
 
 
 
 

COVID-19 mitigation behaviors and policies limited SARS-CoV-2 transmission in the United States from September 1 
2020 through November 2021. 2 
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Abstract 17 
United States’ jurisdictions implemented varied policies to slow SARS-CoV-2 transmission. Understanding patterns of 18 
these policies alongside individual’s behaviors can inform effective outbreak response. To do so, we estimated the time-19 
varying reproduction number (Rt), a weekly measure of real-time transmission using US COVID-19 cases from September 20 
2020-November 2021. We then assessed the association between Rt and policies, personal COVID-19 mitigation 21 
behaviors, variants, immunity, and social vulnerability indicators using two multi-level regression models. First, we fit a 22 
model with state-level policy stringency according to the Oxford Stringency Index, a composite indicator reflecting the 23 
strictness of COVID-19 policies and strength of pandemic-related communication. Our second model included a subset 24 
of specific policies. We found that personal mitigation behaviors and vaccination were more strongly associated with 25 
decreased transmission than policies. Importantly, transmission was reduced not by a single measure, but by various 26 
layered measures. These results underscore the need for policy, behavior change, and risk communication integration to 27 
reduce virus transmission during epidemics.  28 
 29 
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MAIN TEXT 32 
 33 
Introduction 34 
 35 
As SARS-CoV-2 began to spread globally in early 2020, early estimates of the basic reproduction number (R0), a metric of 36 
the average number of cases infected by each infectious person in a fully susceptible population, indicated that the virus 37 
was more transmissible than influenza (1) with a median R0 estimate of 2.79 (2). With limited knowledge about 38 
transmission dynamics and no vaccines to mitigate viral spread, governments began to implement travel restrictions and 39 
stay-at-home orders to reduce contact between individuals and opportunities for transmission. These non-40 
pharmaceutical intervention (NPI) policies rapidly evolved and eventually encompassed a spatially and temporally 41 
diverse range of policies, such as non-essential business closures, limiting operational hours of bars and restaurants, 42 
cancellation of large events, limiting the size of social gatherings, shutting down workplaces and schools, or mandating 43 
the use of masks in public spaces.  44 
  45 
Published evidence showed that NPI policies, such as stay-at-home orders and closure of public facilities, slowed SARS-46 
CoV-2 spread throughout the world during the early phase of the pandemic (3–5). Extensive evidence has also 47 
accumulated about the effectiveness of other specific NPI policies, such as limiting the size of gatherings and closing 48 
schools or universities, and their combinations being more effective than stay-at-home orders (3, 5). Changes in 49 
behavior that were not explicitly linked to policies, as well as climatic and sociodemographic factors, also appeared to 50 
affect transmission dynamics. For example, social structure dramatically influences SARS-CoV-2 transmission dynamics 51 
by affecting how people interact. Within the United States (US), it became evident that physical distancing by staying 52 
home from work was a policy option available to more wealthy and White individuals rather than frontline, essential 53 
worker populations (6), who are more likely to have a lower socioeconomic status and belong to racial minoritized 54 
communities (7, 8). Additionally, SARS-CoV-2 testing sites may have been disproportionately available in areas that had a 55 
greater proportion of White residents (9–11). In other words, the opportunity to know one’s infection status and limit 56 
interactions with others, if necessary, was only available to a privileged subset of the population. Moreover, weather 57 
factors added further complexity to these dynamics. For example, the literature suggests that SARS-CoV-2 transmission 58 
decreases as temperature and specific humidity increases (12); potentially by weakening the viral envelope (13) and 59 
impacting when people spend time indoors and under conditions more favorable to viral transmission. Additionally, as 60 
the pandemic progressed, the role of post-infection and post-vaccination immunity and the role of viral evolution also 61 
became apparent. Whether COVID-19 mitigation policies effectively reduced transmission thus requires an assessment 62 
within the broader context of behavior, social factors, and weather conditions.  63 
  64 
The US COVID-19 epidemic provides an opportunity to assess the contribution of many of these factors to SARS-CoV-2 65 
transmission. Diverse COVID-19 mitigation policies were heterogeneously implemented over time and across 66 
jurisdictions (14). Overall, 55 million cases and over 820,000 deaths were reported in the United States by December 31, 67 
2021 (15), patterned by existing demographics and health disparities within each jurisdiction. Given the heterogeneity in 68 
case and death patterns and the overall success of NPI policies in other countries, we seek to understand spatial and 69 
