Abstract
Introduction Behavioral health conditions (BHC) can reduce service member retention. This analysis sought to identify demographic and diagnostic factors among BHC care-seeking Active-Duty United States Coast Guard (ADCG) that were predictive of discharge before completion of obligated service.
Methods A four-year retrospective cohort study of ADCG personnel was conducted. Five machine-learning (ML) algorithms and logistic regression were applied to data on ADCG who sought outpatient care for BHC in 2016. Covariates examined as possible mediators of early service termination included diagnosis group, gender, rank grouping, and race.
Results Only 26.4 of every 1,000 members who sought BHC care did not complete their service obligation. Diagnosis group did not predict early service termination, whereas senior enlisted rank was associated with early termination. The ML algorithms best predictive of early discharge from service were bagging classifier and decision tree classifier. Logistic regression performed as well as the two leading algorithms.
Conclusions Specific ML models can be used to identify personnel groups at risk for early separation, such as senior enlisted personnel. Traditional epidemiologic methods demonstrate value in predicting service member separation.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study was funded by the United States Government.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Institutional Review Board of United States Coast Guard waived ethical approval for this work.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data availability statement
The source data is not publicly available.