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Abstract

Multi-trait analysis has been shown to have greater statistical power than single-trait analysis. Most of the

existing multi-trait analysis methods only work with a limited number of traits and usually prioritize high

statistical power over identifying relevant traits, which heavily rely on domain knowledge. To handle diseases

and traits with obscure etiology, we developed TraitScan, a powerful and fast algorithm that agnostically

searches and tests a subset of traits from a moderate or large number of traits (e.g., dozens to thousands)

based on either individual-level or summary-level genetic data. We evaluated TraitScan using extensive

simulations and found that it outperformed existing methods in terms of both testing power and trait

selection when sparsity was low or modest. We then applied it to search for traits associated with Ewing

Sarcoma, a rare bone tumor with peak onset in adolescence, among 706 traits in UK Biobank. Our analysis

revealed a few promising traits worthy of further investigation, highlighting the use of TraitScan for more

effective multi-trait analysis as biobanks emerge. Our algorithm is implemented in an R package ‘TraitScan’

available at https://github.com/RuiCao34/TraitScan.
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1 Introduction

Genome-wide association studies (GWAS) have successfully

improved the understanding of the genetic basis of many traits.

The emergence of deeply phenotyped GWAS databases such as

UK Biobank (Bycroft et al., 2018), eMERGE (Gottesman et al.,

2013), and Vanderbilt BioVU (Roden et al., 2008), has facilitated

studying associations between single nucleotide polymorphisms

(SNPs) and a large number of traits. Phenome-wide association

studies (PheWAS) have utilized this rich source of SNP-trait

relationships to explore disease risks (Denny et al., 2010) and

drug development (Diogo et al., 2018). By evaluating each trait

individually, PheWAS is computationally fast to implement.

However, it is well documented that joint multivariate analyses

can be more powerful than univariate analyses such as PheWAS

(Robinson et al., 2018). Many efforts have been devoted to multi-

trait analyses that evaluate the relationships between a SNP and a

set of traits simultaneously (O’Reilly et al., 2012; Kim et al., 2015;

Zhu et al., 2015; Li and Zhu, 2017). Nonetheless, existing multi-

trait analyses rely on domain knowledge to select a small number

of related traits, and most of them only focus on obtaining high

statistical power in hypothesis testing.

We are motivated to understand which risk factors contribute

to childhood cancers, which are universally rare and have obscure

disease etiology. For example, the etiology of Ewing sarcoma

(EWS) remains unclear (Lahat et al., 2008), and conventional

epidemiological methods to understand the disease are limited due

to the extremely rare incidence rate of EWS (Spector et al., 2021).

Recently, several genetic risk factors were identified in a GWAS of

EWS (Machiela et al., 2018), potentiating the use of PheWAS to

explore the risk factors agnostically. However, PheWAS can suffer

from limited statistical power when scanning over a large number

of traits, and simply applying the existing multi-trait methods to

a large number of traits does not always yield meaningful results

as the polygenic nature of some traits would eventually drive the

statistical significance. To address the aforementioned limitations,

we propose a novel multi-trait analysis method, TraitScan, that

values both trait selection performance and high statistical power.

Our method ‘TraitScan’ is based on a fast subset scan framework
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(Neill, 2012) with a linear scan time of the number of traits and

thus can handle high-dimensional trait selection. Our method

contains three test statistics: higher criticism (HC), truncated chi-

square (TC), and a combined test of HC and TC. We note a

similar method ASSET (Bhattacharjee et al., 2012) with the same

objective. However, it requires an exhaustive search of all possible

subsets, which results in an exponential scan time and thus is not

computationally efficient when the number of traits exceeds a few

dozen.

Our proposed TraitScan algorithm is able to utilize summary-

level GWAS data in situations where individual-level data are not

available. Due to the logistical limitations and privacy concerns

of sharing individual-level data, it has become a common practice

to share GWAS summary statistics. Leveraging publicly available

summary-level data, our method can filter relevant pleiotropic

traits on any given SNP. Through simulations, we show that our

method has high power and sensitivity in terms of trait selection

under moderately sparse to sparse situations (i.e., the number of

truly associated traits is smaller than or close to the square root

of total traits). We evaluate traits associated with EWS through

GWAS summary statistics on 706 traits filtered from the UK

Biobank study (Sudlow et al., 2015). Besides single SNPs, we

also show that our method can be extended to genetic scores,

such as the predicted gene expression levels in transcriptome-wide

association studies (TWAS) (Feng et al., 2021) and polygenic

risk scores (PRS) (Torkamani et al., 2018). We implement our

method in an R package ‘TraitScan’ that is publicly available at

https://github.com/RuiCao34/TraitScan. The package provides

an option to use the pre-calculated null distributions of the test

statistics, which can handle screening 706 traits in 36 seconds.