temporal impact of COVID-19 mitigation policies on US SARS-CoV-2 transmission. We do so by first estimating the time-70 
varying reproduction number (Rt) in each US jurisdiction between September 2020 and November 2021. We then model 71 
the ecological associations between Rt and time-varying mitigation policies, explicitly adjusting for factors that directly or 72 
indirectly affect or modify community transmission, including personal COVID-19 mitigation behaviors, the circulation of 73 
key SARS-CoV-2 variants, weather data, indicators of immunity, and COVID-19 vulnerability indicators. 74 
 75 
Results  76 
 77 
Between September 2020 and November 2021, Rt estimates exhibited spatiotemporal variability across the United 78 
States (Figure 1). All jurisdictions experienced sustained increases in transmission (Rt > 1) in late 2020, followed by a 79 
period of fluctuations until the Delta wave in the summer of 2021, when many had their highest Rt estimates. Despite 80 
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some consistency in trends, our results reveal that Rt dynamics differed substantially between jurisdictions, such as the 81 
timing and rate of the transmission increases in late 2020 during the Alpha wave. The lowest mean estimated Rt over 82 
this period was for Vermont in May 2021 (Rt=0.66) and the highest value was for the District of Columbia (DC) in 83 
November 2021 (Rt=1.62).  84 
 85 
Stay-at-home orders, gathering limitations, cancellation of public events, and mask mandates all exhibited 86 
spatiotemporal variability (Figure 1) and moderate correlation (maximum: 0.47, Supplemental Figure 1B). Hawaii, 87 
Illinois, Rhode Island, and Virginia implemented all four of these policies at least once, while other jurisdictions, such as 88 
Alaska, Florida, Iowa, Missouri, Montana, Oklahoma, and South Dakota, did not implement any of them. Overall, 89 
stringency of mitigation policies dipped slightly in October 2020 and decreased substantially between March and June 90 
2021 (Figure 2A). Variation in policy stringency across jurisdictions persisted throughout the study period, with the 91 
lowest median value in South Dakota (0.09; range: 0.06 to 0.21) and the highest median value in Hawaii (0.66; range: 92 
0.44 to 0.76).  93 
 94 
Personal COVID-19 mitigation behaviors also varied over time and space (Figure 2A). Reductions in national airline travel 95 
and individual mobility showed similar patterns over time, though individual mobility also varied by jurisdiction. 96 
Reductions in both were substantial and relatively static until March 2021, at which point airline travel and mobility 97 
began to return closer to pre-pandemic levels. Across jurisdictions and time periods, self-reported mask use and 98 
gathering attendance among survey respondents were highly negatively correlated (-0.83, Supplemental Figure 2), 99 
indicating that both are likely indicators of personal risk reduction behaviors. Because of the high correlation, we 100 
focused on a single variable, self-reported mask use, as an indicator of personal protection measures for further 101 
analyses. Reported mask use was also positively correlated with local mobility (Supplemental Figure 1A, R2 value of 0.68) 102 
but had distinct patterns. For example, the weekly proportion of respondents that self-reported wearing a mask 103 
remained above 75% in most jurisdictions until May 2021, when it declined sharply. In August 2021, all three mitigation 104 
behavior indicators increased, with new reductions in national airline travel and local mobility, as well as increased 105 
reported mask use (Figure 2A). 106 
 107 
The increased personal mitigation behaviors in August 2021 coincided with the rapid increase in prevalence of the Delta 108 
variant (Figure 2A, Supplemental Figure 1A). Expansion of the Alpha variant in early 2021 was generally slower, more 109 
heterogeneous, and not correlated with increased mitigation behavior. In addition to potential direct effects on 110 
transmission, increased temperature (highly correlated with absolute humidity, Supplemental Figure 3) was associated 111 
with decreased personal mitigation behaviors and increased rates of vaccination (Supplemental Figure 1). 112 
 113 
There was high heterogeneity in jurisdictional SARS-CoV-2 seroprevalence throughout the analysis period. By the end of 114 
November 2022, seroprevalence ranged from 0.10 in Vermont to 0.46 in Wyoming (Figure 2A). The proportion of the 115 
population that was fully vaccinated with an initial vaccine series increased across all jurisdictions beginning with the 116 
vaccination distribution in early 2021 and ranged from 0.47 (Alabama) to 0.75 (Vermont) at the end of November 2021. 117 
Increased seroprevalence and vaccination coverage were correlated with each other (0.69, Supplemental Figure 1A), 118 
with long-term decreases in the mitigation behavior indicators (-0.48 to -0.98), and with the prevalence of the Delta 119 
variant (0.52 and 0.83, respectively).  120 
 121 
Community COVID-19 Vulnerability Index (CCVI) indicators showed high heterogeneity across all jurisdictions 122 
(Supplemental Figure 5A) and some correlation with temperature, vaccine coverage, and personal mitigation practices 123 
