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Abstract 21 

Introduction: United States’ jurisdictions implemented varied policies to slow SARS-CoV-2 transmission. 22 

Understanding patterns of these policies alongside individual’s behaviors can inform effective outbreak 23 

response. 24 

Methods: We estimated the time-varying reproduction number (Rt), a weekly measure of real-time 25 

transmission using US COVID-19 reported cases from September 2020-November 2021. Using two multi-26 

level regression models, we then assessed the association between Rt and policies, personal COVID-19 27 

mitigation behaviors, variants, immunity, and social vulnerability indicators. First, we fit a model with 28 

state-level policy stringency according to the Oxford Stringency Index (OSI), a composite indicator 29 

reflecting the strictness of COVID-19 policies and strength of pandemic-related communication. Our 30 

second model included a subset of specific policies. 31 

Results: Implementation of stringent observed policies (defined by OSI) was associated with an Rt 32 

reduction of 6.7- 11.6% (95% Credible Interval [CI]). In the Individual Policy Model, mask mandates had a 33 

null association with Rt (95% CI: -1.5-0.2%), while other policies were associated with modest 34 

reductions: cancellation of public events 95% CI: 1.4-3.7%; restrictions on gathering sizes 95% CI: 0.1-35 

2.2%; stay-at-home orders 95% CI: 0.3-4.8%. The association between Rt and other covariates was 36 

similar in both models. Among personal COVID-19 mitigation behaviors in the OSI Model, Rt was 37 

estimated to decrease 18%-26% (95% CI) with a 50% reduction in national airline travel, 2.4-3.3% (95% 38 

CI) with a 10% reduction in local movement to recreation and retail locations, and 12-15% (95% CI) with 39 

self-reported mask use of 50%. Increased COVID-19 seroprevalence and vaccination were both 40 

associated with reduced Rt, 28-32% (95% CI) and 20-23% (95% CI) reductions, if half of people had been 41 

previously infected or fully vaccinated, respectively in the OSI Model. 42 
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Conclusion: SARS-CoV-2 transmission was reduced by layered measures. These results underscore the 43 

need for policy, behavior change, and risk communication integration to reduce virus transmission 44 

during epidemics. 45 

 46 

Key messages 47 

What is already known on this topic: When the United States responded to the COVID-19 outbreak, 48 

jurisdictions took varied approaches to balance economic well-being with health and safety. Yet, the 49 

impact of the pandemic was large - millions of people were infected and over a million people died – and 50 

the relative roles of policies, policy-independent behavior change, and other factors remains unclear.  51 

What this study adds: A retrospective analysis of policy implementation and SARS-CoV-2 transmission 52 

dynamics over a year and a half indicated that social behavioral change was critical for limiting 53 

transmission prior to increases in immunity due to infection and vaccination.  54 

How this study might affect research, practice or policy: While policies contributed to slowing the spread 55 

of COVID-19, the largest impact on transmission early in the pandemic was due to individual behavior 56 

change, highlighting the importance of identifying and communicating effective control practices 57 

regardless of specific policies. 58 

  59 
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Main Text 60 

Introduction 61 

As SARS-CoV-2 began to spread in early 2020, there was limited knowledge about transmission 62 

dynamics and uncertainty regarding the most effective mitigation tools and how to best implement 63 

them. Governments began to implement travel restrictions and stay-at-home orders to reduce contact 64 

between individuals. These non-pharmaceutical intervention (NPI) policies rapidly evolved and 65 

eventually encompassed a diverse range of strategies. NPI policies, such as stay-at-home orders, closure 66 

of public facilities, limiting gathering size, and closing schools or universities, and their combinations 67 

indeed slowed SARS-CoV-2 spread during the early pandemic phase [1–3]. While NPI policies, 68 

particularly those targeting containment of the virus, were markedly successful at reducing transmission 69 

opportunities, several exogenous factors also played important roles.   70 

  71 

Social structure dramatically affects how people interact and cannot be ignored in disease dynamics. 72 

