-19 outbreak

and lockd (2022).
Salomo
and locl
Manan,
changes
de Pauli
and neu
Ludvigs.
- 6. Salomon, T. et al. Brain volumetric changes in the general population following the COVID-15 outbreak
and lockdown. Neuroimage 239, (2021).
7. Manan, H. A., Yahya, N., Han, P. & Hummel, T. A systematic review of olfacto anan, H. A., Yahya, N., Han, P. & Humn
changes in patients with congenital or ac
de Paula, J. J. *et al.* Selective visuoconstri
and neuroimaging correlation findings. A
Ludvigsson, J. F. Systematic review of CO
adults. *A*
- The Paula, J. J. et al. Selective visuoconstructional impairment following mild COVID-19 with inflammator and neuroimaging correlation findings. *Mol. Psychiatry* 28, (2023).

9. Ludvigsson, J. F. Systematic review of COVI changes in patients with congenitation acquired anositial. Brain Struct. Funct. 227, (2022).
de Paula, J. J. *et al.* Selective visuoconstructional impairment following mild COVID-19 with
and neuroimaging correlation findi
-
-
- 8. de Paula, J. J. et al. Selective visuoconstructional impairment following final COVID-19 with inflammatory
and neuroimaging correlation findings. *Mol. Psychiatry* 28, (2023).
9. Ludvigsson, J. F. Systematic review of C and neuroimaging correlation maings. Mol. Psychiatry 28, (2023).
Ludvigsson, J. F. Systematic review of COVID-19 in children shows r
adults. Acta Paediatr. **109**, 1088 (2020).
van Drunen, L., Toenders, Y. J., Wierenga, L. 9. J. M. Star and Dults. Acta Paediatr. 109, 1088 (2020).

10. van Drunen, L., Toenders, Y. J., Wierenga, L. M. & Crone, E. A. Effects of COVID-19 pandemic on structural

11. Rumain, B., Schneiderman, M. & Geliebter, A. Pr
-
- aanns. Acta Paediatr. 109, 1088 (2020).
Van Drunen, L., Toenders, Y. J., Wierengs
brain development in early adolescence
Rumain, B., Schneiderman, M. & Geliebt
with older adults in states experiencing
Arain, M. *et al.* Ma 10. van Drunen, L., Toenders, Y. J., Wierenga, L. M. & Crone, E. A. Effects of COVID-19 pandemic on structural

brain development in early adolescence. *Sci. Rep.* **13**, (2023).

11. Rumain, B., Schneiderman, M. & Geliebte Brain development in early adolescence. Sci. Rep. 13, (2023).
Rumain, B., Schneiderman, M. & Geliebter, A. Prevalence of C
with older adults in states experiencing surges. PLoS One 16, I
Arain, M. et al. Maturation of the with older adults in states experiencing surges. *PLoS One* **16**, (2021).

12. Arain, M. *et al.* Maturation of the adolescent brain. *Neuropsychiatr. Dis. Treat.* **9**, 449 (2013).

13. Ferschmann, L., Bos, M. G. N., Herti With older dualts in states experiencing surges. PLos One 16, (2021).
Arain, M. et al. Maturation of the adolescent brain. Neuropsychiatr. I
Ferschmann, L., Bos, M. G. N., Herting, M. M., Mills, K. L. & Tamnes, G
structura 12. Arain, M. et al. Maturation of the adolescent brain. Neuropsychiatr. Dis. Treat. 9, 449 (2019).

13. Ferschmann, L., Bos, M. G. N., Herting, M. M., Mills, K. L. & Tamnes, C. K. Contextualizing adolestructural brain dev 11. Fersthere is a metal health outcomes. Current op

in psychology 44, (2022).

14. Andrews, J. L., Ahmed, S. P. & Blakemore, S. J. Navigating the Social Environment in Adolescence: The

15. Blakemore, S. J. Development.
- in psychology 44, (2022).

Andrews, J. L., Ahmed, S. P. & Blakemore, S. J. Navigating the Social Environment in Adolescence: The Role

of Social Brain Development. *Biol. Psychiatry* 89, (2021).

Blakemore, S. J. Developme m psychology 44, (2022).
Andrews, J. L., Ahmed, S.
of Social Brain Developm
Blakemore, S. J. Developr
Jaafari, S. A., Hosseinmar
social status through diffe
Novick, A. M., Miiller, L. C
memory performance in a
Oblak. A.. S
-
- of Social Brain Development. Biol. Fsychiatry 89, (2021).
Blakemore, S. J. Development of the social brain in adole
Jaafari, S. A., Hosseinmardi, N. & Janahmadi, M. Spatial v
social status through different developmental s 15. Blakemore, S. J. Development of the social brain in adolescence. J. R. Soc. Med. 105, (2012).
16. Jaafari, S. A., Hosseinmardi, N. & Janahmadi, M. Spatial working memory is disparately interr
16. Jaafari, S. A., Missei
- of Social Brain Development. *Biol. Psychiatry* **89**, (2021).

15. Blakemore, S. J. Development of the social brain in adolescence. *J. R. Soc. Med.* 105, (2012).

16. Jaafari, S. A., Hosseinmardi, N. & Janahmadi, M. Spati social status through different developmental stages in rats. *Behav. Brain Res.* 416, (2022).
17. Novick, A. M., Miiller, L. C., Forster, G. L. & Watt, M. J. Adolescent social defeat decreases spatial working
18. Oblak, A social status through different developmental stages in rats. Behav. Brain Res. 416, (2022).
Novick, A. M., Miiller, L. C., Forster, G. L. & Watt, M. J. Adolescent social defeat decreases sp
memory performance in adulthood
- memory performance in adultiood. Behav. Brain Funct. 9, 1–11 (2013).
Oblak, A., Slana Ozimič, A., Repovš, G. & Kordeš, U. What Individuals Exp
Working Memory Task Performance: An Exploratory Phenomenological
Lucas, E. L.
- memory performance in adulthood. *Behav. Brain Funct.* **9**, 1–11 (2013).