2 Materials and methods

2.1 Models

Our method performs a scan for traits under the null hypothesis

that none of the traits is associated with the genetic variant of

interest (i.e., SNP). Assume that the data consist of p continuous

traits and a minor allele dose for a SNP collected from n

individuals, for j = 1, . . . , p. Let yj = (y1j , . . . , ynj)T be a

vector of values of the jth trait for each of the n individuals,

x = (x1, . . . , xn)T a vector of the minor allele doses of the SNP of

interest, and ϵj = (ϵ1j , . . . , ϵnj)T a vector of error terms for the

jth trait. For continuous traits, we assume that each trait can be

modeled as a linear function of the genetic variant, and without

loss of generality, yj is centered and standardized:

yj = xβj + ϵj . (1)

We define our null hypothesis as:

H0 : β1, . . . , βp = 0. (2)

Let Y = (y1, . . . , yp), β = (β1, . . . , βp) and ϵ = (ϵ1, . . . , ϵp). We

can stack the models together as:

Y = xβ + ϵ. (3)

To model the correlation structure between the traits, we

assume that x is fixed and the rows of ϵ represent n × p i.i.d.

observations from an MVN(0,Ω) distribution, where 0 is a vector

of zeroes of length n × p and Ω = In×n ⊗ Σ, where Σ is the

potentially unknown p × p covariance matrix of the traits. When

the individual-level data are available, the matrix can be estimated

from the residuals of fitting separate linear regression models:

Σ̂ = 1
n−p

∑n
j=1(yj − xβ̂j)(yj − xβ̂j)T , where β̂j is the ordinary

least square estimate.

When only summary statistics are available, which typically

consist of β̂j , se(β̂j) from Equation 1 and the z-score from a Wald

test zj = β̂j/se(β̂j), each entry of Σ̂, σ̂ij can be approximated

using the null SNPs (i.e. the SNPs with no association with any

traits) by ignoring the estimation error of β̂ (Kim et al., 2015; Liu

and Lin, 2018):

cor(zi, zj) ≈ cor(β̂i, β̂j) = cor(
xT

xT x
yi,

xT

xT x
yj) = cor(yi, yj) ≡ σij .

(4)

Additionally, when the summary statistics come from

overlapping but not identical samples, the correlation between z-

scores is still proportional to the trait correlation σij (Li et al.,

2021):

cor(zi, zj) ≈ cor(β̂i, β̂j) =
nij

√
ninj

σij , (5)

where ni, nj ,and nij are the sample sizes of trait i, trait j, and

their overlapping samples respectively. Since the (i, j)th z-score

correlation is a constant across all null SNPs, it can be estimated

empirically (Zhu et al., 2015):

ˆcor(zi, zj) =

∑
k(z

k
i − z̄i)(zkj − z̄j)√∑

k(z
k
i − z̄i)2

∑
k(z

k
j − z̄j)2

, (6)

where zki is the z-score for null SNP k and trait i, and z̄i is the

mean of vector (z1i , ..z
k
i , ...) across all null SNPs.

For binary traits, a logistic regression model is usually fitted in

GWAS:

log
P (yij = 1|xi)

1− P (yij = 1|xi)
= βj0 + xiβj1. (7)

When the effect size βj1 is small, which most often happens

in GWAS, the logistic regression model can be approximated by a

linear regression model based on the first-order Taylor expansion

on βj1:

P (yij = 1|xi) =
1

1 + e−xiβj1−βj0
≈ αj0 + αj1xi + ξ, (8)

where αj0, αj1, and ξ can be regarded as linear regression

coefficients. The covariance for binary traits can be similarly

derived using summary statistics of the null SNPs. In practice,

null SNPs can be chosen based on GWAS p-values (i.e., > 0.05).