Within the United States (US), physical distancing by staying home from work was a policy option 73 

available to more wealthy and White individuals rather than frontline, essential worker populations [4], 74 

who are more likely to have a lower socioeconomic status and belong to racial minoritized communities 75 

[5,6]. Additionally, SARS-CoV-2 testing sites may have been disproportionately available in areas that 76 

had a greater proportion of White residents [7–9]. In other words, the opportunity to know one’s 77 

infection status and limit interactions with others, if necessary, was only available to a privileged subset 78 

of the population. Moreover, weather added further complexity to these dynamics. For example, SARS-79 

CoV-2 transmission may decrease as temperature and specific humidity increases [10]; potentially 80 

weakening the viral envelope [11] and impacting when people spend time indoors, i.e., conditions more 81 

favorable to viral transmission. Whether COVID-19 mitigation policies effectively reduced transmission 82 
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thus requires an assessment within the larger context of behavior, social factors, and weather 83 

conditions. 84 

  85 

COVID-19 mitigation policies are broadly accepted in the literature as successfully reducing SARS-CoV-2 86 

transmission. However, the relative contribution of policy over long periods of time, while accounting 87 

for exogenous factors that also drive transmission, is unknown. Disentangling competing drivers of US 88 

SARS-CoV-2 dynamics over time can highlight opportunities to improve future public health outbreak 89 

responses. US COVID-19 mitigation policies were diverse and heterogeneously implemented [12]. 90 

Additionally, the 55 million cases and over 820,000 deaths reported by December 31, 2021 [13], were 91 

spatially patterned by existing demographics and health disparities across jurisdictions. Given these 92 

patterns, we seek to understand the relative impact of COVID-19 mitigation policies on US SARS-CoV-2 93 

transmission as both the pandemic and pandemic response evolved. 94 

  95 

Methods 96 

We conducted an ecological assessment of jurisdictional-level SARS-CoV-2 transmission in the US. The 97 

analysis period (64 weeks; September 6, 2020, to November 27, 2021) and the fifty-one jurisdictions (all 98 

US states and the District of Columbia; DC) analysed were selected for data availability. 99 

  100 

COVID-19 Time-varying Reproduction Number Estimation: We estimated Rt, a weekly measure of real-101 

time transmission, using COVID-19 cases reported to the Centers for Disease Control and Prevention 102 

(CDC). Onset dates were back-projected from case report dates using time-specific delays; infection 103 

dates were sampled using a log-normal distribution for the incubation periods (log mean = 1.63 and log 104 
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standard deviation = 0.5 based on published data [14]). For each trajectory, we estimated Rt using the 105 

methods described in Cori et al. [15]. We used a 7-day window and an uncertain serial interval (SI) 106 

(mean: 5 days, standard deviation: 1 day), with 5 samples from the SI distribution and 5 samples of the 107 

Rt posterior for each SI value [16]. We generated 250 Rt samples for each time point and jurisdiction and 108 

used the mean estimate on each Wednesday for this analysis. 109 

  110 

Covariate data: We included data on mitigation policies [17], personal mitigation behaviors [18,19], key 111 

variants circulation [20], weather [21,22], immunity indicators [23,24], and vulnerability indicators [25]. 112 

Standardized policy data were obtained from the Oxford COVID-19 Government Response Tracker [17]. 113 

The dataset includes a composite indicator, the Oxford Stringency Index (OSI), which reflects the overall 114 

strictness of COVID-19 policies and strength of pandemic-related communication, as well as individual 115 

policies. All data are described in the Supplemental Text. Descriptive statistics to inform model building 116 

are shown in Supplemental Figures 1-5. We assessed correlation between covariates by estimating the 117 

median pairwise R2 with bivariate regression models (see Supplemental Figure 1). 118 

  119 

Analytical Approach: We assessed the association between Rt and selected determinants with Bayesian 120 

Gaussian multi-level regression models, using a log-link function and jurisdiction- and time-specific 121 

intercepts. We assessed two models. The first focused on general government response, using the OSI, a 122 

composite indicator of several different policies and communication strategies. Because we were also 123 

interested in the individual impacts of some of the specific policies , we built a second model that 124 

omitted the general OSI variable and included only a few specific policies that are components of OSI. 125 