18. Oblak, A., Slana Ozimič, A., Repovš, G. & Kordeš, U. What Individuals Experience During Visuo-Spatial

19. Lucas, E. L. *et al.* Impact of ferro Working Memory Task Performance: An Exploratory Phenomenological Study. *Front. Psychol.* 13, (20:
19. Lucas, E. L. *et al.* Impact of ferromanganese alloy plants on household dust manganese levels: implica
for childhood e Working Memory Task Performance: An Exploratory Theriomenological Stady. Trom: Fsychol. 13, (2012).
Lucas, E. L. *et al.* Impact of ferromanganese alloy plants on household dust manganese levels: implication
for childhood
- 19. Lucas, E. L. et al. Impact of ferromanganese alloy plants on household dust manganese levels. Implications

19. Lucchini, R. G. *et al.* Tremor, offactory and motor changes in Italian adolescents exposed to historical For childhood exposure. Environ. Res. 138, (2015).
Lucchini, R. G. *et al.* Tremor, olfactory and motor c
manganese emission. *Neurotoxicology* 33, (2012).
Lucchini, R. G. *et al.* Inverse association of intellect
manganes
-
-
- 20. Lucchini, N. G. et al. Tremor, oliactory and motor changes in Italian adolescents exposed to instoncer reno-
manganese emission. *Neurotoxicology* 33, (2012).
22. Robbins, T. W. *et al.* Inverse association of intellec manganese emission. *Neurotoxicology* 33, (2012).

21. Lucchini, R. G. *et al.* Inverse association of intellectual function with very low blood lead but not with

manganese exposure in Italian adolescents. *Environ. Res.*
- 21. Lucchini, R. G. et al. Inverse association of intellectual function with very low blood lead but not with
manganese exposure in Italian adolescents. *Environ. Res.* **118**, (2012).
22. Robbins, T. W. *et al.* Cambridge manganese exposure in Italian adolescents. *Environ. Res.* 118, (2012).
Robbins, T. W. *et al.* Cambridge Neuropsychological Test Automated B
study of a large sample of normal elderly volunteers. *Dementia* 5, (199
Zhao, M 22. Robbins, T. W. et al. cambridge Reuropsychological Test Automated Battery (CANTAB): a factor analytic
study of a large sample of normal elderly volunteers. Dementia 5, (1994).
23. Zhao, M. et al. Serum Neutralizing Ant study of a large sample of normal elderly volumeers. *Dementia 3,* (1994).
Zhao, M. *et al.* Serum Neutralizing Antibody Titers 12 Months After COVID
Correlation to Clinical Variables in an Adult, US Population. *Clin. Inf* 23. Zhao, M. et al. Serum Neutralizing Antibody Titers 12 Months After COVID-19 Messenger RNA Vaccination.

24. Gallais, F. *et al.* Evolution of antibody responses up to 13 months after SARS-CoV-2 infection and risk of

r Correlation to Clinical Variables in an Adult, 051 Opaliation. Clin. Infect. D.S. doi:10.10937cid/cide-10.
Callais, F. et al. Evolution of antibody responses up to 13 months after SARS-CoV-2 infection and risk
reinfection.
-
- 24. Gallais, F. et al. Evolution of antibody responses up to 13 months after SARS-CoV-2 infection and risk of
reinfection. *eBioMedicine* **71**, (2021).
25. [No title]. www.coronavirus-
26. Rubinov, M. & Sporns, O. Complex reinfection. *eBioMedicine 71,* (2021).
[No title]. www.coronavirus-
diagnostics.com/documents/Indicatio
Rubinov, M. & Sporns, O. Complex ne
Neuroimage 52, 1059–1069 (2010).
Rubinov, M., Kötter, R., Hagmann, P. i
network Rubinov, M. & Sporns, O. Complex network measures of brain connectivity: uses and in:
Neuroimage 52, 1059–1069 (2010).
Rubinov, M., Kötter, R., Hagmann, P. & Sporns, O. Brain connectivity toolbox: a collectic
network measu
- 26. Rubinov, M., Kötter, R., Hagmann, P. & Sporns, O. Brain connectivity toolbox: a collection of complex
network measurements and brain connectivity datasets. Neurolmage vol. 47 S169 Preprint at
network measurements and b Neuromage 52, 1059–1009 (2010).
Rubinov, M., Kötter, R., Hagmann, P
network measurements and brain co 22. Rubinov, M., Rubinov, M., Hagmann, P. Brain connectivity of contractions, P. Brain connectivity, T. Bra network measurements and brain connectivity datasets. Neurolinge vol. 47 S169 Preprint at

-
-
- Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-base
reconstruction. *Neuroimage* **9**, (1999).
Fischl, B., Sereno, M. I. & Dale, A. M. Cortical surface-base
based coordinate system. *Neuroimage* **9**, (1999).
Fisch 29. Fischl, B., Sereno, M. I. & Dale, A. M. Cortical surface-based analysis. II: Inflation, flattening, and a

based coordinate system. Neuroimage 9, (1999).