2.2 Scan Statistics

Our subset scanning algorithm relies on a score statistic F , which

is a function of a non-empty subset S ⊆ {1, . . . , p}. It quantifies

the amount of anomalousness found in traits {yj |j ∈ S} under the

null hypothesis that no trait is associated with the SNP. The most

anomalous subset is found by maximizing F (S) over all non-empty

subsets of the traits. Calculating F (S) over all possible subsets

S is extremely burdensome when p is large. To ensure efficient

maximization, we use subset scanning techniques and strive for a

statistic accompanying priority function that satisfies the strong

linear time subset scanning (LTSS) property:

Definition 1 (Neill (2012)) The score function F (S) and priority

function G(j; ỹ) satisfy the strong LTSS property if and only if,
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for all j = 1, . . . , p, max
S:|S|=j

F (S) = F ({ỹ(1), . . . , ỹ(j)}), where ỹ(j)

is the trait with the jth highest value of G(·; ỹ).

If F (S) satisfies the strong LTSS property, the subset S∗ that

maximizes F (S) must be the subset containing the c highest-

priority traits {ỹ(1), . . . , ỹ(c)} for some c between 1 and p. Thus,

to solve the global optimization problem, we can simply sort the

traits by their priority value given by G and then compute F (S)

with S taken to be one of the p subsets {ỹ(1)}, {ỹ(1), ỹ(2)}, . . . ,
{ỹ(1), . . . , ỹ(p)}.

Neill (2012) gave a constructive theorem that produces a

specific priority function G(j; Ỹ ) that follows directly from the

score function F (S) when certain properties hold. This pair of

functions is then guaranteed to satisfy the strong LTSS property.

Theorem 1 (Neill (2012)) Let F (S) = F (T, |S|) be a function

of one additive statistic of subset S, T (S) =
∑

j∈S g(j; ỹ) (where

g(j; ỹ) depends only on trait ỹj) and the cardinality of S, |S|.
Assume that F (S) is monotonically increasing with T (S), then

F (S) satisfies the strong LTSS property with priority function

G(j; ỹ) = g(j; ỹ).

We thus construct two score statistics, HC and TC that satisfy

the conditions of Theorem 1 while quantifying the amount of

anomalousness found in a subset of the traits under the null

hypothesis. We show by simulations that the HC or TC method

had better performance than performing PheWAS under different

scenarios. We also combine the two tests by taking the minimum

p-value of the two tests, which enables us to achieve results

comparable to the better-performed HC or TC method in terms

of statistical power and trait selectivity.

2.2.1 Decorrelation

As in Theorem 1, a trait-level statistic is required to quantify

the amount of association between a trait and a genetic variant.

We used the p-value pj of the Wald test zj from the separate

regression models (Equation 1), for j = 1, . . . , p. As the traits are

correlated and sampled from the same or overlapping individuals

in our framework, the pj ’s are correlated. Herein, we perform the

ZCA-cor whitening method (Kessy et al., 2018) on zj , ensuring

that the whitened z∗j remains maximally correlated with zj . Then

we obtain the p∗j corresponding to z∗j .

2.2.2 Higher Criticism Statistic

Following McFowland et al. (2013), we choose the HC score

function: FHC,α(S) =
Nα−α|S|√
|S|α(1−α)

, where Nα =
∑|S|

j=1 nα(p∗j ) =∑|S|
j=1 I(p∗j < α). The score function is the standardized difference

between the observed count of p-values lower than a p-value

threshold α and the expected count. According to Theorem 1,

it can be easily seen that FHC(S) is a function of |S| and one

additive statistic Nα. FHC(S) is monotonically increasing with

Nα and thus satisfies the strong LTSS property with priority

function nα(p∗j ) = I(p∗j < α).

As we do not know the optimal α, we define grid-based HC test

statistic HHC :

HHC = maxSFHC(S) = maxαmaxSFHC,α(S) (9)

over a grid of α and its corresponding subset

SHC = argmaxSFHC(S). (10)

An ideal α grid should ensure all possible subsets in the search

space, therefore, there should be no more than one p-value between

two arbitrary adjacent α’s. In practice, we recommend the α grid

as a geometric sequence from the Bonferroni significant p-value

threshold to overall Type I error with a sequence length of 200, i.e.

α1, ..., α200 = 0.05/p, ..., 0.05︸ ︷︷ ︸
nα=200

. The lower bound of α ensures that

our test would always be more powerful than PheWAS in special

scenarios where all traits are uncorrelated. In the meanwhile, we

use an upper bound of 0.05 to decrease the search space.

