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Abstract 

Coronavirus disease 2019 (COVID-19) has been associated with brain functional, structural, and cognitive 

changes that persist months after infection. Most studies of the neurologic outcomes related to COVID-19 

focus on severe infection and aging populations. Here, we investigated the neural activities underlying COVID-

19 related outcomes in a case-control study of mildly infected youth enrolled in a longitudinal study in 

Lombardy, Italy, a global hotspot of COVID-19. All participants (13 cases, 27 controls, mean age 24 years) 

completed resting state functional (fMRI), structural MRI, cognitive assessments (CANTAB spatial working 

memory) at baseline (pre-COVID) and follow-up (post-COVID). Using graph theory eigenvector centrality (EC) 

and data-driven statistical methods, we examined differences in ECdelta (i.e., the difference in EC values pre- and 

post-COVID-19) and volumetricdelta (i.e., the difference in cortical volume of cortical and subcortical areas pre- 

and post-COVID) between COVID-19 cases and controls. We found that ECdeltasignificantly between COVID-19 

and healthy participants in five brain regions; right intracalcarine cortex, right lingual gyrus, left hippocampus, 

left amygdala, left frontal orbital cortex. The left hippocampus showed a significant decrease in volumetricdelta 

between groups (p=0.041). The reduced ECdelta in the right amygdala associated with COVID-19 status mediated 

the association between COVID-19 and disrupted spatial working memory. Our results show persistent 

structural, functional and cognitive brain changes in key brain areas associated with olfaction and cognition. 

These results may guide treatment efforts to assess the longevity, reversibility and impact of the observed 

brain and cognitive changes following COVID-19. 

 

Keywords: resting-state fMRI; graph theory; eigenvector centrality; multimodal imaging; structural MRI; COVID-

19; spatial working memory; CANTAB.  
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Introduction 

SARS-CoV-2 infection claimed over 12.5 million lives worldwide resulting in the global COVID-19 pandemic with 

unique health, social and economic impacts
1
. Although primarily associated with respiratory symptoms, 

growing evidence suggests that COVID-19 is a multiorgan disease with impacts on the central nervous system, 

leading to various neurological outcomes such as headaches, anosmia, and altered cognition demonstrating the 

potential neurotoxic impact of the virus
2–4

. The underlying mechanisms through which COVID-19 impacts 

neural and cognitive functioning are not well established. 

Magnetic resonance imaging (MRI) may prove useful in understanding, detecting, and monitoring 

neurobiological mechanisms underpinning COVID-19 related brain changes. Several MRI studies have shown 

significant anatomical brain changes between COVID-19 patients and healthy controls
5–7

. Changes include 

reduced gray matter thickness and decreased cerebral volume; specific brain areas have been reported in 

patients recovered from mild and severe forms of COVID-19. Reduced volume in the orbitofrontal cortex, 

parahippocampal gyrus, hippocampus and amygdala are associated with COVID-19 positivity
2,5,6

 and, in several 

cases, with cognitive deficits
5,8

. Despite the many studies that investigate COVID-19 related structural brain 

changes, less is known about possible functional brain changes related to COVID-19. Resting-state fMRI (rs-

fMRI) observes spontaneous (task-independent) signal fluctuations to investigate functional alterations in 

cortical and subcortical brain areas. Here, we leverage anatomical and rs-fMRI to better understand neural 

mechanisms underlying COVID-19 related brain changes. Our multimodal study includes MRI scans from 

COVID-19 positive cases and controls data collected before and after the infection. 

While most studies of COVID-19 related brain and cognitive changes focus on severe infection or aged 

populations, most cases recorded worldwide were of mild to moderate illness in adolescents and young 

adults
8–11

. This population reported long-lasting symptoms including fatigue, headache, loss of concentration 

and memory problems
11

. Over 25% of mild COVID-19 cases reported visuoperceptual and visual organization 

deficits and linked these changes with structural brain alterations
8,10

. In particular, spatial working memory 

(SWM), a critical cognitive function involving the ability to store and manipulate spatial information in the short 

term, was impacted by mild COVID-19 in adolescents, young adults and adults
8,10

. Adolescence and young 

adulthood are key periods for brain growth and development
12–15

. Defining and strengthening of regional 

neurocircuitry and pathways between key brain areas such as amygdala, frontal lobe etc, is happening during 

adolescence. These brain areas play a crucial role in various cognitive and executive functions, including 

occipital, parietal and frontal lobes
12

. Further, adolescence and young adulthood are crucial periods for shaping 

behavior and interactions that rely on well-integrated cognitive mechanisms, executive and working memory 

functions
16–18

. These brain mechanisms are deeply shaped by social interactions that have been completely 

altered (i.e., social isolation and distancing) due to the COVID-19 pandemic. Thus, it is crucial to understand 

what are the implications of mild COVID-19 in adolescents and young adults which is the largest and 

understudied population of COVID-19 cases.  

