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Abstract

United States’ jurisdictions implemented varied policies to slow SARS-CoV-2 transmission. Understanding patterns of
these policies alongside individual’s behaviors can inform effective outbreak response. To do so, we estimated the time-
varying reproduction number (R;), a weekly measure of real-time transmission using US COVID-19 cases from September
2020-November 2021. We then assessed the association between R; and policies, personal COVID-19 mitigation
behaviors, variants, immunity, and social vulnerability indicators using two multi-level regression models. First, we fit a
model with state-level policy stringency according to the Oxford Stringency Index, a composite indicator reflecting the
strictness of COVID-19 policies and strength of pandemic-related communication. Our second model included a subset
of specific policies. We found that personal mitigation behaviors and vaccination were more strongly associated with
decreased transmission than policies. Importantly, transmission was reduced not by a single measure, but by various
layered measures. These results underscore the need for policy, behavior change, and risk communication integration to
reduce virus transmission during epidemics.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
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MAIN TEXT
Introduction

As SARS-CoV-2 began to spread globally in early 2020, early estimates of the basic reproduction number (Ro), a metric of
the average number of cases infected by each infectious person in a fully susceptible population, indicated that the virus
was more transmissible than influenza (1) with a median Ry estimate of 2.79 (2). With limited knowledge about
transmission dynamics and no vaccines to mitigate viral spread, governments began to implement travel restrictions and
stay-at-home orders to reduce contact between individuals and opportunities for transmission. These non-
pharmaceutical intervention (NPI) policies rapidly evolved and eventually encompassed a spatially and temporally
diverse range of policies, such as non-essential business closures, limiting operational hours of bars and restaurants,
cancellation of large events, limiting the size of social gatherings, shutting down workplaces and schools, or mandating
the use of masks in public spaces.

Published evidence showed that NPI policies, such as stay-at-home orders and closure of public facilities, slowed SARS-
CoV-2 spread throughout the world during the early phase of the pandemic (3-5). Extensive evidence has also
accumulated about the effectiveness of other specific NPI policies, such as limiting the size of gatherings and closing
schools or universities, and their combinations being more effective than stay-at-home orders (3, 5). Changes in
behavior that were not explicitly linked to policies, as well as climatic and sociodemographic factors, also appeared to
affect transmission dynamics. For example, social structure dramatically influences SARS-CoV-2 transmission dynamics
by affecting how people interact. Within the United States (US), it became evident that physical distancing by staying
home from work was a policy option available to more wealthy and White individuals rather than frontline, essential
worker populations (6), who are more likely to have a lower socioeconomic status and belong to racial minoritized
communities (7, 8). Additionally, SARS-CoV-2 testing sites may have been disproportionately available in areas that had a
greater proportion of White residents (9—11). In other words, the opportunity to know one’s infection status and limit
interactions with others, if necessary, was only available to a privileged subset of the population. Moreover, weather
factors added further complexity to these dynamics. For example, the literature suggests that SARS-CoV-2 transmission
decreases as temperature and specific humidity increases (12); potentially by weakening the viral envelope (13) and
impacting when people spend time indoors and under conditions more favorable to viral transmission. Additionally, as
the pandemic progressed, the role of post-infection and post-vaccination immunity and the role of viral evolution also
became apparent. Whether COVID-19 mitigation policies effectively reduced transmission thus requires an assessment
within the broader context of behavior, social factors, and weather conditions.

The US COVID-19 epidemic provides an opportunity to assess the contribution of many of these factors to SARS-CoV-2
transmission. Diverse COVID-19 mitigation policies were heterogeneously implemented over time and across
jurisdictions (14). Overall, 55 million cases and over 820,000 deaths were reported in the United States by December 31,
2021 (15), patterned by existing demographics and health disparities within each jurisdiction. Given the heterogeneity in
case and death patterns and the overall success of NPI policies in other countries, we seek to understand spatial and
temporal impact of COVID-19 mitigation policies on US SARS-CoV-2 transmission. We do so by first estimating the time-
varying reproduction number (R;) in each US jurisdiction between September 2020 and November 2021. We then model
the ecological associations between R; and time-varying mitigation policies, explicitly adjusting for factors that directly or
indirectly affect or modify community transmission, including personal COVID-19 mitigation behaviors, the circulation of
key SARS-CoV-2 variants, weather data, indicators of immunity, and COVID-19 vulnerability indicators.