2.2.3 Truncated Chi-squared Statistic

The HC test may not have ideal performance under non-sparse

scenarios (Barnett et al., 2017) and does not take into account

the strength of association. To make our method more robust, we

propose an additional statistic, which is similar to the truncated

z-score method (Bu et al., 2020) and also meets the strong LTSS

property. First, we define γ as the |z∗| threshold, which is

closely related to α in HC statistics: γ = Φ−1(1 − α/2) and

Φ as the cumulative distribution function of a standard normal

distribution. The score function F (S) is defined as FTC(S) =

−log(PMγ(S)|H0), i.e. the negative log p-value of the subset score

function Mγ(S) =
∑|S|

j=1 I(|z∗j | > γ)z∗j
2 with priority function

I(|z∗j | > γ)z∗j
2.

Note that Mγ is a non-decreasing function of S, and FTC(S)

is monotonically increasing with Mγ , thus satisfying the strong

LTSS property. Similarly, we test a grid of γ one-to-one mapping

to the grid of α defined previously:

HTC = maxSFTC(S) = maxγmaxSFTC,γ(S) (11)

STC = argmaxSFTC(S) (12)

γ grid is chosen in correspondence with the α values.

2.3 Assessing Significance

We have now obtained two subsets SHC and STC that maximize

HC or TC statistics. As described above, both subsets always

include at least one trait. To determine whether the selected subset

is sufficiently anomalous, we calculate the corresponding p-values

pHC and pTC by comparing the two statistics HHC and HTC

with their distributions under the null hypothesis.

pHC can be calculated analytically (Supplementary Materials).

As for pTC , we use Monte Carlo (MC) simulations. We start

by simulating p z-scores under the null, i.e. standard normal

distribution for B iterations. For the bth iteration, the HTC,b

can be calculated, and empirical p-values pTC can be estimated

from the simulated HTC distribution.

pTC = ΣbI(HTC > HTC,b)/B. (13)

To combine the HC and TC tests, we compare the p-values

pHC and pTC and get the grid-based statistics:

Hcombined = min(pHC , pTC), (14)

and the traits selected by the combined test are also determined

by the test with a smaller p-value:

Scombined = SargminMpM
, (15)
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where M = HC or TC. The empirical null distribution of

Hcombined can be similarly simulated by MC, and the p-value

from the combined test pcombined is calculated by comparing the

test statistic Hcombined and its distribution under the null.

If the null hypothesis is rejected, we can conclude that the SNP

is associated with at least one trait contained in S∗. Note that this

MC simulation step only depends on the number of traits p and

the choice of F-statistics. For SNPs sharing the same number of

traits p, we do not need to recompute the test statistic distribution

under the null.

2.4 Extension to Genetic Scores

Genetic scores integrate information from multiple SNPs. Linking

traits with genetic scores could bring in more statistical power

and provide a meaningful interpretation of the results. Genetic

scores, which are usually the linear combinations of allele

counts of multiple SNPs, have been extensively developed and

distributed. Polygenic risk scores that predict the risk of clinical

and epidemiological traits (Lewis and Vassos, 2020) or imputation

models for gene expression levels in TWAS (Xu et al., 2023)

are two types of commonly used genetic scores. We will show

how TraitScan can be easily utilized on genetic scores using

summary-level GWAS data and an external genetic reference

panel.

2.4.1 Continuous Traits

Let Xgs denote the genetic score from q SNPs: Xgs =
∑q

l=1 clXl,

whereXl = (x1l, ..., xnl) is the genotype vector for n individuals at

the lth SNP, and cl is the SNP weight vector. In GWAS models,

the jth trait yj is marginally regressed on each SNP Xl, and

regression coefficients β̂jl and se(β̂jl) are estimated from the linear

regression model

yj = Xlβjl + ϵjl. (16)

For the genetic score, we are interested in the regression model

yj = Xgsβj,gs + ϵj,gs (17)

and test the null hypothesis

H0,gs : β1,gs, . . . , βp,gs = 0. (18)

When individual-level data are available, the regression

coefficients β̂j,gs and se(β̂j,gs) with z statistic from the Wald test

zj,gs = β̂j,gs/se(β̂j,gs) can be directly calculated. When only

summary-level data are available, we have

β̂j,gs = (XT
gsXgs)

−1XT
gsyj , (19)

se(β̂j,gs) =
√

σ̂2
gs(X

T
gsXgs)−1, (20)