In this longitudinal multimodal MRI study, we compare pre- and post- anatomical, functional and cognitive 

outcomes in  COVID-19 positive and healthy adolescents and young adults living in Lombardy, Italy, a global 

hotspot of COVID-19 during the pandemic.  
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Materials and Methods  

Participants 

The Public Health Impact of Metal Exposure (PHIME) study is a longitudinal cohort study of adolescents and 

young adults living in northern Italy. Details of the study have been described elsewhere
19,20

. Inclusion criteria 

were: birth in the areas of interest; family residence in Brescia for at least two generations; residence in the 

study areas since birth. The exclusion criteria were: having a neurological, hepatic, metabolic, endocrine or 

psychiatric disorder; having clinically diagnosed motor deficits or cognitive impairment and having visual 

deficits that are not adequately corrected. Detailed description of this recruitment process and study design 

can be found in previous publications
20,21

. Between 2016-2021, a convenience-based sample of 207 PHIME 

participants (53% female, ages 13-25 years) participated in a sub-study including multi-modal MRI scans and 

measures of memory and motor functions (Cambridge Neuropsychological Test Automated Battery 

(CANTAB))
22

. All participants satisfied the eligibility criteria for MRI scanning (i.e., no metal implants or 

shrapnel, claustrophobia, prior history of traumatic brain injury, and body mass index (BMI) ≤ 40). 202 

participants completed the MRI and CANTAB tests. These data serve as the baseline in our study.  

PHIME COVID-19 substudy 

Beginning in March 2021, we invited all 207 participants to an in-person follow-up study (PHIME COVID-19) 

involving repeated identical MRI protocol and cognitive assessment as  administered at baseline (PHIME study); 

40 (19%) agreed to participate. Of these 40 participants, 16 reported having been infected with SARS-CoV-2 

(COVID +) based on positive real-time reverse transcription polymerase chain reaction (RT-PCR) for SARS-CoV-2 

RNA detection that was performed on a nasopharyngeal swab sample at the time of diagnosis. Based on 

literature suggesting SARS-CoV-2 antibodies titers decrease after 12 months
23,24

, only participants with a 

positive RT-PCR test within 12 months of follow-up data acquisition were considered COVID + (Figure 1). Using 

these criteria, we identified 13 COVID+ and 27 COVID- subjects. Notably, four participants (1 COVID- and 3 

COVID+ subjects that were positive but outside the 12 months threshold used to define COVID-19 status) 

reported mild COVID-19 symptoms and were treated as COVID- (see Table 1). Additional serological screening 

was performed only on COVID+ participants (available on 13 participants over 16 infected with SARS-CoV-2; 

Figure 1), retrospectively. Serum samples were tested using Euroimmun (Anti-SARS-CoV-2-NCP ELISA (IgG), 

Order No. El 2606-9601-2 G) assay with 80% sensitivity and 99.8%
25

. Results reported in Figure 1 are based on a 

ratio of specimen absorbance reported to the cut-off value defined by the manufacturer. None of the COVID-19 

positive participants were hospitalized or suffered from pneumonia.  

Written informed consent was obtained from parents and young adults, participants < 18 years provided 

written assent. Study procedures were approved by the Institutional Review Board of the University of 

California, Santa Cruz and the ethical committees of the University of Brescia, and the Icahn School of Medicine 

at Mount Sinai.   
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Figure 1 - COVID+ group definition. PHIME COVID-19 participants were included in the COVID+ group based on: 1) a 

positive RT-PCR for SARS-CoV-2 RNA detection and, 2) time of diagnosis within 12 months of data acquisition. The relation 

between the ratio of anti-SARS-CoV-2-NCP (IgG) detected using an ELISA assay and the time between a positive RT-PCR and 

data acquisition is reported in the figure for each single positive PHIME COVID-19 participant (blue dot). Three COVID+ 

participants are not included in the figure since the ELISA test is not available. Black dotted line represents the 12 month 

cut-off used as threshold for participant inclusion in the COVID+ group. 