The second model included four individual policies: cancelation of public events, restrictions on 126 
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gathering sizes, stay-at-home orders, and mask mandates. Both models were adjusted for the 127 

aforementioned covariates, which were selected for inclusion because of their a priori relationships with 128 

COVID-19 transmission (see Supplemental Text for model statements, samples run, and information 129 

about priors). Model convergence was assessed using the Gelman-Rubin convergence diagnostic (𝑅𝑅�) and 130 

model fit was evaluated from the predictive posteriors. Jurisdiction-specific results for the OSI model are 131 

presented in Supplemental Figure 6. 132 

  133 

We conducted several sensitivity analyses. First, we compared these models to the same two models 134 

with naïve priors via leave-one-out (LOO) cross-validation [26] (Supplemental Figures 7) and compared 135 

models with different structures for temporal correlation (Supplemental Figure 8). Second, we re-ran 136 

the primary models using publicly available Rt estimates from the Centre for Mathematical Modeling of 137 

Infectious Diseases COVID modelling group [27] and compared the model results to those presented 138 

here (Supplemental Figure 9). Third, we re-ran the individual policy model without the behavior 139 

covariates (Supplemental Figure 10). 140 

  141 

Analyses were conducted using R (version 4.2.1), with the rstanarm package used for primary analyses. 142 

R code is available in a public repository (https://github.com/cdcepi/COVID-19-Mitigation_Rt). 143 

  144 
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This activity was reviewed by CDC to be deemed not human subject research and therefore a human 145 

subject review was not required. The study was conducted consistent with applicable federal law and 146 

CDC policy§. 147 

  148 

Results 149 

Rt estimates exhibited spatiotemporal variability between September 2020 and November 2021 (Figure 150 

1). All jurisdictions experienced sustained transmission increases (Rt > 1) in late 2020, followed by a 151 

period of fluctuations until the summer 2021 Delta wave when many had their highest Rt estimates. Rt 152 

dynamics differed substantially between jurisdictions, such as transmission timing and rate increases in 153 

late 2020 during the Alpha wave. The lowest mean estimated Rt over this period was for Vermont in 154 

May 2021 (Rt=0.66) and the highest value was for DC in November 2021 (Rt=1.62). 155 

  156 

All individual policies exhibited spatiotemporal variability (Figure 1) and moderate correlation 157 

(maximum: 0.47, Supplemental Figure 1B). Overall, stringency of mitigation policies dipped slightly in 158 

October 2020 and decreased substantially between March and June 2021 (Figure 2A). Jurisdictional 159 

variation in policy stringency persisted, with the lowest median value in South Dakota (0.09; range: 0.06-160 

0.21) and the highest median value in Hawaii (0.66; range: 0.44-0.76). 161 

  162 

 

§ See e.g., 45 C.F.R. part 46, 21 C.F.R. part 56; 42 U.S.C. §241(d); 5 U.S.C. §552a; 44 U.S.C. §3501 et seq. 

 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for thisthis version posted September 26, 2024. ; https://doi.org/10.1101/2023.07.19.23292882doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.19.23292882


 

 

9 

 

Personal COVID-19 mitigation behaviors also varied over time and space (Figure 2A). Reductions in 163 

national airline travel and individual mobility showed similar patterns over time, though individual 164 

mobility also varied by jurisdiction. Reductions in both were substantial and relatively static until March 165 

2021. In August 2021, all three behavior indicators increased, with new reductions in national airline 166 

travel and local mobility, as well as increased reported mask use (Figure 2A). The increased personal 167 

mitigation behaviors in August 2021 coincided with the rapid increase in prevalence of the Delta variant 168 

(Figure 2A, Supplemental Figure 1A). Expansion of the Alpha variant in early 2021 was generally slower, 169 

more heterogeneous, and not correlated with increased mitigation behavior. 170 

  171 

There was high heterogeneity in jurisdictional SARS-CoV-2 seroprevalence. By the end of November 172 