20. Fischl, B. *et al.* Whole brain segmentation: automated lab rischl, B., Sereno, M. I. & Dale, A. M. Compared Coordinate system. *Neuroimage*
Fischl, B., Sereno, M. I. & Dale, A. M. Compare
Fischl, B. *et al.* Whole brain segmentati
human brain. *Neuron* **33**, (2002).
Fischl, B. & D based coordinate system. Neuromage 9, (1999).
Fischl, B. *et al.* Whole brain segmentation: autom
human brain. Neuron **33**, (2002).
Fischl, B. & Dale, A. M. Measuring the thickness o
images. Proc. Natl. Acad. Sci. U. S. A.
-
-
- 33. Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans 30. Fischl, B. et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the
human brain. Neuron 33, (2002).
31. Fischl, B. & Dale, A. M. Measuring the thickness of the human cerebral cortex from Hischl, B. & Dale, A. M. Measuring
Fischl, B. & Dale, A. M. Measuring
images. *Proc. Natl. Acad. Sci. U. S*
Pruim, R. H. R., Mennes, M., Buite
strategies for motion artifact rem
Desikan, R. S. *et al.* An automated
into gy images. *Proc. Natl. Acad. Sci. U. S. A.* **97**, (2000).

32. Pruim, R. H. R., Mennes, M., Buitelaar, J. K. & Beckmann, C. F. Evaluation of ICA-AROMA and alternative

strategies for motion artifact removal in resting state images. Proc. Natl. Acad. Sci. 0. 3. A. 97, (2000).
Pruim, R. H. R., Mennes, M., Buitelaar, J. K. & Be
strategies for motion artifact removal in resting
Desikan, R. S. *et al.* An automated labeling systel
into gyral based strategies for motion artifact removal in resting state fMRI. *Neuroimage* 112, 278–287 (2015).

33. Desikan, R. S. *et al.* An automated labeling system for subdividing the human cerebral cortex on MRI sca

into gyral bas strategies for motion artifact removal in resting state firm. Neuromage 112, 278–287 (2015).
Desikan, R. S. *et al.* An automated labeling system for subdividing the human cerebral cortex o
into gyral based regions of inte
-
- 33. Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans
34. Monti, M. M. Statistical Analysis of fMRI Time-Series: A Critical Review of the GLM Approach. *Front. Hum.*

-
- into gyral based regions of interest. *Neurolininge 31*, (2000).

Monti, M. M. Statistical Analysis of fMRI Time-Series: A Critic
 Neurosci. 5, 28 (2011).

Bright, M. G. & Murphy, K. Is fMRI 'noise' really noise? Restin
 34. Monta, M. M. Statistical Analysis of finith Time-Series: A Critical Review of the GLM Approach. Front. Hum.
35. Bright, M. G. & Murphy, K. Is fMRI 'noise' really noise? Resting state nuisance regressors remove variance Neurosci. 3, 28 (2011).
Bright, M. G. & Murphy
with network structure
Zuo, X. N. *et al.* Networ
Lohmann, G. *et al.* Eige
human brain. *PLoS One*
Joyce, K. E., Laurienti, F
PLoS One 5, (2010).
Wink. A. M.. de Munck 35. Bright, M. M. G. et al. Network centrality in the human functional connectome. Cereb. Cortex 22, (2012).

35. Lohmann, G. et al. Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the

1
-
- With network structure. Neuromage 114, 158–169 (2015).
Zuo, X. N. *et al.* Network centrality in the human functional
Lohmann, G. *et al.* Eigenvector centrality mapping for analy
human brain. *PLoS One* 5, (2010).
Joyce, 37. Lohmann, G. *et al.* Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the
human brain. *PLoS One* 5, (2010).
38. Joyce, K. E., Laurienti, P. J., Burdette, J. H. & Hayasaka, S. A new m 37. Lohmann, G. et al. Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the
human brain. *PLoS One* 5, (2010).
38. Joyce, K. E., Laurienti, P. J., Burdette, J. H. & Hayasaka, S. A new meas Human brain. *PLOS One 5*, (2010).
Joyce, K. E., Laurienti, P. J., Burdet
PLoS One 5, (2010).
Wink, A. M., de Munck, J. C., van c
centrality mapping of voxel-wise c
validation, and interpretation. *Bra*
Cole, D. A. & Max 28. Joyce, C. A. & Munck, J. C., van der Werf, Y. D., van den Heuvel, O. A. & Barkhof, F. Fast eigenvector
39. Wink, A. M., de Munck, J. C., van der Werf, Y. D., van den Heuvel, O. A. & Barkhof, F. Fast eigenvector
39. Win PLos One 5, (2010).
Wink, A. M., de Mur
centrality mapping colidation, and inter
Cole, D. A. & Maxwe
use of structural equations of structural equations.
Platest-posttest cor
Tingley. D., Yamamo 39. Cole, D. A. & Maxwell, S. E. Testing mediational magnetic resonance imaging: implementat

39. Cole, D. A. & Maxwell, S. E. Testing mediational models with longitudinal data: questions and tips in th

39. Williams of st
-
- validation, and interpretation. *Brain Connect.* **2**, (2012).
Cole, D. A. & Maxwell, S. E. Testing mediational models with longitudinal data: questions and tips in the
use of structural equation modeling. *J. Abnorm. Psych* validation, and interpretation. Brain connect: 2, (2012).
Cole, D. A. & Maxwell, S. E. Testing mediational models
use of structural equation modeling. J. Abnorm. Psychol.
Valente, M. J. & MacKinnon, D. P. Comparing models use of structural equation modeling. J. Abnorm. Psychol. 112, (2003).
Valente, M. J. & MacKinnon, D. P. Comparing models of change to est
pretest-posttest control group design. *Struct. Equ. Modeling* 24, 428 (
Tingley, D.
- pretest-posttest-control group design. Struct. Equ. Modeling 24, 428 (2017).
Tingley, D., Yamamoto, T., Hirose, K., Keele, L. & Imai, K. mediation: R Packag
Analysis. J. Stat. Softw. 59, 1–38 (2014).
Takahashi, T. *et al.*
- 44. Valente, M. J. & MacKinnon, D. P. Comparing models of change to estimate the mediated effect in the pretest-posttest control group design. *Struct. Equ. Modeling* 24, 428 (2017).
42. Tingley, D., Yamamoto, T., Hirose, pretest-posttest control group design. *Struct. Equ. Modeling* 24, 428 (2017).