Neuropsychological assessment 

Trained neuropsychologists administered the standard Cambridge Neuropsychological Test Automated Battery 

(CANTAB)
22

 to assess domains of cognitive, memory and motor functioning. To test our hypothesis on the 

impact of COVID-19 on the brain and working memory functions, we used the CANTAB Spatial Working 

Memory (SWM) test. This test provides a comprehensive evaluation of an individual's ability to retain and 

manipulate spatial information in working memory. The SWM task detects frontal lobe activity and executive 

dysfunctions. The participants are shown different colored squares (boxes) on a screen and asked to identify 

yellow tokens within a box. Participants are instructed to search for tokens by opening boxes (touching each 

box on the screen) and advised to not return to the same box that already contained a token. These tokens are 

then used to automatically fill an empty column located on the right side of the screen. The complexity of the 

task gradually increases as the number of boxes to be searched reaches a maximum of twelve. To discourage 

the use of stereotypical search strategies, the color and position of the boxes are changed between trials. 

Several outcome measures are provided by SWM test, including error rates, instances of selecting empty boxes, 

revisiting boxes that already contain a token, as well as measures of strategy implementation and latency. 

Here, we focused on the “between error”, number of times that a participant selected a box that already 

contained a token, and "strategy", number of times that a participant selected a new and different box looking 

for a new token. Both variables are available for 39 participants who completed the CANTAB.  
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MRI and fMRI data acquisition 

Magnetic resonance imaging (MRI) and functional MRI (fMRI) data acquisition was performed on a high-

resolution 3-Tesla SIEMENS Skyra scanner using a 64-channel phased array head and neck coil, at the 

Neuroimaging Division of ASST Spedali Civili Hospital of Brescia. For each participant, a high-resolution 3D T1-

weighted structural scan was acquired using a MPRAGE sequence (TR =2400 ms, TE= 2.06 ms, TI=230 ms, 

acquisition matrix=256x256 and 224 sagittal slices with final voxel size=0.9 mm
3
). Fifty contiguous oblique-axial 

sections were used to cover the whole brain where the first four images were discarded to allow the 

magnetization to reach equilibrium. For each subject, a single 10-minute continuous functional sequence using 

a T2*weighted echo-planar imaging (EPI) sequence (TR=1000 ms, TE=27 ms, 70 axial slices, 2.1 mm thickness, 

matrix size 108x108, covering the brain from vertex to cerebellum) was acquired. During resting-state scans, 

lights of the MRI room were off and participants were instructed to stay awake, relax and daydream (not think 

about anything) with their eyes open. They were presented with an image of a night skyline figure projected on 

a MRI compatible monitor. Padding was used for comfort and reduction of head motion. Earplugs were used to 

reduce noise. Data were read by a board-certified radiologist to determine the quality and possible incidental 

findings - no findings were reported. 

MRI and fMRI data analyses 

Image pre-processing, eigenvector calculations, and statistical analyses were performed using FreeSurfer 

software (v7.1.1; https://surfer.nmr.mgh.harvard.edu/), SPM12 (Wellcome Department of Imaging 

Neuroscience, London, UK), Brain Connectivity toolbox 
26,27

 and customized scripts, implemented in MatLab 

2016b (The Mathworks Inc., Natick, Massachusetts) and R (v3.4). 

MRI processing and analysis 

T1-weighted scans were preprocessed using FreeSurfer to perform cortical and subcortical reconstruction and 

segmentation
28–31

. The standard cross-sectional pipeline available in Freesurfer v. 7.1.1 including intensity 

normalization, automated topology corrections, and automatic segmentation of cortical and subcortical brain 

areas was applied to each subject. Total intracranial volume (TIV) was also extracted
31

.  

fMRI Image preprocessing 

For each subject, the structural MRI was co-registered and normalized against the Montreal Neurological 

Institute (MNI) template and segmented to obtain white matter (WM), gray matter (GM) and cerebrospinal 

fluid (CSF) probability maps in the MNI space. FMRI data were spatially realigned, co-registered to the MNI-152 

EPI template and subsequently normalized utilizing the segmentation option for EPI images in SPM12. All 

normalized data were denoised using ICA-AROMA
32

. Additionally, spatial smoothing was applied (8 millimeters) 

to the fMRI data. As a further quality check of fMRI data, large head motion in any direction or rotation (> 3mm 

or 3°) was used as exclusion criteria in our study - no participants were excluded in this study. No global signal 

regression was applied.    