(Supplemental Figure 5B). Average vulnerability across the five indicators showed higher vulnerability in southern 124 
jurisdictions (Figure 2B), with the highest average vulnerability in Texas (0.80), Arizona and California (0.72, 125 
respectively). Vermont had the lowest average vulnerability (0.15), followed by New Hampshire (0.22) and Montana 126 
(0.27).  127 
 128 
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We fitted two regression models to assess the spatiotemporal relationship of each of these factors with the dynamics of 129 
Rt on the logarithmic scale over time in all jurisdictions: the Oxford Stringency Index (OSI) Model using OSI as the only 130 
policy indicator and the Individual Policy Model, using four specific policies: cancellation of public events, restriction of 131 
gatherings, stay at home orders, and mask mandates (See Supplement Figure 6). For both models, we assessed 132 
alternative spatiotemporal model structures and found that a model with independent random effects for time and 133 
state provided the best fit to the data (see Supplement 8). We also adjusted for other factors described above that 134 
potentially contribute to Rt: individual behavior, the prevalence of specific variants, immunity, weather, and community 135 
risk factors (i.e., the CCVI indicators). Fixed effect intercepts for both models indicate average expected Rt values well 136 
above 1.0 without any mitigation behaviors or policies. With moderate values for CCVI indicators (0.5 each) and 137 
temperature (12°C), estimated Rt in the absence of mitigation was 2.6 for the OSI Model (95% Credible Interval [CI]: 1.9-138 
3.5) and 2.5 (95% CI 1.9-3.4) for the policy model.  139 
 140 
While some policies and behavior indicators were moderately correlated, such as restrictions on gathering sizes and 141 
reduced mobility (R2 = 0.53, Supplemental Figure 1), we included both types of covariates in the regression models to 142 
assess the relative strength of their associations with Rt. Overall stringency, some of the specific individual policies, and 143 
each of the behavioral components were associated with decreased Rt (Figure 3). Implementation of half of the strictest 144 
policies (i.e., OSI at 50%) relative to no policies (OSI at 0%) was estimated to decrease Rt by 6.7% (95% CI: 5.1- 8.3%). In 145 
the model with individual policies, cancellation of public events decreased Rt by 2.6% (95% CI: 1.4-3.7%), restrictions on 146 
gathering sizes by 1.2% (95% CI: 0.1-2.2%), and stay-at-home orders by 2.6% (95% CI: 0.3-4.8%). Mask mandates had a 147 
mean estimate corresponding to a 0.7% reduction in Rt but did not reach statistical significance (95% CI: -1.5-0.2%). 148 
Strong associations were also observed for personal mitigation behaviors in both models. For the OSI Model, Rt was 149 
estimated to decrease by 22% (95% CI: 18%-26%) if there were a 50% reduction in national airline travel, 2.9% (95% CI: 150 
2.4-3.3%) if local movement to recreation and retail locations decreased by 10%, and 14% (95% CI: 12-15%) if self-151 
reported mask use reached 50%. Sensitivity analysis showed consistent estimates for policy impacts even when personal 152 
mitigation behaviors were excluded (Supplement 10). 153 
 154 
In both models, a 50% increase in the proportion of Alpha variant in circulation had a likely positive but not significant 155 
association with Rt (95% CI: -0.20-0.10%, OSI Model), while a 50% increase in the proportion of Delta among current 156 
variants was associated with a 0.1% (95% CI: 0.01-0.02%, OSI Model) increase (Figure 3). Seroprevalence and vaccination 157 
were both associated with reduced Rt in each of the models, a 30% (95% CI: 28-32%, OSI Model) and 22% (95% CI: 18-158 
26%, OSI Model) estimated reduction if half of the population had been previously infected or fully vaccinated, 159 
respectively. Increased temperature was associated with a 4.0% (95% CI: 3.0-5.0%, OSI Model) decrease in Rt per 10°C 160 
increase in mean weekly temperature. Among sociodemographic factors, we found that greater population density and 161 
greater racial and ethnic diversity were associated with increased Rt in both models. Coefficients were similar in 162 
direction for both models, with or without informative priors (see Supplement 6), and with alternative estimates of Rt 163 
(see Supplement 9), minor differences in magnitude were observed in our sensitivity analyses (Supplement 9).  164 
 165 
We estimated the proportional reduction associated with each time-varying component individually and combined for 166 
each jurisdiction and nationally over time using the OSI Model estimates (Figure 4, Figure 5, and Supplemental Figure 7). 167 
Over the entire study period, personal mitigation behaviors were associated with the largest proportional transmission 168 
reductions in all jurisdictions before vaccine implementation and remained an important or leading contributor to 169 
reduction thereafter (median combined reduction over time across locations: 44%, range: 10-62%) (Figure 5). Immunity 170 
was the second most important contributor overall and of growing importance as more people were infected and 171 
vaccination coverage increased. These patterns, however, were starkly different across the United States (Figure 4 and 172 