Results
Between September 2020 and November 2021, R; estimates exhibited spatiotemporal variability across the United

States (Figure 1). All jurisdictions experienced sustained increases in transmission (R; > 1) in late 2020, followed by a
period of fluctuations until the Delta wave in the summer of 2021, when many had their highest R; estimates. Despite
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some consistency in trends, our results reveal that R; dynamics differed substantially between jurisdictions, such as the
timing and rate of the transmission increases in late 2020 during the Alpha wave. The lowest mean estimated R; over
this period was for Vermont in May 2021 (R=0.66) and the highest value was for the District of Columbia (DC) in
November 2021 (R=1.62).

Stay-at-home orders, gathering limitations, cancellation of public events, and mask mandates all exhibited
spatiotemporal variability (Figure 1) and moderate correlation (maximum: 0.47, Supplemental Figure 1B). Hawaii,
lllinois, Rhode Island, and Virginia implemented all four of these policies at least once, while other jurisdictions, such as
Alaska, Florida, lowa, Missouri, Montana, Oklahoma, and South Dakota, did not implement any of them. Overall,
stringency of mitigation policies dipped slightly in October 2020 and decreased substantially between March and June
2021 (Figure 2A). Variation in policy stringency across jurisdictions persisted throughout the study period, with the
lowest median value in South Dakota (0.09; range: 0.06 to 0.21) and the highest median value in Hawaii (0.66; range:
0.44 10 0.76).

Personal COVID-19 mitigation behaviors also varied over time and space (Figure 2A). Reductions in national airline travel
and individual mobility showed similar patterns over time, though individual mobility also varied by jurisdiction.
Reductions in both were substantial and relatively static until March 2021, at which point airline travel and mobility
began to return closer to pre-pandemic levels. Across jurisdictions and time periods, self-reported mask use and
gathering attendance among survey respondents were highly negatively correlated (-0.83, Supplemental Figure 2),
indicating that both are likely indicators of personal risk reduction behaviors. Because of the high correlation, we
focused on a single variable, self-reported mask use, as an indicator of personal protection measures for further
analyses. Reported mask use was also positively correlated with local mobility (Supplemental Figure 1A, R? value of 0.68)
but had distinct patterns. For example, the weekly proportion of respondents that self-reported wearing a mask
remained above 75% in most jurisdictions until May 2021, when it declined sharply. In August 2021, all three mitigation
behavior indicators increased, with new reductions in national airline travel and local mobility, as well as increased
reported mask use (Figure 2A).

The increased personal mitigation behaviors in August 2021 coincided with the rapid increase in prevalence of the Delta
variant (Figure 2A, Supplemental Figure 1A). Expansion of the Alpha variant in early 2021 was generally slower, more
heterogeneous, and not correlated with increased mitigation behavior. In addition to potential direct effects on
transmission, increased temperature (highly correlated with absolute humidity, Supplemental Figure 3) was associated
with decreased personal mitigation behaviors and increased rates of vaccination (Supplemental Figure 1).

There was high heterogeneity in jurisdictional SARS-CoV-2 seroprevalence throughout the analysis period. By the end of
November 2022, seroprevalence ranged from 0.10 in Vermont to 0.46 in Wyoming (Figure 2A). The proportion of the
population that was fully vaccinated with an initial vaccine series increased across all jurisdictions beginning with the
vaccination distribution in early 2021 and ranged from 0.47 (Alabama) to 0.75 (Vermont) at the end of November 2021.
Increased seroprevalence and vaccination coverage were correlated with each other (0.69, Supplemental Figure 1A),
with long-term decreases in the mitigation behavior indicators (-0.48 to -0.98), and with the prevalence of the Delta
variant (0.52 and 0.83, respectively).