Based on the Harvard-Oxford
33

 atlas, 111 regions of interest (ROI; 48 left and 48 right cortical areas; 7 left and 7 

right subcortical regions and 1 brainstem) were defined. In the Harvard-Oxford atlas, brain areas were defined 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 23, 2023. ; https://doi.org/10.1101/2023.07.19.23292909doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.19.23292909
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

6 

using T1-weighted images of 21 healthy male and 16 healthy female subjects (ages 18-50). The T1-weighted 

images were segmented and affine-registered to MNI152 space using FLIRT (FSL), and the transforms were then 

applied to the individual brain areas’ labels. Finally, these were combined across subjects to form population 

probability maps for each ROI
33

. For each ROI, a time-series was extracted by averaging across voxels per time 

point. To facilitate statistical inference, data were “pre-whitened” by removing the estimated autocorrelation 

structure in a two-step generalized linear model (GLM) procedure
34,35

. In the first step, the raw data were 

filtered against 6 motion parameters (3 translations and 3 rotations). Using the resulting residuals, the 

autocorrelation structures present in the data were estimated using an Auto-Regressive model of order 1 

(AR(1)) and then removed from the raw data. Next, the realignment parameters, white matter (WM) and 

cerebrospinal fluid (CSF) signals were removed as confounders on the whitened data. 

Local and global functional connectivity analysis 

Eigenvector centrality mapping (ECM) is a measure to spatially characterize connectivity in functional brain 

imaging by attributing network properties to voxels
26,36–38

. The ECM method builds on the concept of 

eigenvector centrality, which characterizes functional networks active over time and attributes a voxel-wise 

centrality value to each ROI. Such a value is strictly dependent on the sum of centrality properties of the direct 

neighbor ROI within a functional network. In our study, fast ECM (fECM)
39

 toolbox was used to estimate voxel-

wise eigenvector centralities (EC) from the time course data extracted based on the Harvard-Oxford ROIs 

definition per subject. ECM is estimated from the adjacency matrix, which contains the pairwise correlation 

between the ROIs. To obtain a real-valued EC value, we added +1 to the values in the adjacency matrix. Several 

EC values can be attributed to an individual node by the ECM method
39

, but only the eigenvector with the 

highest eigenvalue (EV) will be used for further analyzes for each node. The highest EV values were averaged 

across subjects at group level. 

Functional connectivity (FC) was computed for each participant applying the pairwise temporal Pearson 

correlation between ROIs and a Fisher’s z-transformation. The ROI’s z-values were averaged across participants. 
The difference in median FC-values pre- and post-COVID-19 (FCdelta) is calculated and used to compare FC-

values between groups (COVID+ vs COVID-). 

Statistical analyses 

Descriptive statistics 

Pairwise Student t-tests with Welch’s correction for continuous variables were used to examine differences in 

clinical and demographic characteristics across the groups.  

Kolmogorov- Smirnov test was used to check the normality of the brain structural data and then, a linear 

regression was applied to adjust for sex, years between pre- and post-COVID scans and pre-COVID age. Pairwise 

Student t-tests were used to examine differences in brain structural metrics and TIV pre- and post-COVID-19 

between groups.  
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Permutation statistics 

We quantify possible functional hubs by comparing the ECdelta (i.e., the difference in EC values pre- and post-

COVID-19) values across groups using a family-wise error corrected (FWE) permutation test. Permuted labels 

based on group definitions (COVID + and COVID -) were repeated 1000 times per subject. Only ROIs with EC 

values that differ significantly were considered functional hubs. For both local and global functional 

connectivity analysis (EC and FC metrics), the FWE correction was applied for the number of group level 

comparisons and for the total number of ROIs analyzed. Linear regressions were applied to adjust for sex, years 

between pre- and post-COVID scans, and pre-COVID age. Only p-values adjusted and FWE corrected are 

reported. 

Mediation analysis 

To test the mediating role of brain metrics between COVID-19 and spatial working memory accounting for the 

longitudinal design of the study, a two-waves mediation analysis was applied (Figure 1, panel B)
40,41

. This 

extension of the traditional mediation analysis (Figure 1, panel A) accounts for longitudinal mediated effects of 

data
40

. A linear regression model was applied to test the effect of COVID-19 on the logit-transformed mediator 

(each brain area) measured at the second visit and adjusted for the baseline measurement. A negative binomial 

and a linear regression were considered for the full models where the between errors and the strategy scores 

(representing the SWM metrics) were considered as outcomes, respectively. Only brain areas identified as hubs 

in the permutation analysis and with significant association with COVID-19 were included in this analysis. 