Supplemental Figure 7). For example, in November 2021 many jurisdictions had higher estimated reductions associated 173 
with previous infections than vaccination (e.g., Wyoming). Meanwhile other jurisdictions with lower seropositivity or 174 
more vaccinations had higher estimated reductions associated with vaccination (e.g., Vermont). At the end of the study 175 
period, SARS-CoV-2 seroprevalence and vaccination were associated with a wide range of reductions across jurisdictions 176 
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(8-35% and 24-36%, respectively). Policies and weather were also associated with changes in transmission but with less 177 
overall estimated magnitude than the effects of behavior and immunity.  178 
 179 
Discussion  180 
 181 
Deciphering SARS-CoV-2 transmission drivers throughout the pandemic can inform development of policies and 182 
interventions for mitigation of respiratory pathogens. Our analysis integrates spatial and temporal patterns of potential 183 
transmission determinants to assess associations between those determinants and SARS-CoV-2 transmission. The 184 
findings presented here are derived from large scale data and are statistically supported, but they cannot establish 185 
causality due to the limitations of each dataset and the many known and unknown potential confounders. Nonetheless, 186 
two important insights for mitigation strategies were elucidated. First, while both general and specific policies and 187 
behavior were associated with reduced SARS-CoV-2 transmission, masking wear and reduced airline travel were 188 
associated with greater transmission reductions. Second, throughout the study period multiple factors contributed to 189 
limiting transmission; personal mitigation behavior had large impacts early on while the importance of previous 190 
infection and vaccination increased as population-level immunity increased over time. As these effects are considered 191 
multiplicative in the model, the findings imply that combinations of behavioral mitigation were critical to limiting 192 
transmission throughout the study period.  193 
 194 
Early COVID-19 mitigation strategies in US jurisdictions focused on physical distancing (e.g., stay at home orders, 195 
cancelation of public events, restricting gathering sizes) and masking policies. Our estimates suggest that physical 196 
distancing policies reduced SARS-CoV-2 transmission, with an estimated mean reduction of 1-3% for individual policies 197 
and an estimated total reduction of approximately 6% if sets of policies tracked by the OSI reach 50%. These reductions 198 
are in line with other, short term, national-level assessments of NPI policies and showed reductions in COVID-19 cases 199 
(16–19), transmission (20–22), and deaths (17); there was some reduction in effectiveness for policies with longer 200 
durations (17). In contrast to our null results for masking policies, jurisdiction-specific studies show short-term 201 
effectiveness of mask mandates at reducing cases (23) and hospitalization growth rates (24). Importantly, most of these 202 
early evaluations focused on the period in which the NPIs were in effect and did not assess long-term effects or periods 203 
when the NPI was not implemented, as was done here. There is some evidence of limited prolonged reduction in COVID-204 
19 outcomes when NPI policies were lifted (25), with more socially disadvantaged communities experiencing greater 205 
rebounds in COVID-19 burden than other communities (26). Overall, the association between individual policies and 206 
reductions in transmission was strong but accounted for only a modest overall reduction in transmission risk. This 207 
finding is due to the model’s inclusion of related factors like NPI policy implementation stringency and proxies for 208 
adherence to the policies via personal mitigation behaviors. 209 
 210 
The relationships underlying policy implementation and behavior are complex and reflect personal characteristics, 211 
community characteristics, and social structure. Like others, we found indicators of behavior such as local mobility, 212 
national airline travel, and self-reported mask use to be associated with significant reductions in Rt although not 213 
necessarily temporally aligned with the corresponding policies (27). For example, analysis of early mobility data showed 214 
that movement patterns in the United States changed drastically even before the implementation of most physical 215 
distancing policies (28), with continued reductions in movement after policies were in place (29). It is plausible that 216 
broad agreement within the physical distancing policies early in the pandemic (30) influenced personal choices to stay 217 
home. Similarly, mask use increased, and local mobility decreased rapidly as the Delta wave grew even though updated 218 
recommendations stated that vaccinated individuals could resume pre-pandemic activities without wearing a mask, 219 
once again, indicating a behavioral response that was independent of policy. Conversely, one example of temporal 220 
alignment between policy and behavior was immediately following the May 2021 guidance update when there was a 221 
rapid decrease in reported mask use and increases in local mobility, likely an effect of individuals returning to activities 222 