2022, seroprevalence ranged from 0.10 in Vermont to 0.46 in Wyoming (Figure 2A). The proportion of 173 

the population that was fully vaccinated with an initial vaccine series increased across all jurisdictions 174 

beginning with the vaccination distribution in early 2021 and ranged from 0.47 (Alabama) to 0.75 175 

(Vermont) at the end of November 2021. 176 

  177 

The average of the five Community COVID-19 Vulnerability Index (CCVI) indicators showed higher 178 

vulnerability in southern jurisdictions (Figure 2B). 179 

  180 

We fitted two regression models to assess the relationship of these factors with Rt dynamics: the OSI 181 

Model and the Individual Policy Model. For both models, we assessed alternative spatiotemporal model 182 

structures and found that a model with independent random effects for time and state provided the 183 
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best fit (see Supplement 8). With moderate values for CCVI indicators (0.5 each) and temperature 184 

(12°C), estimated Rt in the absence of mitigation (i.e., the fixed effect intercept) was 2.2 for the OSI 185 

Model (95% Credible Interval [CI]: 2.0-2.5) and 2.5 (95% CI 1.9-3.4) for the policy model. 186 

  187 

Overall stringency, some of the specific individual policies, each behavioral component, and both 188 

immunity indicators were associated with decreased Rt (Figure 3). Implementation of the strictest 189 

policies observed in the US relative to least strict policy implementation decreased Rt by 9.2% (95% CI: 190 

6.7- 11.6%). Within the individual policies model, cancellation of public events decreased Rt by 2.6% 191 

(95% CI: 1.4-3.7%), restrictions on gathering sizes by 1.2% (95% CI: 0.1-2.2%), and stay-at-home orders 192 

by 2.6% (95% CI: 0.3-4.8%). Mask mandates had a mean estimate corresponding to a 0.7% reduction in 193 

Rt but did not reach statistical significance (95% CI: -1.5-0.2%). Strong associations were also observed 194 

for personal mitigation behaviors in both models. For the OSI Model, Rt decreased by 22% (95% CI: 18%-195 

26%) if there were a 50% reduction in national airline travel, 2.9% (95% CI: 2.4-3.3%) if local movement 196 

to recreation and retail locations decreased by 10%, and 14% (95% CI: 12-15%) if self-reported mask use 197 

reached 50%. Seroprevalence and vaccination were both associated with reduced Rt - a 30% (95% CI: 28-198 

32%) and 22% (95% CI: 20-23%) estimated reduction if half the population had been previously infected 199 

or fully vaccinated, respectively.  200 

 201 

Community vulnerability also played an important role in transmission. Both population density and a 202 

community’s racial and ethnicity diversity level were associated with increases in Rt (Figure 3). However, 203 

the level of policy stringency needed to reduce Rt to less than 1 differed within each of these groups. For 204 
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example, in jurisdictions with the highest population density (Figure 3B) and the most racial and ethnic 205 

diversity (Figure 3C), even the highest OSI values were not sufficient to reduce transmission.  206 

  207 

Sensitivity analysis showed consistent estimates for policy impacts even when personal mitigation 208 

behaviors were excluded (Supplement 10). Coefficients were similar in direction for both models, with 209 

or without informative priors (see Supplement 6), and minor magnitude differences were observed in 210 

our sensitivity analyses with alternative Rt estimates (Supplement 9). 211 

  212 

We estimated the proportional reduction associated with each time-varying component individually and 213 

combined for each jurisdiction and nationally over time using the OSI Model estimates (Figure 4, Figure 214 

5, and Supplemental Figure 6). Over the study period, personal mitigation behaviors were associated 215 

with the largest proportional transmission reductions in all jurisdictions before vaccine implementation 216 

and remained an important or leading contributor to reduction thereafter (median combined reduction 217 

over time across locations: 44%, range: 10-62%) (Figure 5). Immunity was the second most important 218 

contributor overall and of growing importance as more people were infected and vaccination coverage 219 

increased. These patterns, however, were starkly different between jurisdictions (Figure 4 and 220 