Models were adjusted for sex, years between pre- and post-COVID scans and pre-COVID age. The statistical 

significance level was set to 5% and all tests were two-sided. Statistical analyses were performed using R 

(Version 4.3.1), the mediation analysis was conducted using the mediation
42

 R package (Version 4.5.0). 

 

Figure 2 - Schematic depicting mediation models used. A. Classical mediation and regression models. The objective of the media

analysis was to determine if the indirect effect (path a*b) was different from zero, suggesting that the mediating variable (i.e., br

ation 

rain 
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metrics) altered the strength of the relationship between X and Y (i.e., COVID-19 status and spatial working memory metrics). Three 

linear regression equations were used to assess the mediation in the traditional cross sectional experimental design: Y regressed on X, 

M regressed on X, and Y regressed on both X and M . The letters a, b, c, and c’ refer to the regression coefficient estimates for each 

respective model, with e representing the error term. B. Given the longitudinal design of our study, we extended the traditional 

mediation analysis presented in panel A using a pre- and post-test control group design. Diagram includes: the pre-test covariance 

between mediator (Mpre) and dependent variable (Ypre), σMpreYpre; the effect of the mediator measured pre-COVID (Mpre) on the 

mediator measured post-COVID (Mpost) (stability of mediator sMpreMpost); effect of the outcome measured pre-COVID (Ypre) on the 

outcome measured post-COVID (Ypost) (stability of outcome sYpreYpost); the effect of Mpre on Ypost (cross-lagged relation, bMpreYpost); the 

effect of X on Mpost, aMpostX; the effect of X on Ypost, c’YpostX ;and the effect of Mpost on Ypost, bMpostYpost. 

Results 

Demographic characteristics 

Table 1 reports the clinical and demographic characteristics of the 40 COVID-PHIME participants included in this 

study stratified by COVID-19 status; positive (COVID +) and negative (COVID -). Participants were adolescents or 

young adults at the time of the first imaging data acquisition (20.44 ± 2.5 years) and the majority were females 

(65%). Years between pre- and post-COVID assessments, COVID symptoms and vaccine status significantly 

differ between groups. A complete overview of COVID symptoms reported by COVID+ participants can be 

found in Supplementary Materials (Table S1).  

Table 1 - Sociodemographic and clinical characteristics of PHIME-COVID participants who were selected for the current 

study (N=40).  
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Note: Mean, standard deviation (sd), range (minimum and maximum values), and percentage (%) are reported. P-values 

were derived using Student’s t-tests and Wilcoxon rank sum test for continuous variables (if the variable was normally 

distributed or not, respectively) and  tests for categorical variables to assess the differences between COVID+ and 

COVID-. 

*COVID-PHIME participants reported mild-COVID symptoms. These participants reported symptoms outside of the 12 

months threshold used to define COVID positivity.  

Structural and functional differences between COVID+ and COVID- 

 

EC values in permutation tests (COVID+ vs. COVID-) revealed five functional hubs where ECdelta values differed 

significantly between COVID+ and COVID- groups including: right intracalcarine cortex, right lingual gyrus, left 

hippocampus, left amygdala, and left frontal orbital cortex (Table 2, Figure 3A and 3B). 
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Figure 3 - Functional hubs differ in ECdelta between COVID+ and COVID- participants. Panel A reports the identified ROI for 

which ECdelta (differences in eigenvector centrality (EC) between pre- and post-COVID) differed significantly between PHIME 

participants with and without COVID-19 (i.e., functional hubs). Panel B reports the average ECdelta values for each functional 

hub identified. Blue bars indicate EC values of COVID+ participants, while orange bars indicate COVID- participants.  

 

 

Table 2 - Statistical differences in ECdelta values between COVID+ and COVID- participants. 

 

Table 2 reports the full name of the brain regions interest (ROIs), ROI’s hemisphere, ROI’s abbreviation and p-values of the 

identified ROIs for which ECdelta differed significantly between PHIME participants with and without COVID-19 (i.e., 

functional hubs). Only p-values FWE corrected, adjusted for sex, years between scans and age at the first visit (pre-COVID) 

are reported. 

 

 

For brain areas identified as functional hubs, structural differences between groups were investigated using 

volumetric values adjusted for TIV (Table 3, Figure 4). Only the left hippocampal volume was reduced in 

COVID+ compared to healthy participants (p=0.034, Table 4).  