42. Tingley, D., Yamamoto, T., Hirose, K., Keele, L. & Imai, K. mediation: R Package for Causal Mediation

43. Takahashi, T. *et al.* Relation Analysis. J. Stat. Softw. 59, 1–38 (2014).

43. Takahashi, T. et al. Relationships between the Fear of COVID-19 Scale and regional brain atrophy in cognitive impairment. Acta Neuropsychiatr. 34, (2022).

44. Lavenda-Grosbe Analysis. *J. Stat. Softw.* **59**, 1–38 (2014).

43. Takahashi, T. *et al.* Relationships between the Fear of COVID-19 Scale and regional brain atrophy in mild

cognitive impairment. Acta Neuropsychiatr. **34**, (2022).

44.
- 43. Takahashi, T. et al. Relationships between the Fear of COVID-19 Scale and regional brain atrophy in thind
cognitive impairment. Acta Neuropsychiatr. **34**, (2022).
44. Lavenda-Grosberg, D. *et al.* Acute social isolatio
- changes in the rat medial amygdala. *Mol. Psychiatry* 27, 886–895 (2021).

Zhou, Y. *et al.* Amygdala connectivity related to subsequent stress responses during the COVID-

outbreak. *Front. Psychiatry* 14, (2023).

Bispo, changes in the rat medial amygdala. Mol. Flyemary 27, 886–895 (2021).
Zhou, Y. *et al.* Amygdala connectivity related to subsequent stress respon
outbreak. Front. Psychiatry 14, (2023).
Bispo, D. D. C. *et al.* Brain micro
-
- 44. Lavenda-Grosberg, D. et al. Acute social isolation and regrouping cause short- and long-term indicedual
changes in the rat medial amygdala. Mol. Psychiatry 27, 886–895 (2021).
45. Zhou, Y. et al. Amygdala connectivity 45. Zhou, Y. et al. Amygdala connectivity related to subsequent stress responses during the COVID-19 outbreak. Front. Psychiatry 14, (2023).
46. Bispo, D. D. C. et al. Brain microstructural changes and fatigue after COVID-Bispo, D. D. C. *et al.* Brain microstructure Baron, R. M. & Kenny, D. A. The moder conceptual, strategic, and statistical co
Hair, J. F., Jr *et al. Partial Least Squares* (Springer Nature, 2021).
O'Rourke, H. P. & Vazque 47. Baron, R. M. & Kenny, D. A. The moderator-mediator variable distinction in social psychological research
conceptual, strategic, and statistical considerations. J. Pers. Soc. Psychol. 51, 1173–1182 (1986).
48. Hair, J.
-
-
- 47. Baron, R. M. & Kenny, D. A. The moderator-mediator variable distinction in social psychological research: 18. Hair, J. F., Jr et al. Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R: A Workbook.

(Springer Nature, 2021).

19. O'Rourke, H. P. & Vazquez, E. Mediation analysis with zero-inflated substance use
- 48. Hair, J. F., J. F. d. Partial Least Squares Structural Equation Modelling (P. 25 SEM) Using R: A Workbook.

49. O'Rourke, H. P. & Vazquez, E. Mediation analysis with zero-inflated substance use outcomes: Challeng

and ² Rourke, H. P. & Vazque

and recommendations. A

Kravitz, D. J., Saleem, K. S
 Nat. Rev. Neurosci. **12**, (2

Velichkovsky, B. B., Razva

memory after COVID-19
 Acta Psychol. **233**, 10383

Baseler. H. A., Aksov. M. and recommendations. Addict. Behav. **94**, 16–25 (2019).

50. Kravitz, D. J., Saleem, K. S., Baker, C. I. & Mishkin, M. A new neural framework for visuospatial processing
 Nat. Rev. Neurosci. **12**, (2011).

51. Velichkov and recommendations. Addict. Behav. 34, 16–25 (2019).
Kravitz, D. J., Saleem, K. S., Baker, C. I. & Mishkin, M. A ne
Nat. Rev. Neurosci. 12, (2011).
Velichkovsky, B. B., Razvaliaeva, A. Y., Khlebnikova, A. A.,
memory after Nat. Rev. Neurosci. 12, (2011).

51. Velichkovsky, B. B., Razvaliaeva, A. Y., Khlebnikova, A. A., Manukyan, P. A. & Kasatkin, V. N. Attention and

memory after COVID-19 as measured by neuropsychological tests: Systematic r Velichkovsky, B. B., Razvaliaeva

Melichkovsky, B. B., Razvaliaeva

memory after COVID-19 as mee

Acta Psychol. **233**, 103838 (20:

Baseler, H. A., Aksoy, M., Salaw

working memory revealed usin

Hampshire, A. *et al.* Cog memory after COVID-19 as measured by neuropsychological tests: Systematic review and meta-analysis.

Acta Psychol. 233, 103838 (2023).

52. Baseler, H. A., Aksoy, M., Salawu, A., Green, A. & Asghar, A. U. R. The negative i
- Acta Psychol. 233, 103038 (2023).
Baseler, H. A., Aksoy, M., Salawu, A
working memory revealed using a Hampshire, A. *et al.* Cognitive defic
(2021).
Díez-Cirarda, M. *et al.* Multimodal I
Brain **146**, (2023).
Paolini, M
- Acta Psychol. 233, 103838 (2023).
Baseler, H. A., Aksoy, M., Salawu, A., Green, A. & Asghar, A. U. R. The negative impact of COVID-19 on
working memory revealed using a rapid online quiz. PLoS One 17, (2022).
Hampshire, A. working memory revealed using a rapid online quiz. PLos One 17, (2022).