σ̂2
gs =

yTj yj − yTj Xgs(XT
gsXgs)−1XT

gsyj

nj − q
, (21)

where σ̂2
gs is the residual variance estimate and nj is the sample

size for jth trait. The items XT
gsyj and yTj yj can be derived from

GWAS summary data (Pattee and Pan, 2020):

XT
gsyj = nj(ŝ

2
1β̂j1, . . . , ŝ

2
pβ̂jp), (22)

yTj yj = n2
j × ŝ2l × se(β̂j,gs)

2 + nj × ŝ2l × β̂2
j,gs, (23)

where ŝ2l is the variance of SNP l. Both ŝ2l and the genotype matrix

XT
gsXgs can be estimated from a reference panel comprising

genotypic data of individuals from a general population (1000

Genomes Project Consortium, 2015). In practice, for Equation 23,

we can calculate yTj yj across multiple SNPs and take the median

as the estimate.

After z statistics {zj,gs} are computed, we could follow the

same decorrelation and trait scanning steps as above since the

genetic score can also be treated as a SNP, and the covariances

between {zj,gs} are identical under the null hypothesis.

2.4.2 Binary Traits

We have the logistic regression for binary traits:

log
P (yij = 1|xil)

1− P (yij = 1|xil)
= b0,jl + xilbjl (24)

for ith individual, jth trait, and lth SNP, and b0,jl and bjl are

the regression coefficients. Following Pattee and Pan (2020), we

could approximate P (yij = 1|xil) as a continuous outcome under a

linear regression model and denote β0,jl and βjl as the coefficients.

The following equations hold:

β̂jl =
e−b̂0,jl

(1 + e−b̂0,jl )2
b̂jl, (25)

se(β̂jl) = (
e−b̂0,jl

(1 + e−b̂0,jl )2
)2se(b̂jl), (26)

where e−b̂0,jl =
P (yij=0)

P (yij=1)
is the ratio of control and case sizes.

The logistic regression coefficients can be thus converted to linear

regression coefficients and handled by the steps mentioned above.

3 Real Data application

We used our method on UK Biobank GWAS data to find out

potential traits linked to EWS. EWS is a type of rare childhood

cancer in bone or soft tissue (Li and Chen, 2022). Previous

studies (Postel-Vinay et al., 2012; Machiela et al., 2018) suggested

that six SNPs rs113663169, rs7742053, rs10822056, rs2412476,

rs6047482, and rs6106336 were significantly associated with EWS

in individuals of European ancestry. We analyzed these six SNPs

using the GWAS summary statistics of the UK Biobank data

(team, 2020).

UK Biobank is a large-scale database encompassing a broad

range of phenotypes, where individuals’ genetic data are linked

to electronic health records and survey measures (Sudlow

et al., 2015). The phenotypes include population characteristics,

biological markers, medical history, environments, dining habits,

cognitive functions, etc. In the GWAS study, samples with

sex discordance and SNPs with low minor allele counts or low

imputation scores were filtered out. Summary statistics of GWAS

were obtained from fitting generalized mixed models with a kinship

matrix as a random effect and covariates as fixed effects within

each genetic ancestry. The heritability of each trait was provided,

which was estimated by the Scalable and Accurate Implementation

of GEneralized mixed model (SAIGE) (Zhou et al., 2018). More

method and analysis details can be found on the Pan-UK

Biobank website (https://pan.ukbb.broadinstitute.org/). In

our analysis, we focused on the GWAS summary statistics for

individuals of European ancestry and with a sufficient number

of participants of both genders. We applied the following criteria

which left us with 706 traits to perform the TraitScan algorithm:
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Table 1. Use TraitScan to search among 706 traits in UK Biobank for EWS-linked SNPs.

SNP Trait category Most significant trait in the category PheWAS p-value

rs113663169
Touchscreen questions Natural hair color: blonde ≤ 10−20

Baseline characteristics Seated height 3.19× 10−7

rs10822056 Biological samples Monocyte count 1.19× 10−13

rs2412476 Biological samples
Aspartate aminotransferase ≤ 10−20

Erythrocyte distribution width ≤ 10−20

rs6047482 Biological samples Urea 1.02× 10−7

rs6106336 Biological samples Insulin-like growth factor 1 6.16× 10−7

• Continuous traits with a sample size of at least 5,000 or binary

traits with a sample size of at least 5,000 cases and 5,000

controls.

• Traits with genetic heritability estimated to be larger than 0.