We also compared whole brain connectivity between COVID+ and healthy participants by plotting the averaged 

FC scores across all ROIs pre- and post-COVID and the difference in functional connectivity metric between pre- 

and post-COVID (Figure S1, supplementary material). No significant differences were found (FCdelta p= 0.786).  
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Figure 4 - Volumetric difference in the hippocampus between COVID+ and COVID- participants. The left hippocampal 

Volumetricdelta (difference in volumetric metrics between pre- and post-COVID) statistically differs between PHIME 

participants with and without COVID-19. The blue box indicates volumetric values of COVID+ participants, while the orange 

box indicates volumetric values of COVID- participants. Black lines indicate the median value.   

 

 

Table 3 - Statistical differences in Volumetricdelta between COVID+ and COVID- participants.  

 

Table 3 reports the statistical differences in Volumetricdelta (difference in volumetric metrics between pre- and post-COVID) 

between PHIME participants with and without COVID-19. Only brain areas that are previously identified as functional hubs 

(i.e., brain areas for which ECdelta differed significantly between PHIME participants with and without COVID-19) are 

included in this analysis. The table reports the full name of the brain regions interest (ROIs), ROI’s hemisphere and p-values. 

Only p-values adjusted for sex, years between scans, age at the first visit (pre-COVID) and total intracranial volume are 

reported. 
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Mediation analysis 

 

We observed significant associations between COVID-19 status and brain metrics in only one of the five 

functional hubs; the left amygdala (p-values for interaction= 0.032). Mediation analyses were performed to 

quantify possible indirect effects of the brain on the association between COVID-19 and spatial working 

memory in the functional hubs significantly associated with COVID-19. Results indicate that the left amygdala 

mediated the association between COVID-19 and SWM "between errors" (p-values for indirect effect= 0.028). 

No significant associations were found for SWM "strategy" SWM. 

Table 4 – Two-waves mediation analysis of the effect of COVID-19 on the cognitive scores (between errors and strategy 

metric obtained from SWM test) considering the brain area selected as functional hub (EC values) as mediators. 

 

Two-waves mediation analysis performed to assess the direct, indirect and total effects of COVID-19 on SWM. EC brain 

values at baseline (pre-COVID), sex, years between pre- and post-COVID scans, pre-COVID age and SWM at baseline were 

used as covariates in the models. Only brain areas identified as hubs in permutation analyzes were entered as outcomes in 

this analysis. Then mediation analyses were performed using a pre-post test design. The moderating effects of brain metrics 

(eigenvector centrality value of a single brain area defined using the Harvard-Oxford atlas between COVID-19 and cognitive 

domains, in this case SWM.  
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Discussion  

Leveraging an ongoing longitudinal study of adolescents and young adults in Lombardy, we used MRI, rs-fMRI 

and cognitive data to investigate local connectivity and structural differences associated with mild COVID-19. 

We identified connectivity differences in five cortical and subcortical brain areas between participants with and 

without mild SARS-CoV-2 infection. Additionally, we observed reduced volume in the left hippocampus of 

COVID+ compared to COVID- subjects. We observed a significant association between mild SARS-CoV-2 

infection and functional metrics in one subcortical brain area, the left amygdala. Previous literature linked 

COVID-19 to structural and functional brain changes and cognitive deficits
6,43–45

. Our results suggest that 

decreased functional connectivity in the amygdala competitively mediated the COVID-19 associated disruption 

in cognitive function, specifically spatial working memory. These results add to the previous literature 

documenting structural and cognitive changes associated with COVID-19 and further contribute to our 

understanding of the neurobiological underpinnings of mild COVID-19 in adolescents and young adults.  

One out of four mild COVID-19 subjects reported persistent deficits in higher cognitive functions like 

concentration, memory, visuospatial and visuoconstructive abilities
10,46

. Our study focused on the spatial 

working memory (SWM), a critical cognitive function that involves the capacity to store and manipulate spatial 

information in the short term. Studies suggest SWM is impacted by COVID-19
8,10

 and linked with brain 

changes
8
. Our results suggest functional connectivity in one key area for cognitive functions, the amygdala, 

competitively mediates the association between COVID-19 positivity and SWM (Table 4), as only the indirect 

effect is statistically significant
47–49

. The amygdala is involved in the integration, interpretation, and storage of 

the visual information perceived, as well as in short memory and executive functions
50

. Our results are 

consistent with previous studies reporting deficits in several cognitive functions, including visual and verbal 

domain of short term memory, attention and memory associated with COVID-19
8,51–53

. Future studies are 

needed to comprehensively understand the impact of COVID-19 on cognitive functions that are key for 

everyday life activities (i.e., movement planning, driving, etc.) and their link with the underlying neural 

mechanisms. 