that had previously stopped due to the pandemic.  223 
 224 
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Prior to the Delta wave, vaccination rates across the United States were steadily rising, with varying geospatial, 225 
socioeconomic, and race and ethnic patterns of vaccination coverage (31, 32). Many jurisdictions had also experienced 226 
substantial transmission in 2020 and early 2021, resulting in greater infection-acquired immunity in their populations. 227 
While we did not adjust for waning immunity (33), changing vaccine effectiveness with time from vaccination and with 228 
the appearance of new variants (33, 34), we found associations of both infection-acquired immunity and vaccination 229 
with decreased transmission. It is plausible that if we adjusted our model estimates for waning immunity, the strength of 230 
the immunity-related associations would be attenuated. In most states, the relative impact of either infection-acquired 231 
immunity or vaccination was estimated to be as high as the decreasing impact of behavior change by November 2021, 232 
when the impact of vaccination was estimated to be higher than the impact of infection-acquired immunity. There were 233 
also distinct differences across states, with some states showing comparable impact by late 2021 (e.g., Alabama, 234 
Arkansas) and others showing much higher impact from vaccination than infection-acquired immunity (e.g., Connecticut, 235 
Hawaii). Additionally, we did not adjust our model for COVID-19 testing, which may have a non-linear relationship with 236 
seropositivity since testing availability and behaviors changed over time.  237 
 238 
Social structure drives transmission patterns for all pathogens and the US COVID-19 epidemic highlighted existing social 239 
fault lines that influenced not only who in society was more likely to get infected, but also who was more likely to 240 
benefit from mitigation measures (35, 36). Here, we accounted for multiple social vulnerability indicators and found 241 
national-level evidence of higher transmission rates in states with higher population density and greater racial and 242 
ethnic diversity. Our findings are in line with several results from county level analyses. For example, higher rates of 243 
SARS-CoV-2 transmission occurred in low-income and racial minoritized communities (37). Additionally, counties with 244 
higher social vulnerability were more likely to become a COVID-19 burden hotspot (38), that is a geographic area with 245 
elevated disease incidence (39). Because structural racism is part of the intersectional factors comprising social 246 
vulnerability, it is unsurprising that hotspots were common in US counties with a greater percentage of non-White 247 
residents (40–42). These findings highlight the importance of incorporating social markers of risk in infectious disease 248 
transmission models (43).  249 
 250 
Our findings are limited to associations and not causal relationships. Establishing causality between mitigation measures 251 
and transmission is complicated by a variety of risk factors, from the emergence of SARS-CoV-2 variants and changes in 252 
human behavior to environmental conditions–all of which fluctuate over time and space. First, many of the important 253 
determinants of SARS-CoV-2 transmission are correlated and have complex interactions. To partially address this 254 
limitation, we removed highly correlated variables that measured similar factors when possible. However, we did choose 255 
to retain some highly correlated variables. For example, COVID-19 vaccination and the recovery of national airline travel 256 
had a strong correlation (correlation coefficient: -0.94 between vaccination and travel reductions) largely driven by 257 
increased travel in early 2021 which occurred at the same time as the expansion of vaccine availability and uptake. 258 
Increased national travel likely has some direct relationship with vaccination due to increased willingness or interest in 259 
travel for vaccinated individuals; however, other factors, such as decreased case numbers, increased numbers of people 260 
with infection-acquired immunity, or changing risk perceptions, likely also contributed. Second, we applied a regression 261 
framework, which assumes log-linear independence between covariates that does not account for the observed 262 
correlation between variables. Overall, the potential causal pathways between the predictors and Rt are not individually 263 
identifiable at this scale. We encourage caution in interpretation of any single association general insight into SARS-CoV-264 
2 transmission patterns in the US.  265 
 266 
Related limitations apply for our assessment of policies, many of which were correlated and did not capture all 267 
potentially important details of each policy. For example, we used state level policy indicators that may differ 268 
substantially from policies implemented at a county or city level. Additionally, many different variations of policies were 269 
implemented (e.g., some jurisdictions required masks universally, whereas others only in certain locations or where 270 
physical distancing was not possible), even within jurisdictions, and those variations were not captured here. Instead, we 271 