Community COVID-19 Vulnerability Index (CCVI) indicators showed high heterogeneity across all jurisdictions
(Supplemental Figure 5A) and some correlation with temperature, vaccine coverage, and personal mitigation practices
(Supplemental Figure 5B). Average vulnerability across the five indicators showed higher vulnerability in southern
jurisdictions (Figure 2B), with the highest average vulnerability in Texas (0.80), Arizona and California (0.72,
respectively). Vermont had the lowest average vulnerability (0.15), followed by New Hampshire (0.22) and Montana
(0.27).
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We fitted two regression models to assess the spatiotemporal relationship of each of these factors with the dynamics of
R: on the logarithmic scale over time in all jurisdictions: the Oxford Stringency Index (OSI) Model using OSI as the only
policy indicator and the Individual Policy Model, using four specific policies: cancellation of public events, restriction of
gatherings, stay at home orders, and mask mandates (See Supplement Figure 6). For both models, we assessed
alternative spatiotemporal model structures and found that a model with independent random effects for time and
state provided the best fit to the data (see Supplement 8). We also adjusted for other factors described above that
potentially contribute to R: individual behavior, the prevalence of specific variants, immunity, weather, and community
risk factors (i.e., the CCVI indicators). Fixed effect intercepts for both models indicate average expected R, values well
above 1.0 without any mitigation behaviors or policies. With moderate values for CCVI indicators (0.5 each) and
temperature (12°C), estimated R, in the absence of mitigation was 2.6 for the OSI Model {(95% Credible Interval [CI]: 1.9-
3.5) and 2.5 (95% Cl 1.9-3.4) for the policy model.

While some policies and behavior indicators were moderately correlated, such as restrictions on gathering sizes and
reduced mobility (R* = 0.53, Supplemental Figure 1), we included both types of covariates in the regression models to
assess the relative strength of their associations with R.. Overall stringency, some of the specific individual policies, and
each of the behavioral components were associated with decreased R, (Figure 3). Implementation of half of the strictest
policies (i.e., OS| at 50%) relative to no policies (OSI at 0%) was estimated to decrease R; by 6.7% (95% Cl: 5.1- 8.3%). In
the model with individual policies, cancellation of public events decreased R; by 2.6% (95% Cl: 1.4-3.7%), restrictions on
gathering sizes by 1.2% (95% Cl: 0.1-2.2%), and stay-at-home orders by 2.6% (95% Cl: 0.3-4.8%). Mask mandates had a
mean estimate corresponding to a 0.7% reduction in R; but did not reach statistical significance {95% Cl: -1.5-0.2%).
Strong associations were also observed for personal mitigation behaviors in both models. For the OSI Model, R; was
estimated to decrease by 22% (95% Cl: 18%-26%) if there were a 50% reduction in national airline travel, 2.9% (95% Cl:
2.4-3.3%) if local movement to recreation and retail locations decreased by 10%, and 14% (95% Cl: 12-15%) if self-
reported mask use reached 50%. Sensitivity analysis showed consistent estimates for policy impacts even when personal
mitigation behaviors were excluded (Supplement 10).

In both models, a 50% increase in the proportion of Alpha variant in circulation had a likely positive but not significant
association with R; (95% Cl: -0.20-0.10%, OSI Model), while a 50% increase in the proportion of Delta among current
variants was associated with a 0.1% (95% Cl: 0.01-0.02%, OS| Model) increase (Figure 3). Seroprevalence and vaccination
were both associated with reduced R, in each of the models, a 30% (95% Cl: 28-32%, OSI Model) and 22% (95% Cl: 18-
26%, OSI Model) estimated reduction if half of the population had been previously infected or fully vaccinated,
respectively. Increased temperature was associated with a 4.0% (95% Cl: 3.0-5.0%, OSI Model) decrease in R; per 10°C
increase in mean weekly temperature. Among sociodemographic factors, we found that greater population density and
greater racial and ethnic diversity were associated with increased R; in both models. Coefficients were similar in
direction for both models, with or without informative priors (see Supplement 6), and with alternative estimates of R;
(see Supplement 9), minor differences in magnitude were observed in our sensitivity analyses (Supplement 9).