Supplemental Figure 6). For example, in November 2021 many jurisdictions had higher estimated 221 

reductions associated with previous infections than vaccination (e.g., Wyoming). Meanwhile, other 222 

jurisdictions with lower seropositivity or more vaccinations had higher estimated reductions associated 223 

with vaccination (e.g., Vermont). At the end of the study period, SARS-CoV-2 seroprevalence and 224 

vaccination were associated with a wide range of jurisdictional reductions (8-35% and 24-36%, 225 
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respectively). Policies and weather were also associated with transmission changes but with less overall 226 

estimated magnitude than the effects of behavior and immunity. 227 

  228 

Discussion 229 

Deciphering SARS-CoV-2 transmission drivers throughout the pandemic can inform future mitigation 230 

policies and interventions for respiratory pathogens. Our analysis integrates spatial and temporal 231 

patterns of potential transmission determinants to assess associations between those determinants and 232 

SARS-CoV-2 transmission. We included a wide range of determinants with the goal of assessing the 233 

relative impact of each  as the pandemic progressed. On aggregate, while both general and specific 234 

policies and behavior were associated with reduced SARS-CoV-2 transmission, we found that vaccination 235 

uptake, mask wearing, and reduced airline travel were associated with greater transmission reductions 236 

than government policies or mandates. Yet, the proportional reduction on transmission varied overtime; 237 

mask wearing and reduced airline travel had large impacts early on, while the relative contribution of 238 

immunity - due to previous infection and vaccination - increased as the pandemic continued, and 239 

behavior modification decreased.  These findings imply that behavioral mitigation was critical to limiting 240 

transmission, reinforce the value of vaccines in returning to more normal behavior, and indicate the 241 

complexity of relationships between infection dynamics, behavioral choices, and government policies. 242 

  243 

Early US COVID-19 mitigation strategies focused on physical distancing and masking policies. Our 244 

estimates suggest that physical distancing policies reduced SARS-CoV-2 transmission, with an estimated 245 

mean reduction of 1-3% for individual policies and an estimated total reduction of approximately 9% if 246 

sets of policies tracked by the OSI were at the highest observed levels in the US. These reductions are 247 

comparable with other, short-term, national-level assessments of NPI policies and showed reductions in 248 
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COVID-19 cases [28–31], transmission [32–34], and deaths [29]; there was some reduction in 249 

effectiveness for policies with longer durations [29]. In contrast to our null results for masking policies, 250 

jurisdiction-specific studies show short-term effectiveness of mask mandates in reducing cases [35] and 251 

hospitalization growth rates [36]. Importantly, most of these early evaluations focused on the period in 252 

which the NPIs were in effect and did not assess long-term effects or periods when the NPI was not 253 

implemented, as was done here. There is some evidence of limited prolonged reduction in COVID-19 254 

outcomes when NPI policies were lifted [37], with more socially disadvantaged communities 255 

experiencing greater rebounds in COVID-19 burden than other communities [38]. Overall, the 256 

association between individual policies and transmission reductions was strong but accounted for only a 257 

modest overall transmission risk reduction. This finding highlights the need to better understand 258 

adherence to the policies and what drivers personal behavior mitigations. 259 

  260 

The relationships underlying policy implementation and behavior are intricate. Like others, we found 261 

indicators of behavior such as local mobility, national airline travel, and self-reported mask use to be 262 

associated with significant reductions in Rt although not necessarily temporally aligned with the 263 

corresponding policies [39]. For example, analysis of early mobility data showed that movement 264 

patterns changed drastically even before most physical distancing policies were implemented [40], with 265 

continued reductions in movement after policies were in place [41]. It is plausible that broad agreement 266 

within the physical distancing policies early in the pandemic [42] influenced personal choices to stay 267 

home. Similarly, self-reported mask use increased, and local mobility decreased rapidly as the Delta 268 

wave grew even though updated recommendations stated that vaccinated individuals could resume pre-269 

pandemic activities without wearing a mask, once again, indicating a behavioral response that was 270 