opted to use a limited set of policy classifications and assigned those to the entirety of each jurisdiction. Use of the 272 
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composite policy indicator, the OSI, is a complementary approach to the same challenge but is also a necessary over-273 
simplification of the diversity of policies implemented.  274 
 275 
Our analysis found that diverse efforts had substantial associations with SARS-CoV-2 transmission across the United 276 
States in 2020-2021. Ideally the wealth of data and diversity of interventions in the United States could be used to 277 
develop specific recipes for control. However, that diversity and correlation between many contributing factors makes 278 
precise estimates of specific interventions and combinations of intervention infeasible. Here, we focused on an 279 
ecological scale analysis of key types of strategies and found evidence that personal mitigation behaviors (e.g., masking, 280 
physical distancing) were more strongly associated with decreased transmission than policies. While most policies may 281 
not be sufficient to control COVID-19 on their own, a combination of policies and communication efforts that promote, 282 
support, and reinforce behavior change may be an essential pathway for control. The other most impactful intervention 283 
was vaccination, a nationwide intervention that was not available early on but became as important as behavior 284 
modification for controlling transmission in most jurisdictions by mid to late 2021 (29). Importantly, at all time points, 285 
transmission was reduced not by a single measure, but by various layered measures indicating that no single measure is 286 
likely to control SARS-CoV-2 on its own. Even with high rates of post-infection immunity or vaccination, behavior change 287 
(e.g., mask use, physical distancing) may be needed to control transmission. These findings demonstrate the complexity 288 
of the COVID-19 response and SARS-CoV-2 transmission and illustrate the ongoing importance of layered mitigation 289 
approaches integrated across the public health, government, and communities.  290 
 291 
Materials and Methods 292 
 293 
Experimental Design: We sought to measure the association between Rt and time-varying COVID-19 mitigation policies. 294 
To accomplish this, we first modeled Rt from September 6, 2020 to November 27, 2021 (64 weeks) in fifty-one 295 
jurisdictions (all US states and DC). We then modeled the association between jurisdiction-specific Rt and policies using 296 
Bayesian hierarchical models, explicitly adjusting for factors that directly or indirectly affect or modify community 297 
transmission, including personal COVID-19 mitigation behaviors, the circulation of key SARS-CoV-2 variants, weather 298 
data, indicators of immunity, and COVID-19 vulnerability indicators.  299 
 300 
The analysis period was selected based on the availability of data. U.S. territories and affiliated jurisdictions were 301 
excluded from the analysis as equivalent data for policies, behaviors, SARS-CoV-2 variants, immunity, and vulnerability 302 
were not available. 303 
 304 
COVID-19 Time-varying Reproduction Number Estimation: We estimated Rt, a weekly measure of real-time 305 
transmission in each US jurisdiction, using COVID-19 case data reported to the Centers for Disease Control and 306 
Prevention (CDC). For each reported case, an onset date was sampled from the time-specific onset-to-report delays 307 
distribution in the national line list data set. To estimate Rt, onset dates were back projected from case report dates 308 
using time-specific delays; infection dates were sampled using a log-normal distribution for the incubation periods [log 309 
mean = 1.63 and log standard deviation = 0.5 based on published data (44)]. We then generated 10 bootstrapped 310 
samples of each jurisdictional time series using a centered 14-day moving window to account for variability in daily 311 
reporting when estimating Rt. Finally, for each trajectory we estimated Rt using the methods described in Cori et al (45). 312 
We used a 7-day window and an uncertain serial interval (SI) (mean: 5 days, standard deviation: 1 day), with 5 samples 313 
from the SI distribution and 5 samples of the Rt posterior for each SI value (46). We thus generated 250 Rt samples for 314 
each time point and jurisdiction and used the mean estimate on each Wednesday as the outcome for subsequent 315 
analyses. 316 
 317 
Covariate data: We included data on mitigation policies, personal mitigation behaviors, the circulation of key variants, 318 
weather, indicators of immunity, and vulnerability indicators described below and in the Supplemental Text. We 319 
assessed correlation between covariates by estimating the median pairwise R2 with bivariate regression models (see 320 
Supplement 1). 321 
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 322 
COVID-19 mitigation policies: Standardized policy data were obtained from the Oxford COVID-19 Government Response 323 
Tracker (47). The dataset includes a composite indicator (OSI) of the overall strictness of COVID-19 policies and strength 324 
of pandemic-related communication (details in Supplement 1). We used a smoothed, daily time series of jurisdiction-325 