We estimated the proportional reduction associated with each time-varying component individually and combined for
each jurisdiction and nationally over time using the OSI Model estimates (Figure 4, Figure 5, and Supplemental Figure 7).
Over the entire study period, personal mitigation behaviors were associated with the largest proportional transmission
reductions in all jurisdictions before vaccine implementation and remained an important or leading contributor to
reduction thereafter (median combined reduction over time across locations: 44%, range: 10-62%) (Figure 5). Immunity
was the second most important contributor overall and of growing importance as more people were infected and
vaccination coverage increased. These patterns, however, were starkly different across the United States (Figure 4 and
Supplemental Figure 7). For example, in November 2021 many jurisdictions had higher estimated reductions associated
with previous infections than vaccination (e.g., Wyoming). Meanwhile other jurisdictions with lower seropositivity or
more vaccinations had higher estimated reductions associated with vaccination (e.g., Vermont). At the end of the study
period, SARS-CoV-2 seroprevalence and vaccination were associated with a wide range of reductions across jurisdictions
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(8-35% and 24-36%, respectively). Policies and weather were also associated with changes in transmission but with less
overall estimated magnitude than the effects of behavior and immunity.

Discussion

Deciphering SARS-CoV-2 transmission drivers throughout the pandemic can inform development of policies and
interventions for mitigation of respiratory pathogens. Our analysis integrates spatial and temporal patterns of potential
transmission determinants to assess associations between those determinants and SARS-CoV-2 transmission. The
findings presented here are derived from large scale data and are statistically supported, but they cannot establish
causality due to the limitations of each dataset and the many known and unknown potential confounders. Nonetheless,
two important insights for mitigation strategies were elucidated. First, while both general and specific policies and
behavior were associated with reduced SARS-CoV-2 transmission, masking wear and reduced airline travel were
associated with greater transmission reductions. Second, throughout the study period multiple factors contributed to
limiting transmission; personal mitigation behavior had large impacts early on while the importance of previous
infection and vaccination increased as population-level immunity increased over time. As these effects are considered
multiplicative in the model, the findings imply that combinations of behavioral mitigation were critical to limiting
transmission throughout the study period.

Early COVID-19 mitigation strategies in US jurisdictions focused on physical distancing (e.g., stay at home orders,
cancelation of public events, restricting gathering sizes) and masking policies. Our estimates suggest that physical
distancing policies reduced SARS-CoV-2 transmission, with an estimated mean reduction of 1-3% for individual policies
and an estimated total reduction of approximately 6% if sets of policies tracked by the OSI reach 50%. These reductions
are in line with other, short term, national-level assessments of NPI policies and showed reductions in COVID-19 cases
(16—19), transmission (20-22), and deaths (17); there was some reduction in effectiveness for policies with longer
durations (17). In contrast to our null results for masking policies, jurisdiction-specific studies show short-term
effectiveness of mask mandates at reducing cases (23) and hospitalization growth rates (24). Importantly, most of these
early evaluations focused on the period in which the NPIs were in effect and did not assess long-term effects or periods
when the NPl was not implemented, as was done here. There is some evidence of limited prolonged reduction in COVID-
19 outcomes when NPI policies were lifted (25), with more socially disadvantaged communities experiencing greater
rebounds in COVID-19 burden than other communities (26). Overall, the association between individual policies and
reductions in transmission was strong but accounted for only a modest overall reduction in transmission risk. This
finding is due to the model’s inclusion of related factors like NPI policy implementation stringency and proxies for
adherence to the policies via personal mitigation behaviors.

The relationships underlying policy implementation and behavior are complex and reflect personal characteristics,
community characteristics, and social structure. Like others, we found indicators of behavior such as local mobility,
national airline travel, and self-reported mask use to be associated with significant reductions in R; although not
necessarily temporally aligned with the corresponding policies (27). For example, analysis of early mobility data showed
that movement patterns in the United States changed drastically even before the implementation of most physical
distancing policies (28), with continued reductions in movement after policies were in place (29). It is plausible that
broad agreement within the physical distancing policies early in the pandemic (30) influenced personal choices to stay
home. Similarly, mask use increased, and local mobility decreased rapidly as the Delta wave grew even though updated
recommendations stated that vaccinated individuals could resume pre-pandemic activities without wearing a mask,
once again, indicating a behavioral response that was independent of policy. Conversely, one example of temporal
alignment between policy and behavior was immediately following the May 2021 guidance update when there was a
rapid decrease in reported mask use and increases in local mobility, likely an effect of individuals returning to activities
that had previously stopped due to the pandemic.


https://doi.org/10.1101/2023.07.19.23292882

25
26
27
28
29
30
31
32
33

35
36
37
38
39
40
41
42
43

45
46
47
48
49
50
51
52
53

55
56
57
58
59
60
61
62
63

65
66
67
68
69
70
71
72

medRxiv preprint doi: https://doi.org/10.1101/2023.07.19.23292882; this version posted July 23, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available
for use under a CCO license.