53. Hampshire, A. *et al.* Cognitive deficits in people who have recovered from COVID-19. *eClinicalMedicine*

54. Diez-Cirarda, M. *et al.* Multimod Working memory revealed using a rapid online quiz. *PLOS One 17*, (2022).
Hampshire, A. *et al.* Cognitive deficits in people who have recovered from
(2021).
Diez-Cirarda, M. *et al.* Multimodal neuroimaging in post-COVID
- 53. Hampshire, A. et al. Cognitive deficits in people who have recovered from COVID-19. eclimicalMedicine 39,

54. Diez-Cirarda, M. et al. Multimodal neuroimaging in post-COVID syndrome and correlation with cognition.
 Br (2022).
Díez-Cir
Brain 14
Paolini,
magnet
- 54. Diez-Cirarda, M. et al. Multimodal neuroimaging in post-COVID syndrome and correlation with cognition.
Brain 146, (2023).
55. Paolini, M. et al. Brain correlates of subjective cognitive complaints in COVID-19 survivors B aolini, M. *et al.* Brain 1446, (2023).
Paolini, M. *et al.* Brain 1446. 55. Praolini, M. et al. Brain correlates of subjective cognitive complaints in COVID-19 survivors: A multimodal
magnetic resonance imaging study. *Eur. Neuropsychopharmacol.* **68**, (2023). magnetic resonance imaging study. Eur. Neuropsychopharmacol. 68, (2023).

-
-
-
- 56. Hippocampar-Frefrontal Connectivity Frior to the COVID-19 Fandemic Fredicts Stress Reactivity. Biological

57. Huff, T., Mahabadi, N. & Tadi, P. Neuroanatomy, Visual Cortex. (2023).

58. Palejwala, A. H. *et al.* Anato Psychiatry Global Open Science 1, 203–250 (2021).
Huff, T., Mahabadi, N. & Tadi, P. Neuroanatomy, Vi
Palejwala, A. H. *et al.* Anatomy and White Matter C
Neurosurg. **151**, (2021).
Rosenthal, C. R., Andrews, S. K., Antoniad
-
- 58. Palejwala, A. H. *et al.* Anatomy and White Matter Connections of the Li

Neurosurg. **151**, (2021).

59. Rosenthal, C. R., Andrews, S. K., Antoniades, C. A., Kennard, C. & Soto, I

Non-conscious Sequence of Events in H 58. Palejwala, A. H. *et al.* Anatomy and White Matter Connections of the Lingual Gyrus and Cuneus. World
 Neurosurg. **151**, (2021).

59. Rosenthal, C. R., Andrews, S. K., Antoniades, C. A., Kennard, C. & Soto, D. Learni Neurosurg. 151, (2021).
Rosenthal, C. R., Andrew
Non-conscious Sequence
Tong, F. Primary visual c
Bogousslavsky, J., Miklos
processing: a clinico-pat
50, 607 (1987).
Yan, Y. *et al.* Reduced hij 59. Rosenthal, C. R., Andrews, Sequence of Events in Human Primary Visual Cortex. Curr. Biol. 26, (2016).

59. Tong, F. Primary visual cortex and visual awareness. Nat. Rev. Neurosci. 4, (2003).

51. Bogousslavsky, J., Mik Non-conscious Sequence of Events in Human Primary Visual Cortex. Curr. Biol. 26, (2016).
Tong, F. Primary visual cortex and visual awareness. *Nat. Rev. Neurosci.* 4, (2003).
Bogousslavsky, J., Miklossy, J., Deruaz, J. P., 61. Bogousslavsky, J., Miklossy, J., Deruaz, J. P., Assal, G. & Regli, F. Lingual and fusifor processing: a clinico-pathologic study of superior altitudinal hemianopia. *J. Neurol* 50, 607 (1987).
62. Yan, Y. *et al.* Red processing: a clinico-pathologic study of superior altitudinal hemianopia. J. Neurol. Neurosurg. Psy

50, 607 (1987).

62. Yan, Y. et al. Reduced hippocampal-cortical connectivity during memory suppression predicts the

fo
- **50**, 607 (1987).

Yan, Y. *et al.* Reduced hippocampal-cortical connectivity during memory suppression predicts the ability to

forget unwanted memories. *Cereb. Cortex* 33, (2023).

Mei, N., Santana, R. & Soto, D. Infor Yan, Y. *et al.* Reforget unwante
forget unwante
Mei, N., Santani
processing in hi
Han, S. D. *et al.*
Brain Mapp. 43
Zhang, L. *et al.* (
- 62. Fan, Y. et al. Reduced impocampal-cortical connectivity during memory suppression predicts the ability to
forget unwanted memories. *Cereb. Cortex* **33**, (2023).
63. Mei, N., Santana, R. & Soto, D. Informative neural r
- Francessing in human brains and deep artificial networks. Nature human behaviour 6, (2022).

64. Han, S. D. *et al.* Cognitive decline and hippocampal functional connectivity within older Black adults. Hum.
 Brain Mapp.
- Forget unwanted memories. Cereb. Cortex 33, (2023).