level OSI, rescaled the values to range from 0 to 1, and calculated a jurisdictional weekly mean.  326 
 327 
We also used jurisdiction-level time series for three individual policies included in the OSI indicator (cancellation of 328 
public events, restrictions on gathering sizes, and stay at home orders) and mask mandates from the Oxford COVID-19 329 
Government Response Tracker (not included in OSI). We chose to examine these four policies because they were 330 
commonly implemented across the United States and represented key, distinct mitigation measures. We dichotomized 331 
all policy variables into the strictest policy versus all other implementations/no policy. Data management processes for 332 
these data are described in the Supplemental Text.  333 
 334 
Personal COVID-19 mitigation behaviors: Jurisdiction-level, personal behavior data were collected from a variety of 335 
sources. Self-reported mask use in public (previous 5 or 7 days) and attendance at gatherings (in the past 24 hours) were 336 
collected from the COVID-19 Trends and Impact Survey of Facebook users (48, 49) (See Supplemental Figure 2); mobility 337 
data were collected from Google’s COVID-19 Community Mobility Reports (50); and national travel estimates were 338 
collected from the Transportation Security Administration (51). From the Community Mobility Report data, we included 339 
the proportional reduction in weekly median mobility to retail and recreation locations relative to baseline mobility from 340 
January 3- February 6, 2020. We also included the weekly median reduction in national airline travel relative to 341 
maximum weekly travel in 2019. We set the reference to the maximum weekly travel in 2019 to ease interpretation of 342 
the coefficients in the final model.  343 
 344 
Circulation of key SARS-CoV-2 variants: We estimated the weekly proportion of Alpha (B.1.1.7) and Delta (B.1.617.2) 345 
SARS-CoV-2 variants in circulation by fitting sequence data to a multinomial logistic regression model, which included 346 
normalized survey weights to account for reporting patterns within and between jurisdictions (52). 347 
 348 
Weather data: We pulled temperature (°C) data from weather stations included in the National Oceanic and 349 
Atmospheric Administration’s Integrated Surface Database (53), using the package “worldmet” (54). From station level 350 
data, we calculated the weekly median temperature in each jurisdiction. Given the role of humidity in respiratory virus 351 
transmission (55, 56), we also assessed associations with relative humidity and absolute humidity to guide our modeling 352 
(Supplemental Figure 3).  353 
 354 
Indicators of immunity: We included infection-acquired and vaccine-derived immunity to SARS-CoV-2 indicators in our 355 
models. As a proxy measure of infection-acquired immunity, we modeled jurisdiction-level seroprevalence, adjusting 356 
estimates for reduced percent of positive assays based on waning immunity using methods described by García-Carreras 357 
and colleagues using data from national SARS-CoV2 serosurveys (57). For vaccination, we used the weekly jurisdictional 358 
percentage of individuals with a completed primary series of COVID-19 vaccine (58).  359 
 360 
COVID-19 vulnerability indicators: We included variables that represent static underlying components that influence 361 
transmission, which were developed as part of the CCVI (59) and range from 0 to 1 across all jurisdictions: 1) Racial and 362 
Ethnic Diversity 2) Percentage of Population Working or Living in Environments with High COVID-19 Infection Risk, 3) 363 
Socioeconomic Status, 4) Housing type, Transportation, Household Composition and Disability, and 5) Population 364 
Density (see Supplemental Figure 4 for Pearson correlation coefficients for CCVI indicators, and Supplemental Figure 5 365 
for spatial distribution and correlation with time-varying covariates). 366 
 367 
Statistical Analysis: We assessed the association between Rt and selected determinants with Bayesian Gaussian multi-368 
level regression models, using a log-link function and jurisdiction- and time-specific intercepts (as random effects to 369 
account for spatiotemporal autocorrelation). We assessed two models. The first focused on general government 370 
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response, using the overall OSI. The second model focused on the impact of the four individual policies: cancelation of 371 
public events, restrictions on gathering sizes, stay at home orders, and mask mandates. Both models were adjusted for 372 
the aforementioned covariates (Supplemental Text for model statements). For each model, we ran four Markov chains 373 
at 2,500 iterations each, with a burn in period of 1,250 iterations. We specified priors for an expected negative 374 
association for all components likely to decrease transmission (OSI, all individual mitigation policies, mobility, masking, 375 
reduced airline travel, cumulative COVID-19 cases, vaccination, and temperature) or expected positive association for 376 
those which may increase transmission (variants and each CCVI indicator). Priors were specified on the log-scale. For 377 
each coefficient with an expected negative association, we used a normal distribution with a mean of -0.7 and standard 378 