Prior to the Delta wave, vaccination rates across the United States were steadily rising, with varying geospatial,
socioeconomic, and race and ethnic patterns of vaccination coverage (31, 32). Many jurisdictions had also experienced
substantial transmission in 2020 and early 2021, resulting in greater infection-acquired immunity in their populations.
While we did not adjust for waning immunity (33), changing vaccine effectiveness with time from vaccination and with
the appearance of new variants (33, 34), we found associations of both infection-acquired immunity and vaccination
with decreased transmission. It is plausible that if we adjusted our model estimates for waning immunity, the strength of
the immunity-related associations would be attenuated. In most states, the relative impact of either infection-acquired
immunity or vaccination was estimated to be as high as the decreasing impact of behavior change by November 2021,
when the impact of vaccination was estimated to be higher than the impact of infection-acquired immunity. There were
also distinct differences across states, with some states showing comparable impact by late 2021 (e.g., Alabama,
Arkansas) and others showing much higher impact from vaccination than infection-acquired immunity (e.g., Connecticut,
Hawaii). Additionally, we did not adjust our model for COVID-19 testing, which may have a non-linear relationship with
seropositivity since testing availability and behaviors changed over time.

Social structure drives transmission patterns for all pathogens and the US COVID-19 epidemic highlighted existing social
fault lines that influenced not only who in society was more likely to get infected, but also who was more likely to
benefit from mitigation measures (35, 36). Here, we accounted for multiple social vulnerability indicators and found
national-level evidence of higher transmission rates in states with higher population density and greater racial and
ethnic diversity. Our findings are in line with several results from county level analyses. For example, higher rates of
SARS-CoV-2 transmission occurred in low-income and racial minoritized communities (37). Additionally, counties with
higher social vulnerability were more likely to become a COVID-19 burden hotspot (38), that is a geographic area with
elevated disease incidence (39). Because structural racism is part of the intersectional factors comprising social
vulnerability, it is unsurprising that hotspots were common in US counties with a greater percentage of non-White
residents (40—42). These findings highlight the importance of incorporating social markers of risk in infectious disease
transmission models (43).

Our findings are limited to associations and not causal relationships. Establishing causality between mitigation measures
and transmission is complicated by a variety of risk factors, from the emergence of SARS-CoV-2 variants and changes in
human behavior to environmental conditions—all of which fluctuate over time and space. First, many of the important
determinants of SARS-CoV-2 transmission are correlated and have complex interactions. To partially address this
limitation, we removed highly correlated variables that measured similar factors when possible. However, we did choose
to retain some highly correlated variables. For example, COVID-19 vaccination and the recovery of national airline travel
had a strong correlation (correlation coefficient: -0.94 between vaccination and travel reductions) largely driven by
increased travel in early 2021 which occurred at the same time as the expansion of vaccine availability and uptake.
Increased national travel likely has some direct relationship with vaccination due to increased willingness or interest in
travel for vaccinated individuals; however, other factors, such as decreased case numbers, increased numbers of people
with infection-acquired immunity, or changing risk perceptions, likely also contributed. Second, we applied a regression
framework, which assumes log-linear independence between covariates that does not account for the observed
correlation between variables. Overall, the potential causal pathways between the predictors and R; are not individually
identifiable at this scale. We encourage caution in interpretation of any single association general insight into SARS-CoV-
2 transmission patterns in the US.