Mei, N., Santana, R. & Soto, D. Informative neural reprocessing in human brains and deep artificial networ

Han, S. D. *et al.* Cognitive decline and hippocampal fur
 B processing in human brains and deep artificial networks. Nuture human behaviour **0**, (2022).
Han, S. D. et al. Gognitive decline and hippocampal functional connectivity within older Black
Brain Mapp. 43, (2022).
Zhang, L. Brain Mapp. 43, (2022).
Zhang, L. et al. Gray Mat
Function and Divergent
Schwab, S. et al. Functio
Dementia and Alzheime
Besteher, B. et al. Larger
317, 114836 (2022).
Crunfli, F. et al. Morphol
Natl. Acad. Sci. U. S. A.
-
- 64. Han, S. D. et al. Cognitive decline and imppocampar rancelonal connectivity within older Black datas. Ham.
65. Zhang, L. et al. Gray Matter Volume of the Lingual Gyrus Mediates the Relationship between Inhibition
66. S 65. Zhang, L. et al. Gray Matter Volume of the Engual Gyrus Mediates the Relationship between Inhibition
Function and Divergent Thinking. Front. Psychol. 7, 204392 (2016).
66. Schwab, S. et al. Functional Connectivity Alte 66. Schwab, S. *et al.* Functional Connectivity Alterations of the Temporal Lobe and Hippocampus in Semantic
Dementia and Alzheimer's Disease. J. Alzheimers. Dis. **76**, 1461–1475 (2020).
67. Besteher, B. *et al.* Larger gr 66. Schwab, S. et al. Functional connectivity Alterations of the Temporal Lobe and Hippocampus in Semantic
Dementia and Alzheimer's Disease. J. Alzheimers. Dis. **76,** 1461–1475 (2020).
67. Besteher, B. et al. Larger gray m Besteher, B. *et al.* Larger gray matter volumes in neuropsychiatric long-COVIE
317, 114836 (2022).
Crunfli, F. *et al.* Morphological, cellular, and molecular basis of brain infection
Natl. Acad. Sci. U. S. A. **119**,
-
-
- 68. Crunfli, F. et al. Larger gray matter volumes in neuropsychiatric long-COVID syndrome. Psychiatry Res.

68. Crunfli, F. et al. Morphological, cellular, and molecular basis of brain infection in COVID-19 patients. Proc. Crunfli, F. *et al. Morp
Natl. Acad. Sci. U. S.*
Tsvetanov, K. A. *et al*
Tsvetanov, K. A. *et al*
prospective observat
Huang, Y., Ling, Q., N
COVID-19: A Narrativ
Rolls, E. T. The functi
Rolls, E. T. The functi 68. Crunni, F. et al. Morphological, cendiar, and molecular basis of brain infection in COVID-19 patients. Froc.
69. Tsvetanov, K. A. *et al.* Hospitalisation for COVID-19 predicts long lasting cerebrovascular impairment: The Huang, Y., Ling, Q., Manyande, A., Wu, D. & Xiang, B. Brain Imaging Changes in Patients Recovered From

COVID-19: A Narrative Review. *Front. Neurosci*. **16**, 855868 (2022).

71. Rolls, E. T. The functions of the orbit 69. Tsvetanov, K. A. et al. Hospitalisation for COVID-15 predicts long lasting cerebrovascular impairment: A prospective observational cohort study. Neurolmage. Clinical 36, (2022).

70. Huang, Y., Ling, Q., Manyande, A., prospective observational concret stady. Mearloffinger. Clinical 36, (2022).
Huang, Y., Ling, Q., Manyande, A., Wu, D. & Xiang, B. Brain Imaging Chang
COVID-19: A Narrative Review. *Front. Neurosci.* **16**, 855868 (2022).
R
-
- COVID-19: A Narriative Review. Front. Neurosci. 16, 855868 (2022).
Rolls, E. T. The functions of the orbitofrontal cortex. *Brain Cogn.* 55,
Rolls, E. T. Functions of the orbitofrontal and pregenual cingulate co
emotion. 72. Rolls, E. T. The functions of the orbitofrontal cortex. Brain Cogn. 35, (2004).
72. Rolls, E. T. Functions of the orbitofrontal and pregenual cingulate cortex in t
emotion. Acta Physiol. Hung. **95**, (2008).
73. Rolls,
- 20. Huang, Y., Line States Review, *Front. Neurosci.* **16**, 855868 (2022).

21. Rolls, E. T. The functions of the orbitofrontal cortex. *Brain Cogn.* **55**, (2004).

22. Rolls, E. T. Functions of the orbitofrontal and prege emotion. *Acta Physiol. Hung.* **95**, (2008).

73. Rolls, E. T., Critchley, H. D., Mason, R. & Wakeman, E. A. Orbitofrontal cortex neurons: role in olfactory and visual association learning. J. Neurophysiol. **75**, (1996).
 emotion. Acta Physiol. Hung. 95, (2000).
Rolls, E. T., Critchley, H. D., Mason, R. & \
visual association learning. J. Neurophysi.
Baig, A. M. & Sanders, E. C. Potential neu
neurological deficit seen in coronavirus d
Meinh
- 13. Rolls, E. C. Potential neuroinvasive pathways of SARS-CoV-2: Deciphering the spectrum of

13. Rolls, A. M. & Sanders, E. C. Potential neuroinvasive pathways of SARS-CoV-2: Deciphering the spectrum of

13. Meinhardt, J. visual association learning. J. Neurophysiol. 75, (1996).
Baig, A. M. & Sanders, E. C. Potential neuroinvasive pat
neurological deficit seen in coronavirus disease-2019 ((
Meinhardt, J. *et al.* Olfactory transmucosal SARS
- neurological deficit seem in coronavirus disease-2019 (COVID-19). 3. Med. Virol. 92, (2020).
Meinhardt, J. *et al.* Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervou
in individuals with COVID-19. *Nat.*
- meurological deficit seen in coronavirus disease-2019 (COVID-19). J. Med. Virol. **92**, (2020).