• Traits with at least one genome-wide significant SNP (p-value<

5× 10−8).

• Traits with the sample size of each sex larger than 20.

• Traits belonging to these categories were included: health-

related outcomes, online follow-up, biological samples, X-ray

absorptiometry (DXA), cognitive function, verbal interview,

touchscreen questions (except traits related to eyes), and

baseline characteristics.

As we intended to evaluate six SNPs, the significance level for

TraitScan tests was set at 0.05/6 = 0.0083 after the Bonferroni

correction. SNPs rs113663169, rs10822056, rs2412476, rs6047482,

and rs6106336 were shown to have significant associations with

at least one trait out of 706 examined traits in UKBiobank by

TraitScan (TraitScan combined tests p-value ≤ 1 × 10−4). For

SNP rs7742053, TraitScan combined test p-value was 0.863 and

thus did not reach statistical significance. Table 1 summarizes the

results of TraitScan combined test for the most significant trait

in each category identified for the five SNPs. It showed traits

that were highly significant in PheWAS were also captured by

TraitScan. In fact, TraitScan identified a total of 21 UK Biobank

traits related to the five EWS-linked SNPs, while 8 of the trait-

SNP associations did not reach statistical significance in PheWAS

(using a Bonferroni-significant threshold at 0.05/(706 × 6) =

1.18×10−5). A full list of selected traits is shown in Supplementary

Materials (Table S1).

To demonstrate the TraitScan application on genetics scores,

we further carried out our method on the transcriptomic scores of

gene KIZ and gene RREB1, i.e., the SNP-imputed gene expression

of the two genes, with the 706 UK Biobank traits. KIZ and

RREB1 had strong evidence to be linked to three top genome-

wide significant SNPs in EWS GWAS (KIZ was linked to SNPs

rs6047482 and rs6106336, and RREB1 to rs7742053) (Machiela

et al., 2018). The weights in the transcriptomic scores of human

blood were obtained from Xu et al. (2023), and the internal

r2 of the scores were 0.206 and 0.031 for KIZ and RREB1,

respectively. The significance levels for both genes were set at

0.05/2 = 0.025 after the Bonferroni correction. In addition, we

also tested the relationship between the number of risk alleles

identified in Machiela et al. (2018) with EWS. It was shown that

EWS cases had on average 1.08 more risk alleles than controls

(p-value = 2.44× 10−63 ).

After applying TraitScan on the genetic scores, neither of

the two genes KIZ (p-value = 0.0826) and RREB1 (p-value

= 1) reached statistical significance in TraitScan, although the

trait insulin-like growth factor 1 (IGF-1) picked up by KIZ

was marginally significant. On the other hand, imputed gene

expression of RREB1, of which rs7742053 was an expression

quantitative trait loci (eQTL), had no evidence of linking to any

of the 706 traits. The genetic score of six EWS SNPs, however,

was significantly associated with three traits: blonde hair color,

ease of skin tanning, and monocyte percentage (TraitScan p-value

< 1 × 10−4), while the PheWAS identified two additional traits

on the EWS score: patient care technician location and facial pain

experienced in last month.

To investigate the causal relationship between EWS and the

selected traits, we further performed bidirectional Mendelian

randomization (MR) analysis on the traits selected by TraitScan

using the TwoSampleMR package (Hemani et al., 2018, 2017).

The instrumental variables were selected from either UK Biobank

or EWS GWAS data and were clumped by r2 < 0.001 and p-

value < 5 × 10−5. For the selected traits with more than one

instrumental variable, inverse-variance weighted (IVW), Egger

regression, weighted median, simple mode, and weighted mode

methods were applied, while the Wald ratio method was applied

for the selected traits with one instrumental variable. Full results

are reported in Table S2. EWS was shown to be causal for lower

Alkaline phosphatase levels, the trait selected to be associated

with SNP rs10822056 in TraitScan but not PheWAS (MR IVW

coefficient = −0.53 with p-value = 0.084 and MR weighted

median coefficient = −1.10 with p-value = 1.31 × 10−4). For

the casual direction where EWS was the exposure, no MR

test reached statistical significance after accounting for multiple

testing, suggesting no causal effect from EWS to the selected UK

Biobank traits.