deviation of 0.1, approximating a 50% decrease with a 95% CI of 40-60%. We used a normal prior with a mean of 0.4 and 379 
a standard deviation of 0.1 for covariates with expected positive associations, approximating a 50% increase with a 95% 380 
CI of 20-80%. The intercept prior had a normal distribution with a mean of 1.1 and standard deviation of 0.1, reflecting 381 
an expected Rt without any mitigation behaviors or policies from 2.5 to 3.7 (95% CI). Model convergence was assessed 382 

using the Gelman-Rubin convergence diagnostic (��) and model fit was evaluated from the predictive posteriors. 383 
Jurisdiction-specific results for the OSI model are presented in Supplemental Figure 7. 384 
 385 
We conducted several sensitivity analyses. First, we compared these models to the same two models with naïve priors 386 
via leave-one-out (LOO) cross-validation (60) (Supplemental Figures 6) and compared models with different structures 387 
for temporal correlation (Supplemental Figures 8). Second, we re-ran the primary models using publicly available Rt 388 
estimates from the Centre for Mathematical Modeling of Infectious Diseases COVID modelling group (61) and compared 389 
the model results to those presented here (Supplemental Figures 9). Third, we re-ran the individual policy model 390 
without the behavior covariates (Supplemental Figures 10).  391 
 392 
Analyses were conducted using R (version 4.2.1), with the rstanarm package used for primary analyses. R code is 393 
available in a public repository (https://github.com/cdcepi/COVID-19-Mitigation_Rt).  394 
 395 
This activity was reviewed by CDC and was conducted consistent with applicable federal law and CDC policy1§. 

 396 
 397 
CDC disclaimer: The findings and conclusions in this report are those of the authors and do not necessarily represent the 398 
official position of the U.S. Centers for Disease Control and Prevention. 399 
 400 
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Figures  602 
 603 

Figure 1. The jurisdiction-specific weekly COVID-19 time-varying reproduction number (Rt), 90% confidence intervals in grey, and time periods reflecting 604 
implementation of specific non-pharmaceutical interventions (NPIs). State-wide implementation of stay-at-home orders are in red, restrictions on gatherings in 605 
yellow, cancellation of public events in dark blue, and universal masking when physical distancing was not possible in light blue. The solid vertical line represents 606 
January 1, 2021 and the dashed horizontal line reflects an Rt value of 1.0.  607 
 608 
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Figure 2. A. Distribution of time-varying covariates, including the Oxford Stringency Index (OSI), personal COVID-19 behaviors, proportion of key SARS-CoV-2 610 
variants in circulation, weather, and immunity to SARS-CoV-2. Lines reflect jurisdiction-level observations over time, with the median values across jurisdictions 611 
depicted by the bold line. The solid, black vertical line represents January 1, 2021. B. Average of the three selected Community Covid-19 Vulnerability Index 612 
(CCVI) indicators for each jurisdiction. 613 
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Figure 3. Percent change in the COVID-19 time-varying reproduction (Rt) number from policies, personal 616 
COVID-19 behaviors, proportion of key SARS-CoV-2 variants in circulation, weather, immunity to SARS-617 
CoV-2, and variables affecting underlying trends in transmission. The results from two different linear 618 
regression models are shown below. Model one, in pink, included the Oxford Stringency Index (OSI). 619 
Model two, in purple, included a subset of policies used to comprise the OSI. Both regression models 620 
were gaussian with log link function and had jurisdiction and time specific intercepts. 621 
 622 
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Figure 4. Estimates for jurisdiction-level proportional reductions in the COVID-19 time-varying reproduction number (Rt) over time for the Oxford Stringency 624 
Index (OSI) regression model. Colored lines depict the relative reduction for select sets of covariates and the solid vertical line represents January 1, 2021. 625 
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Figure 5. Average relative contribution of observed covariates on fitted COVID-19 time-varying 628 
reproduction number (Rt) across all jurisdictions from the OSI model. The highest values over time (i.e., 629 
the top of the pink band) represent Rt estimates including only the effects of local vulnerability and 630 
variants. The pink band represents reductions in Rt associated with changing weather. The blue bands 631 
represent reductions in Rt associated with infection-acquired immunity (dark blue) and with behavior 632 
modification (i.e., masking use, mobility, and national airline travel, combined and depicted with light 633 
blue). The green bands represent reductions in Rt associated with policies (light green) and vaccination 634 
(dark green). The fitted values from the regression model are represented with the top of the black band. 635 
The solid vertical line represents January 1, 2021. 636 
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