75. Meinhardt, J. et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry

in individuals 75. Meinhardt, J. et al. Ondetory transmucosal SARS-Cov-2 invasion as a port of central nervous system entry

16. Bougakov, D., Podell, K. & Goldberg, E. Multiple Neuroinvasive Pathways in COVID-19. Mol. Neurobiol. 58,

17 In marviduals with COVID-19. Nat. Neurosci. 24, (2021).
Bougakov, D., Podell, K. & Goldberg, E. Multiple Neuroir
(2021).
Sanabria-Diaz, G. *et al.* Brain cortical alterations in COVI
Neurosci. **16**, (2022).
Anzalone, N. *e*
- Sanabri
Sanabri
Neurose
Anzalor
patients
Duan, K
adults v
Moranc
- Neurosci. **20**, (2022).
Anzalone, N. *et al. Misalione, N. et al. Alignalis. J. Neurol.* **26**
Duan, K. *et al. Alterat*
adults with COVID-19
Morand, A. *et al. Sim*
with long COVID: a pa
Guedj, E. *et al. F-FDG*
Imaaina **4**
- 77. Sanabria-Diaz, G. et al. Brain cortical alterations in COVID-19 patients with neurological symptoms. Front.
77. Sanabria-Diaz, G. et al. Brain cortical alterations in COVID-19 patients with neurological symptoms. Front 77. Sanabria-Diaz, G. et al. Brain cortical alterations in COVID-15 patients with neurological symptoms. Fromt.

78. Anzalone, N. *et al.* Multifocal laminar cortical brain lesions: a consistent MRI finding in neuro-COVID-78. Anzalone, N. et al. Matriocal laminar cortical brain lesions: a consistent MRI finding in neuro-covid-15
patients. J. Neurol. 267, (2020).
79. Duan, K. et al. Alterations of frontal-temporal gray matter volume associat patients. *J. Neurol.* **267**, (2020).

79. Duan, K. *et al.* Alterations of frontal-temporal gray matter volume associate with clinical measures of older

adults with COVID-19. *Neurobiology of stress* **14**, (2021).

80. M
- 79. Duan, K. et al. Alterations of frontal-temporal gray matter volume associate with emilical measures of older
adults with COVID-19. *Neurobiology of stress* **14**, (2021).
80. Morand, A. *et al.* Similar patterns of [F] adults with COVID-19. Neurobiology of stress 14, (2021).
Morand, A. *et al.* Similar patterns of [F]-FDG brain PET hy
with long COVID: a paediatric case series. *Eur. J. Nucl. Me*
Guedj, E. *et al.* F-FDG brain PET hypomet
- with long COVID: a paediatric case series. *Eur. J. Nucl. Med. Mol. Imaging* 49, 313–320 (2022).
Guedj, E. *et al.* F-FDG brain PET hypometabolism in patients with long COVID. *Eur. J. Nucl. Med*
Imaging **48**, 2823–2833
-
- 80. Mortana, A. et al. Similar patterns of [F]-FDG brain PET hypometabolism in patentificative and adult patterns with long COVID: a paediatric case series. *Eur. J. Nucl. Med. Mol. Imaging* 49, 913–920 (2022).
81. Guedj, 81. Guedj, E. et al. F-FDG brain FET hypometabolism in patients with long COVID. Eur. 3. Mach. Med. Mol.
82. Martini, A. L. et al. Time-dependent recovery of brain hypometabolism in neuro-COVID-19 patients. *B*
83. Hosp, J Imaging 48, 2023–2033 (2021).

Martini, A. L. et al. Time-depend

Nucl. Med. Mol. Imaging 50, 90-

Hosp, J. A. et al. Cognitive impai

COVID-19. Brain 144, (2021).

Nouraeinejad, A. The functional

Neurol. Belg. 1–10 (2023 82. Martini, A. L. et al. Time-dependent recovery of brain hypometabolism in the arbo-COVID-19 patients. Eur. J.
83. Hosp, J. A. et al. Cognitive impairment and altered cerebral glucose metabolism in the subacute stage of
 Nucl. Med. Mol. Imaging 50, 50–102 (2022).
Hosp, J. A. *et al.* Cognitive impairment and all
COVID-19. *Brain* **144**, (2021).
Nouraeinejad, A. The functional and structur
Neurol. Belg. 1–10 (2023).
Investigating the pot
- 83. Hosp, J. A. et al. Cognitive impairment and altered cerebral glucose metabolism in the subacute stage of
COVID-19. Brain 144, (2021).
84. Nouraeinejad, A. The functional and structural changes in the hippocampus of COV COVID-19. Bram 144, (2021).
Nouraeinejad, A. The function
Neurol. Belg. 1–10 (2023).
Investigating the potential me 84. Nouraeinejad, A. The functional and structural changes in the impocampus of COVID-19 patients. Acta

Neurol. Belg. 1–10 (2023).

85. Investigating the potential mechanisms of depression induced-by COVID-19 infection in
- Neurol. Belg. 1–10 (2023).
Investigating the potential 85. Investigating the potential mechanisms of depression induced-by COVID-19 infection in patients. J. Clin.

-
- Neurosci. 31, 263–267 (2021).
Bayat, A.-H. *et al.* COVID-19 ca
hippocampus. Apoptosis **27**, 85
Borsini, A. *et al.* Neurogenesis
samples from hospitalized COV
(2022).
Piras, I. S. *et al.* Olfactory Bulb
medRxiv doi:10.11 86. Bayat, A. H. et al. COVID-19 causes neuronal degeneration and reduces neurogenesis in human
hippocampus. Apoptosis 27, 852 (2022).
88. Borsini, A. et al. Neurogenesis is disrupted in human hippocampal progenitor cells mppocampus. Apoptosis 27, 852 (2022).
Borsini, A. *et al.* Neurogenesis is disrupte
samples from hospitalized COVID-19 pati
(2022).
Piras, I. S. *et al.* Olfactory Bulb and Amyg
medRxiv doi:10.1101/2021.09.12.212632
Zhang, 87. Borsini, A. et al. Neurogenesis is disrupted in human imppocampal progenitor cells upon exposure to serum
samples from hospitalized COVID-19 patients with neurological symptoms. Mol. Psychiatry 27, 5049–5061
(2022).
88
- samples from hospitalized COVID-19 patients with neurological symptoms. Mol. Fsychiatry 27, 5049–5061
(2022).
Piras, I. S. et al. Olfactory Bulb and Amygdala Gene Expression Changes in Subjects Dying with COVID-19.
Zhang, (2022).
Piras, I.
*medRxi*i
Zhang, I.
followir
Abdalla
Stress **5**
Karl, A.
-
- 88. Piras, I. S. et al. Ondecory Bulb and Amygdala Gene Expression Changes in Subjects Dying with COVID-19.
88. Zhang, S. et al. Functional connectivity of amygdala subregions predicts vulnerability to depression
following medRxiv doi:10.1101/2021.09.12.21263291.