4 Simulation

Throughout the simulations, we used five metrics to assess the

performance of each method, i.e., power, size, recall, precision,

and Jaccard similarity. Let p be the total number of traits, S∗ be

the subset of traits as chosen by a particular method and let S0

be the true subset of pleiotropic traits. The size was defined as

E|S∗|. Then, we defined precision to be E |S∗∩S0|
|S∗| , the proportion

of traits identified by the method that was truly associated with

the SNP. We defined recall to be E |S∗∩S0|
|S0|

, the proportion of the

pleiotropic traits identified by the method. We defined Jaccard

similarity, a combination of precision and recall, to be E |S∗∩S0|
|S∗∪S0|

.

Finally, power was assessed by comparing the observed statistic to

the simulated distribution of null statistics.

We compared the performance of variable selection and

testing for TraitScan using summary statistics with some existing

methods: PheWAS (with Bonferroni adjustment), CPASSOC
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Fig. 1: Simulation scenario 1 with varying numbers of truly

associated traits (p = 50)

(Shom, Shet) (Zhu et al., 2015), MTaSPUs (Kim et al., 2015), and

generalized higher criticism (GHC) (Barnett et al., 2017). Among

these methods, MTaSPUs and Shom cannot select traits, and

thus we only evaluated their performance in terms of statistical

power. Shet includes a parameter grid as the thresholds for z-

scores and can naturally select out the traits with absolute z-scores

smaller than each threshold. As suggested by their package, the

parameter grid was set as the observed trait p-values. The GHC

was originally proposed for SNP set association with a single trait,

and here we used it for a single SNP association with multiple

traits. We did not compare our method with ASSET because it is

not computationally efficient in our simulation settings (706 traits

for the real data variance-covariance scenario and 50 traits for the

rest of the scenarios).

We conducted simulations under multiple scenarios to show

TraitScan has higher power and Jaccard similarity under

moderately sparse ( |S0|/p < 0.4) and sparse situations ( |S0|/p <

0.05). We focus the discussion on the scenarios with varying

numbers of truly associated traits (scenario 1) or with real data

variance-covariance matrix (scenario 2) and briefly discuss the

other four scenarios and their results.

We assessed the method performance by varying the number

of truly associated traits |S0| in scenario 1 (Figure 1). In terms of

statistical power, we observed that TraitScan test statistics (HC,

TC, HC+TC) had the highest power under moderately sparse and

sparse situations (|S0| < 22, or |S0|/p < 0.44). The HC test was

more powerful than the TC test under extremely sparse situations

(|S0| = 1). When |S0| = 50, the GHC, MTaSPUs, PheWAS, and

Shom had the highest power, and TraitScan and Shet were less

powerful. In terms of variable selection performance, we found

that TraitScan test statistics (HC, TC, HC+TC) also had the

highest Jaccard similarity under moderately sparse and sparse

situations (|S0| < 22, or |S0|/p < 0.44), while Shet had better

Jaccard similarity as increasing proportion of truly associated

traits. However, Shet tended to over-select traits and thus had

the lowest precision under most situations.

We also tested method performance using the covariance

matrix and effect sizes estimated from the 706 UK biobank traits

(Figure 2), where 38 traits with marginal p-value ≤ 0.05 were

set as a true subset of pleiotropic traits. In this scenario, we

Fig. 2: Simulation scenario 2 with real data covariance matrix and

effects from SNP rs113663169 (p = 706, |S0| = 38). Effect size is in

proportion to the estimated correlation observed in UK Biobank.

compared the performance of PheWAS and TraitScan under trait-

SNP associations of different strengths. Shet, GHC, and MTaSPUs

were not applied due to the computational burden, and Shom was

excluded due to the homogeneous effect assumption was not met

in the simulation and unlikely to be met in real data analysis. By

comparing the Type I errors (β = 0), we showed that TraitScan

tests were well calibrated, while PheWAS had a slightly deflated

Type I error rate due to its independence assumption among traits.

Similar to scenario 1 mentioned above, TraitScan had higher power

and Jaccard similarity over PheWAS under all effect sizes. We also

notice that the selected trait size did not grow with effect size.

When the effect sizes were small, the p-values of truly associated

traits and null traits were close, and TraitScan tended to select a

large set of traits as the most anonymous trait subset.

We showed that TraitScan can handle mixed types of traits

(i.e., continuous and binary) simultaneously (Figure S1) and

the performance followed the same pattern as continuous traits.

TraitScan still demonstrated the highest power and Jaccard

Similarity under effects varying in both directions and magnitudes

(Table S3), under block-diagonal correlated traits (Figure S2),

or different correlation magnitudes or structures (Table S4).