independent of policy. Conversely, one example of temporal alignment between policy and behavior 271 
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was immediately following the May 2021 guidance update when there was a rapid decrease in reported 272 

mask use and increases in local mobility, likely an effect of individuals returning to activities that had 273 

previously stopped due to the pandemic. 274 

  275 

Before the Delta wave, US vaccination rates were steadily rising, with varying geospatial, socioeconomic, 276 

and race/ethnic coverage patterns [43,44]. Many jurisdictions also experienced substantial transmission 277 

in 2020 and early 2021, resulting in greater infection-acquired immunity. While we did not adjust for 278 

waning immunity [45] or for changing vaccine effectiveness with the appearance of new variants 279 

[45,46], we found associations between infection-acquired immunity and vaccination with decreased 280 

transmission. It is plausible that if we adjusted our model estimates for waning immunity, the strength 281 

of the immunity-related associations would be attenuated. In most states, the relative impact of either 282 

infection-acquired immunity or vaccination was as high as the decreasing impact of behavior change by 283 

November 2021, when the impact of vaccination was higher than the impact of infection-acquired 284 

immunity. There were also distinct jurisdictional differences, with some jurisdictions showing 285 

comparable impact by late 2021 (e.g., Alabama, Arkansas) and others showing much higher impact from 286 

vaccination than infection-acquired immunity (e.g., Connecticut, Hawaii). Additionally, we did not adjust 287 

our model for COVID-19 testing, which may have a non-linear relationship with seropositivity since 288 

testing availability and behaviors changed over time. 289 

  290 

Social structure drives transmission patterns for all pathogens and the US COVID-19 epidemic 291 

highlighted existing social fault lines that influenced not only who in society was more likely to get 292 

infected, but also who was more likely to benefit from mitigation measures [47,48]. Here, we accounted 293 
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for multiple social vulnerability indicators and found higher transmission rates in states with higher 294 

population density and greater racial and ethnic diversity. Stronger mitigation was needed  to reduce Rt 295 

below the critical threshold of 1 for communities with higher vulnerability. This suggest that a one-size-296 

fits all approach to mitigation is not appropriate and that more vulnerable communities may benefit 297 

from intentional support. Our findings align with several results from county-level analyses. For 298 

example, higher SARS-CoV-2 transmission rates occurred in low-income and racial minoritized 299 

communities [49]. Additionally, counties with higher social vulnerability were more likely to become a 300 

COVID-19 burden hotspot [50], that is a geographic area with elevated disease incidence [51]. Because 301 

structural racism is part of the intersectional factors comprising social vulnerability, it is unsurprising 302 

that hotspots were common in US counties with a greater percentage of non-White residents [52–54]. 303 

These findings highlight the importance of incorporating social markers of risk in infectious disease 304 

transmission models [55]. 305 

  306 

Our findings do not reflect causal relationships. Establishing causality between mitigation measures and 307 

transmission is complicated by a variety of risk factors, from SARS-CoV-2 variants emergence and 308 

changes in human behavior to environmental conditions– which all fluctuate over time and space. First, 309 

many important SARS-CoV-2 transmission determinants are correlated. To partially address this 310 

limitation, we removed highly correlated variables that measured similar factors when possible. 311 

However, we did choose to retain some highly correlated variables, which may have influenced the 312 

findings. Determining the impact of these highly correlated variables, however, is not straightforward 313 

given the directionality of the conditional associations and the correlations between the covariates 314 

themselves. Second, jurisdiction-level policies may differ substantially from policies implemented at a 315 

county or city level. Additionally, many different policy variations were implemented (e.g., some 316 
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jurisdictions required masks universally, whereas others only in certain locations or where physical 317 

distancing was not possible), even within jurisdictions, and those variations were not captured here. 318 

Third, we applied a regression framework, which assumes log-linear independence between covariates 319 

that does not account for the observed correlation between variables. Overall, the potential causal 320 

pathways between the predictors and Rt are not individually identifiable at this scale. 321 