 

No significant overall functional connectivity disruption nor brain volume reduction were observed among 

participants who tested positive for SARS-CoV-2 infections (Figure S1). These results align with previous studies 

in non-hospitalized elderly populations
5,8,46,54,55

 suggesting that mild COVID-19 may impact specific brain 

cortical and subcortical areas rather than the whole-brain, regardless of the age at diagnosis.  

 

Combining rs-fMRI data together with a graph-theory based method, we identified five functional hubs -  the 

right intracalcarine cortex, the right lingual gyrus, the left frontal orbital cortex, the left hippocampus and left 

amygdala. Notably, three of these functional hubs, frontal orbital cortex, hippocampus and amygdala, undergo 

significant growth, maturation and connectivity changes across adolescence and young adulthood
56

. Located in 

the primary visual cortex, the intracalcarine cortex and lingual gyrus process, integrate and interpret the visual 

stimuli
57,58

. Connected with subcortical areas such as the hippocampus and amygdala, these areas are involved 

in the perceptual learning and recognition of complex, non-conscious visuospatial sequences, visual memory 

and memory performance
59–61

. Altered connectivity between these cortical areas and the hippocampus have 

previously been associated with poor recollection, memory performance
62,63

 and cognitive decline
64,65,66

. We 

observed increased functional connectivity in the intracalcarine cortex and lingual gyrus together with 

unbalanced connectivity coupling with subcortical areas combined with poor SWM functions only in the 

positive COVID-19 group (Figure 3b, Table 2). Our findings are in line with previous studies reported in 

structural and functional alterations in lingual gyrus and intracalcarine cortex throughout different phases of 

SARS-CoV-2 infection
8,67–70

 and further support the role of these areas in low-level perceptual learning and 

memory performance.  
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Beside containing the secondary taste and olfactory areas, the orbitofrontal cortex plays a key role receiving 

and integrating sensory information (i.e., smell, taste and visual) and in different cognitive functions (i.e., 

attention, emotional and social behavior, decision making and conflict-error monitoring)
71–73

, which have been 

highly impaired in COVID-19 subjects. Highly connected with temporal lobe areas (i.e. amygdala, hippocampus 

and entorhinal cortex) and with other cortical regions like the cingulate cortex, the orbitofrontal cortex has 

been indicated as one of the main brain areas involved in the neuroinvasive pathway of SARS-CoV-2 infection
74–

77
. Decreased functional connectivity observed in this areas only in the positive COVID-19 group (Figure 3b, 

Table 2) further support this theory together with previous studies that identified structural, functional, and 

metabolic changes in the orbitofrontal regions in individuals with acute, mild and long-term COVID-19, 

spanning different age groups and including both hospitalized and non-hospitalized participants
5,78–83

. Future 

studies should further investigate this neuroinvasive pathway of SARS-CoV-2 by including additional olfactory 

structures (i.e., olfactory bulbs) and detailed symptoms report.   

 

Two out of the five identified functional hubs were located in the subcortical brain structures (Figure 3). Closely 

connected with olfactory bulbs and orbitofrontal areas, the left amygdala is the only brain area showing a 

significant association with COVID-19 positivity and hypo-connectivity among the COVID+ group defined as 

decreased functional connectivity (Figure 3b, Table 2). Further, we found structural and functional changes in 

the left hippocampus positively associated with COVID-19 status (Figure 3, 4; Table 2,3). Interestingly, only this 

subcortical brain area shows a significantly reduced cortical volume in our COVID+ group. Linked with cognitive, 

spatial and working memory functions as well as learning, hippocampal areas have been severely impacted by 

COVID-19 leading to alterations in its cortical volume, microstructure and functional connectivity
56,84–87

 across 

different age groups and COVID-19 phases.  

 

Our findings are in line with previous studies that have reported structural and functional alterations in 

amygdala and hippocampus throughout different phases of SARS-CoV-2 infection and among populations
5,45,88–

90
 that faced unique social stressors (i.e., social isolation, lockdown), during COVID-19 pandemic. However, it is 

still unclear if these brain changes are due to SARS-CoV-2 infection or to the psychosocial stressors experienced 

during COVID-19 pandemic triggering resilience effects
10

. Both amygdala and hippocampal areas are key in 

predicting vulnerability and resilience to stress-related disorders like post-traumatic stress disorder (PTSD)
91–93

. 