Related limitations apply for our assessment of policies, many of which were correlated and did not capture all
potentially important details of each policy. For example, we used state level policy indicators that may differ
substantially from policies implemented at a county or city level. Additionally, many different variations of policies were
implemented (e.g., some jurisdictions required masks universally, whereas others only in certain locations or where
physical distancing was not possible), even within jurisdictions, and those variations were not captured here. Instead, we
opted to use a limited set of policy classifications and assigned those to the entirety of each jurisdiction. Use of the
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composite policy indicator, the OSI, is a complementary approach to the same challenge but is also a necessary over-
simplification of the diversity of policies implemented.

Our analysis found that diverse efforts had substantial associations with SARS-CoV-2 transmission across the United
States in 2020-2021. Ideally the wealth of data and diversity of interventions in the United States could be used to
develop specific recipes for control. However, that diversity and correlation between many contributing factors makes
precise estimates of specific interventions and combinations of intervention infeasible. Here, we focused on an
ecological scale analysis of key types of strategies and found evidence that personal mitigation behaviors (e.g., masking,
physical distancing) were more strongly associated with decreased transmission than policies. While most policies may
not be sufficient to control COVID-19 on their own, a combination of policies and communication efforts that promote,
support, and reinforce behavior change may be an essential pathway for control. The other most impactful intervention
was vaccination, a nationwide intervention that was not available early on but became as important as behavior
modification for controlling transmission in most jurisdictions by mid to late 2021 (29). Importantly, at all time points,
transmission was reduced not by a single measure, but by various layered measures indicating that no single measure is
likely to control SARS-CoV-2 on its own. Even with high rates of post-infection immunity or vaccination, behavior change
(e.g., mask use, physical distancing) may be needed to control transmission. These findings demonstrate the complexity
of the COVID-19 response and SARS-CoV-2 transmission and illustrate the ongoing importance of layered mitigation
approaches integrated across the public health, government, and communities.

Materials and Methods

Experimental Design: We sought to measure the association between R, and time-varying COVID-19 mitigation policies.
To accomplish this, we first modeled R; from September 6, 2020 to November 27, 2021 (64 weeks) in fifty-one
jurisdictions (all US states and DC). We then modeled the association between jurisdiction-specific R, and policies using
Bayesian hierarchical models, explicitly adjusting for factors that directly or indirectly affect or modify community
transmission, including personal COVID-19 mitigation behaviors, the circulation of key SARS-CoV-2 variants, weather
data, indicators of immunity, and COVID-19 vulnerability indicators.

The analysis period was selected based on the availability of data. U.S. territories and affiliated jurisdictions were
excluded from the analysis as equivalent data for policies, behaviors, SARS-CoV-2 variants, immunity, and vulnerability
were not available.

COVID-19 Time-varying Reproduction Number Estimation: We estimated R, a weekly measure of real-time
transmission in each US jurisdiction, using COVID-19 case data reported to the Centers for Disease Control and
Prevention (CDC). For each reported case, an onset date was sampled from the time-specific onset-to-report delays
distribution in the national line list data set. To estimate R,, onset dates were back projected from case report dates
using time-specific delays; infection dates were sampled using a log-normal distribution for the incubation periods [log
mean = 1.63 and log standard deviation = 0.5 based on published data (44)]. We then generated 10 bootstrapped
samples of each jurisdictional time series using a centered 14-day moving window to account for variability in daily
reporting when estimating R.. Finally, for each trajectory we estimated R; using the methods described in Cori et al (45).
We used a 7-day window and an uncertain serial interval (Sl) (mean: 5 days, standard deviation: 1 day), with 5 samples
from the SI distribution and 5 samples of the R, posterior for each Sl value (46). We thus generated 250 R, samples for
each time point and jurisdiction and used the mean estimate on each Wednesday as the outcome for subsequent
analyses.

Covariate data: We included data on mitigation policies, personal mitigation behaviors, the circulation of key variants,
weather, indicators of immunity, and vulnerability indicators described below and in the Supplemental Text. We
assessed correlation between covariates by estimating the median pairwise R? with bivariate regression models (see
Supplement 1).
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COVID-19 mitigation policies: Standardized policy data were obtained from the Oxford COVID-19 Government Response
Tracker (47). The dataset includes a composite indicator (OSI) of the overall strictness of COVID-19 policies and strength
of pandemic-related communication (details in Supplement 1). We used a smoothed, daily time series of jurisdiction-
level OSI, rescaled the values to range from 0 to 1, and calculated a jurisdictional weekly mean.