89. Zhang, S. et al. Functional connectivity of amygdala subregions predicts vulnerability to depression

following the COVID-19 pandemic. J. Affect. Disord. **297**, 421–429 (2022).
-
- 89. Zhang, S. et al. Functional connectivity of amygdala subregions predicts vulnerability to depression

89. Abdallah, C. G. Brain Networks Associated With COVID-19 Risk: Data From 3662 Participants. Chron

81. Karl, A. e following the COVID-19 pandemic. J. Affect. Disord. 297, 421–429 (2022).
Abdallah, C. G. Brain Networks Associated With COVID-19 Risk: Data From
Stress 5, (2021).
Karl, A. et al. A meta-analysis of structural brain abnorma 90. Abdallah, C. G. Brain Networks Associated With COVID-19 KISK. Data From 3662 Participants. Chronic Stress 5, (2021).
91. Karl, A. et al. A meta-analysis of structural brain abnormalities in PTSD. Neurosci. Biobehav. Re Stress 3, (2021).
Karl, A. *et al.* A m
(2006).
Dolan, R. J. The P
Soc. Lond. B Biol.
Pavlisa, G., Papa.
Coll. Antropol. 30
Spitzer, C. *et al.* I 91. Karl, A. et al. A meta-analysis of structural brain abnormalities in 1158. Neurosci. Biobehav. Rev. 30,
92. Dolan, R. J. The human amygdala and orbital prefrontal cortex in behavioural regulation. *Philos. Trat*
93. Pa (2008).
Dolan, F
Soc. Lor
Pavlisa,
Coll. An
Spitzer,
Anterio
Schulkir
- 92. Dolan, R. J. The human amygdala and orbital prefrontal cortex in Behavioural regulation. Primos. Trans. R.
93. Pavlisa, G., Papa, J., Pavić, L. & Pavlisa, G. Bilateral MR volumetry of the amygdala in chronic PTSD patie
- Soc. Lond. B Biol. Sci. 362, 787 (2007).
Pavlisa, G., Papa, J., Pavić, L. & Pavlisa,
Coll. Antropol. 30, (2006).
Spitzer, C. *et al.* Dissociation, Hemisph
Transcranial Magnetic Stimulation App
Anterior cerebral asymmetry 691. Antropol. 30, (2006).

94. Spitzer, C. et al. Dissociation, Hemispheric Asymmetry, and Dysfunction of Hemispheric Interaction: A

Transcranial Magnetic Stimulation Approach. *J. Neuropsychiatry Clin. Neurosci*. (2004) Coll. Antropol. 30, (2006).
Spitzer, C. *et al.* Dissociation
Transcranial Magnetic Stir
Anterior cerebral asymme
Schulkin, J. Angst and the
Olsson, A. & Phelps, E. A. Sarakani, A., Mathew, S. J
treatment. *Mt. Sinai J. Me*
-
-
- 97. Olsson, A. & Phelps, E. A. Social learning of fear. Nat. Neurosci. 10, (2007).
- 94. Spitzer, C. et al. Dissociation, Hemispheric Asymmetry, and Dystanction of Hemispheric Interaction. A
Transcranial Magnetic Stimulation Approach. J. Neuropsychiatry Clin. Neurosci. (2004).
95. Anterior cerebral asymmet Transcranial Magnetic Stimulation Approach. *J. Neuropsychiatry Clin. Neurosci*. (2004).

95. Anterior cerebral asymmetry and the nature of emotion. *Brain Cogn*. **20**, 125–151 (1992).

96. Schulkin, J. Angst and the amygd 95. Anterior cerebral asymmetry and the nature of emotion. Brain Cogn. 20, 125–151 (1992).
96. Schulkin, J. Angst and the amygdala. Dialogues Clin. Neurosci. 8, 407 (2006).
97. Olsson, A. & Phelps, E. A. Social learning of 98. Garakani, A., & Phelps, E. A. Social learning of fear. Nat. Neurosci. 10, (2007).
98. Garakani, A., Mathew, S. J. & Charney, D. S. Neurobiology of anxiety disord
treatment. *Mt. Sinai J. Med.* **73**, (2006). 198. Garakani, A., Garakani, A., Mathews, S. J. Andrew, S. Neurope, S. S. Neurope, A., S. Neurope, A., S. Neurope, T. treatment. Mt. Sinai J. Med. 73, (2006).

Supplementary Materials

Figure S1 - Whole brain functional connectivity matrices, based on the Harvard-Oxford atlas. For each timepoint, first all individual functional connectivity (FC) matrices were calculated by applying Fisher's r-to-z transformation, which were then averaged across participants. Panels a, b, c and d show the mean inter-ROI correlation matrices for pre-COVID (baseline), post-COVID and estimated FC_{delta}(i.e., the difference in FC values pre- and post-COVID-19), respectively.

Table S1 - COVID symptoms reported by COVID+ participants.

Note: Number of subjects and percentage (%) are reported for COVID+ participants.