These areas are also heavily involved in personality, emotional, and behavioral regulation
94,95

, fear processing 

and fear conditioning
96,97

, and the formation of memories related to stressful events
98

. Future studies should 

include stress metrics to understand  the involvement of amygdala and hippocampus in psychosocial stress 

responses, shedding light on their potential as neural basis for individual variations in stress reactivity, 

vulnerability
89

 and predisposition to stress-related disorders in adolescents and young adults.  

Our work identified specific cortical and subcortical brain areas affected by mild COVID-19 in adolescent and 

young adults, achieved through the use of rs-fMRI, MRI, and cognitive data using a reliable functional-

connectivity based approach. A notable strength of our research is the availability of baseline imaging and 

cognitive tests conducted before and after infection. By leveraging the longitudinal nature of our multi-modal 

study, which includes high quality pre- and post-morbidity imaging and cognitive assessments, we were able to 

assess the impact of the COVID-19 pandemic in the adolescent and young adult population. Moreover, we 

employed graph-based network metrics derived from rs-fMRI to investigate alterations in both brain and 

cognitive functions resulting from mild COVID-19. These metrics offer the advantage of being unconstrained by 

prior seed selection of hypothesis-driven approaches, thus proving a comprehensive and unbiased assessment 

of the observed brain changes. 

Limitations of our study design include the small sample size and lack of an external control group outside the 

PHIME cohort. Our small sample size prohibited seeing total effects of COVID-19 on SWM metric that might be 
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attenuated by the negative no-significant direct effect of COVID-19 on SWM metric estimated. A larger sample 

size might improve statistical power and allow us to identify additional functional and structural brain areas 

associated with COVID-19 as well as a direct effect of COVID-19 on cognitive metrics. In addition, our cohort 

lacks diversity and consisted only of white participants aged between 13-25 years, meaning that the findings 

cannot be generalized to other populations. While it would be beneficial to repeat our analysis in a larger 

dataset, there is no such dataset that includes multi-modal imaging, cognitive and COVID-19 symptomatology 

collected in Italy, specifically, in the global hotspot of COVID-19. In addition, the average time interval between 

MRI scans is long (˜3 years) in comparison to the average time between documented infections and the second 

MRI scan (12 months at maximum). The relatively long time between MRI studies increases the potential for 

confounding factors, such as age-related changes in functional or cognitive functions. An additional longer-term 

follow-up study will assess the reversibility of the observed post-infectious changes and disentangle them from 

the above mentioned confounding variables. On the basis of the study frame, SARS-CoV-2 infections among 

participants were presumably caused by one of the many SARS-CoV-2 variants (alpha, beta or gamma). Further 

analysis of these data, including correlation with olfactory symptoms could provide more insight into the 

vulnerability of subgroups.  

To conclude, this is a multimodal longitudinal case-control study using cognitive assessment, rs-fMRI and MRI 

data to provide novel insights into the underlying neural and cognitive mechanisms of adolescents and young 

adults living in a global hotspot of COVID-19 during the pandemic. Our results show persistent functional and 

structural changes in specific brain areas in participants COVID-19 positive. These changes involved gray matter 

volume and FC connectivity in cortical and subcortical areas previously shown to be associated with mild and 

severe COVID-19. These changes are associated with COVID-19 status, as well as with a drop in cognitive 

functions, in particular SWM metrics. Future studies to assess the longevity and reversibility of the observed 

brain and cognitive changes following  infections are still needed to advance our understanding in future 

development of post-COVID infection and to help intervention and treatment.  
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Supplementary Materials 

 

 

Figure S1 - Whole brain functional connectivity matrices, based on the Harvard-Oxford atlas. For each 

timepoint, first all individual functional connectivity (FC) matrices were calculated by applying Fisher's r-to-z 

transformation, which were then averaged across participants. Panels a, b, c and d show the mean inter-ROI 

correlation matrices for pre-COVID (baseline), post-COVID and estimated FCdelta(i.e., the difference in FC values 

pre- and post-COVID-19), respectively.  
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Table S1 - COVID symptoms reported by COVID+ participants.  

 

Note: Number of subjects and percentage (%) are reported for COVID+ participants. 
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