We also used jurisdiction-level time series for three individual policies included in the OSI indicator (cancellation of
public events, restrictions on gathering sizes, and stay at home orders) and mask mandates from the Oxford COVID-19
Government Response Tracker (not included in OSI). We chose to examine these four policies because they were
commonly implemented across the United States and represented key, distinct mitigation measures. We dichotomized
all policy variables into the strictest policy versus all other implementations/no policy. Data management processes for
these data are described in the Supplemental Text.

Personal COVID-19 mitigation behaviors: Jurisdiction-level, personal behavior data were collected from a variety of
sources. Self-reported mask use in public (previous 5 or 7 days) and attendance at gatherings (in the past 24 hours) were
collected from the COVID-19 Trends and Impact Survey of Facebook users (48, 49) (See Supplemental Figure 2); mobility
data were collected from Google’s COVID-19 Community Mobility Reports (50); and national travel estimates were
collected from the Transportation Security Administration (51). From the Community Mobility Report data, we included
the proportional reduction in weekly median mobility to retail and recreation locations relative to baseline mobility from
January 3- February 6, 2020. We also included the weekly median reduction in national airline travel relative to
maximum weekly travel in 2019. We set the reference to the maximum weekly travel in 2019 to ease interpretation of
the coefficients in the final model.

Circulation of key SARS-CoV-2 variants: We estimated the weekly proportion of Alpha (B.1.1.7) and Delta (B.1.617.2)
SARS-CoV-2 variants in circulation by fitting sequence data to a multinomial logistic regression model, which included
normalized survey weights to account for reporting patterns within and between jurisdictions (52).

Weather data: We pulled temperature (°C) data from weather stations included in the National Oceanic and
Atmospheric Administration’s Integrated Surface Database (53), using the package “worldmet” (54). From station level
data, we calculated the weekly median temperature in each jurisdiction. Given the role of humidity in respiratory virus
transmission (55, 56), we also assessed associations with relative humidity and absolute humidity to guide our modeling
(Supplemental Figure 3).

Indicators of immunity: We included infection-acquired and vaccine-derived immunity to SARS-CoV-2 indicators in our
models. As a proxy measure of infection-acquired immunity, we modeled jurisdiction-level seroprevalence, adjusting
estimates for reduced percent of positive assays based on waning immunity using methods described by Garcia-Carreras
and colleagues using data from national SARS-CoV2 serosurveys (57). For vaccination, we used the weekly jurisdictional
percentage of individuals with a completed primary series of COVID-19 vaccine (58).

COVID-19 vulnerability indicators: We included variables that represent static underlying components that influence
transmission, which were developed as part of the CCVI (59) and range from 0 to 1 across all jurisdictions: 1) Racial and
Ethnic Diversity 2) Percentage of Population Working or Living in Environments with High COVID-19 Infection Risk, 3)
Socioeconomic Status, 4) Housing type, Transportation, Household Composition and Disability, and 5) Population
Density (see Supplemental Figure 4 for Pearson correlation coefficients for CCVI indicators, and Supplemental Figure 5
for spatial distribution and correlation with time-varying covariates).

Statistical Analysis: We assessed the association between R, and selected determinants with Bayesian Gaussian multi-
level regression models, using a log-link function and jurisdiction- and time-specific intercepts (as random effects to
account for spatiotemporal autocorrelation). We assessed two models. The first focused on general government
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response, using the overall OSI. The second model focused on the impact of the four individual policies: cancelation of
public events, restrictions on gathering sizes, stay at home orders, and mask mandates. Both models were adjusted for
the aforementioned covariates (Supplemental Text for model statements). For each model, we ran four Markov chains
at 2,500 iterations each, with a burn in period of 1,250 iterations. We specified priors for an expected negative
association for all components likely to decrease transmission (OSI, all individual mitigation policies, mobility, masking,
reduced airline travel, cumulative COVID-19 cases, vaccination, and temperature) or expected positive association for
those which may increase transmission (variants and each CCVI indicator). Priors were specified on the log-scale. For
each coefficient with an expected negative association, we used a normal distribution with a mean of -0.7 and standard
deviation of 0.1, approximating a 50% decrease with a 95% Cl of 40-60%. We used a normal prior with a mean of 0.4 and
a standard deviation of 0.1 for covariates with expected positive associations, approximating a 50% increase with a 95%
Cl of 20-80%. The intercept prior had a normal distribution with a mean of 1.1 and standard deviation of 0.1, reflecting
an expected R; without any mitigation behaviors or policies from 2.5 to 3.7 (95% Cl). Model convergence was assessed
using the Gelman-Rubin convergence diagnostic (R) and model fit was evaluated from the predictive posteriors.
Jurisdiction-specific results for the OSI model are presented in Supplemental Figure 7.