  322 

Ideally, the wealth of data and intervention diversity in the United States could be used to develop 323 

specific recipes for control. However, the diversity and correlation between many contributing factors 324 

make precise intervention estimates and/or combinations of interventions infeasible. Here, we 325 

conducted an ecological analysis of key strategy types and found that personal mitigation behaviors 326 

were more strongly associated with decreased transmission than policies. While most policies may not 327 

be sufficient to control COVID-19 on their own, a combination of policies and communication efforts 328 

that promote, support, and reinforce behavior change may be an essential pathway for  mitigation. The 329 

other most impactful intervention was vaccination, a nationwide intervention that was not available 330 

early on but became as important as behavior modification for controlling transmission in most 331 

jurisdictions by mid to late 2021 [29]. Importantly, transmission was reduced not by a single measure, 332 

but by various layered measures; this indicates that no single measure is likely to control SARS-CoV-2 on 333 

its own [56]. These findings demonstrate the complexity of the COVID-19 response and SARS-CoV-2 334 

transmission and illustrate the ongoing importance of layered mitigation approaches integrated across 335 

public health, government, and communities. 336 

 337 
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Figures  
 
Figure 1. The jurisdiction-specific weekly COVID-19 time-varying reproduction number (Rt), 90% 
confidence intervals in grey, and time periods reflecting implementation of specific non-pharmaceutical 
interventions (NPIs). State-wide implementation of stay-at-home orders are in red, restrictions on 
gatherings in yellow, cancellation of public events in dark blue, and universal masking when physical 
distancing was not possible in light blue. The solid vertical line represents January 1, 2021 and the dashed 
horizontal line reflects an Rt value of 1.0.  
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Figure 2. A. Distribution of time-varying covariates, including the Oxford Stringency Index (OSI), personal 
COVID-19 behaviors, proportion of key SARS-CoV-2 variants in circulation, weather, and immunity to 
SARS-CoV-2. Lines reflect jurisdiction-level observations over time, with the median values across 
jurisdictions depicted by the bold line. The solid, black vertical line represents January 1, 2021. B. Average 
of the three selected Community Covid-19 Vulnerability Index (CCVI) indicators for each jurisdiction. 
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Figure 3. A. Percent change in the COVID-19 time-varying reproduction (Rt) number from policies, personal 
COVID-19 behaviors, proportion of key SARS-CoV-2 variants in circulation, weather, immunity to SARS-
CoV-2, and variables affecting underlying trends in transmission. The results from two different linear 
regression models are shown below. Model one, in pink, included the Oxford Stringency Index (OSI). 
Model two, in purple, included a subset of policies used to comprise the OSI. Both regression models were 
gaussian with log link function and had jurisdiction and time specific intercepts. The posterior mean is 
represented by the point and the 95% credible intervals by the bars. B. The marginal mean in the COVID-
19 Rt across the range of observed OSI values in jurisdictions with the highest and lowest population 
density. C. The marginal mean COVID-19 Rt, and 95% credible interval show in bands, across the range of 
observed OSI values in jurisdictions with the highest and lowest racial and ethnic diversity.  
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Figure 4. Estimates for jurisdiction-level proportional reductions in the COVID-19 time-varying 
reproduction number (Rt) over time for the Oxford Stringency Index (OSI) regression model. Colored lines 
depict the relative reduction for select sets of covariates, with the 95% credible interval in the 
corresponding-colored bands, and the solid vertical line represents January 1, 2021. 
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Figure 5. Average relative contribution of observed covariates on fitted COVID-19 time-varying 
reproduction number (Rt) across all jurisdictions from the OSI model. The highest values over time (i.e., 
the top of the pink band) represent Rt estimates including only the effects of local vulnerability and 
variants. The pink band represents reductions in Rt associated with changing weather. The blue bands 
represent reductions in Rt associated with infection-acquired immunity (dark blue) and with behavior 
modification (i.e., masking use, mobility, and national airline travel, combined and depicted with light 
blue). The green bands represent reductions in Rt associated with policies (light green) and vaccination 
(dark green). The fitted values from the regression model are represented with the top of the black band. 
The solid vertical line represents January 1, 2021. 
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