We conducted several sensitivity analyses. First, we compared these models to the same two models with naive priors
via leave-one-out (LOO) cross-validation (60) (Supplemental Figures 6) and compared models with different structures
for temporal correlation (Supplemental Figures 8). Second, we re-ran the primary models using publicly available R,
estimates from the Centre for Mathematical Modeling of Infectious Diseases COVID modelling group (61) and compared
the model results to those presented here (Supplemental Figures 9). Third, we re-ran the individual policy model
without the behavior covariates (Supplemental Figures 10).

Analyses were conducted using R (version 4.2.1), with the rstanarm package used for primary analyses. R code is
available in a public repository (https://github.com/cdcepi/COVID-19-Mitigation Rt).

This activity was reviewed by CDC and was conducted consistent with applicable federal law and CDC policy1§.

CDC disclaimer: The findings and conclusions in this report are those of the authors and do not necessarily represent the
official position of the U.S. Centers for Disease Control and Prevention.
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Figures

Figure 1. The jurisdiction-specific weekly COVID-19 time-varying reproduction number (R;), 90% confidence intervals in grey, and time periods reflecting
implementation of specific non-pharmaceutical interventions (NPIs). State-wide implementation of stay-at-home orders are in red, restrictions on gatherings in
yellow, cancellation of public events in dark blue, and universal masking when physical distancing was not possible in light blue. The solid vertical line represents
January 1, 2021 and the dashed horizontal line reflects an Rt value of 1.0.
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Figure 2. A. Distribution of time-varying covariates, including the Oxford Stringency Index (OSl), personal COVID-19 behaviors, proportion of key SARS-CoV-2
variants in circulation, weather, and immunity to SARS-CoV-2. Lines reflect jurisdiction-level observations over time, with the median values across jurisdictions
depicted by the bold line. The solid, black vertical line represents January 1, 2021. B. Average of the three selected Community Covid-19 Vulnerability Index
(CCVI) indicators for each jurisdiction.
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Figure 3. Percent change in the COVID-19 time-varying reproduction (R) number from policies, personal
COVID-19 behaviors, proportion of key SARS-CoV-2 variants in circulation, weather, immunity to SARS-
CoV-2, and variables affecting underlying trends in transmission. The results from two different linear
regression models are shown below. Model one, in pink, included the Oxford Stringency Index (OSI).
Model two, in purple, included a subset of policies used to comprise the OSI. Both regression models
were gaussian with log link function and had jurisdiction and time specific intercepts.
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Figure 4. Estimates for jurisdiction-level proportional reductions in the COVID-19 time-varying reproduction number (R;) over time for the Oxford Stringency

Index (OSI) regression model. Colored lines depict the relative reduction for select sets of covariates and the solid vertical line represents January 1, 2021.
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528  Figure 5. Average relative contribution of observed covariates on fitted COVID-19 time-varying
529  reproduction number (R;) across all jurisdictions from the OSI model. The highest values over time (i.e.,
530 the top of the pink band) represent R; estimates including only the effects of local vulnerability and
5331  variants. The pink band represents reductions in Rt associated with changing weather. The blue bands
532 represent reductions in R, associated with infection-acquired immunity (dark blue) and with behavior
533  modification (i.e., masking use, mobility, and national airline travel, combined and depicted with light
534 blue). The green bands represent reductions in R; associated with policies (light green) and vaccination
535  (dark green). The fitted values from the regression model are represented with the top of the black band.
536  The solid vertical line represents January 1, 2021.
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