Moreover, we found that TraitScan had higher power and Jaccard

similarity when handling more highly correlated traits. The

detailed parameter settings of the simulation can be found in

Supplementary Materials.

5 Discussion

We proposed a new method called TraitScan for post-GWAS trait

subset scanning and testing. While most of the existing multi-trait

methods rely on domain knowledge, our method allows agnostic

search among a large number of traits and is able to identify a set

of traits with the most anomalousness. TraitScan utilizes the fast

subset scan framework (Neill, 2012), resulting in a linear scan time

over the number of traits. Taking correlation among traits into

consideration, TraitScan has demonstrated higher power and trait

selectivity than PheWAS when sparsity was low or modest. The

method is compatible with both individual-level and summary-

level GWAS data, although we focus more on summary-level
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Table 2. Computational time in seconds for 5,000 iterations (10 traits)

Method Time

GHC 129.5

ASSET 5191.8

Shet 9.0

TraitScan-MC: HC + TC 46.1

TraitScan-analytic: HC 21.7

TraitScan-precalculated: HC+TC 28.6

GWAS data herein to allow an easy application to existing deeply

phenotyped GWAS summary statistics databases.

In implementation, we recommend a grid of 200 α′s with

the minimum α as the Bonferroni significant p-value cutoff and

maximum α of 0.05. A practical issue faced by TraitScan and other

threshold-based multi-trait methods is the choice of the density of

thresholds. For the statistic Shet, Zhu et al. (2015) recommended

flexible thresholds which are the same as the input z-scores, while

Bu et al. (2020) and TraitScan used fixed p-value thresholds.

In simulations (not shown), we observed a dramatic power and

precision loss of Shet using the same fixed threshold grid as in

TraitScan. It is noteworthy that TraitScan always selects traits

that are statistically significant in the decorrelated univariate

analysis as we set the minimum α as the Bonferroni significant

p-value cutoff. Based on our experience with simulations and real

data analyses, we recommend a maximum α of 0.05 as traits with

decorrelated p-values larger than 0.05 have never been selected

by our algorithm. Since TraitScan includes a MC step simulating

the null distribution of test statistics, an overly dense α grid may

slow down the algorithm. We found a grid of 200 α′s is sufficiently

dense when handling hundreds of GWAS traits.

Given a fixed number of α′s, TraitScan has an O(p) time

complexity. If the number of α′s is proportional to p, the time

complexity is O(p2). While for the other multi-trait analysis

methods, the Shet test in CPASSOC also has an O(p) time

complexity given a fixed p-value threshold, since it ranks the

p-values and directly applies the threshold onto the raw p-

values. When the thresholds are set as the input p-values,

which is recommended in the CPASSOC pipeline, its time

complexity is also O(p2). The ASSET has an O(2p) time

complexity, meaning the computational time will be doubled once

adding one more trait. Table 2 lists the computational time for

analyzing 10 traits 5,000 times using different methods, including

TraitScan with 10,000 iterations in the MC simulation (TraitScan-

MC), TraitScan:HC test based on analytical null distribution

(TraitScan-analytic), and TraitScan test using a precalculated

null distribution estimated by MC with a given p (TraitScan-

precalculated). The trait correlations and β parameters are the

same as in Scenario 1.

In the examination of traits associated with EWS, TraitScan

identified eight additional trait-SNP associations which did not

reach the PheWAS significance level. One of these traits, alkaline

phosphatase, measured by blood assays, also showed significance

in MR analysis, suggesting it was causally related to EWS.

Evidence has shown the presence of abundant alkaline phosphatase

activity in EWS tumor cells (Sharada et al., 2006); however,

the direction of association between alkaline phosphatase and

EWS was previously unknown. Another trait, IGF-1, was selected

by TraitScan for SNPs rs2412476 on chromosome 15, rs6047482

on chromosome 20, and rs10822056 on chromosome 10. IGF1-

receptor is known to be upregulated in EWS, and anti-IGF1 is

an experimental therapy (Gonzalez et al., 2020). Besides, the

SNP rs7742053, the only SNP that failed to reach genome-wide

significance in both TraitScan and PheWAS, has recently been

reported to have a specific role in the increased binding of GGAA

microsatellite alleles with the chromosomal translocation encoding

chimeric transcription factors (Lee et al., 2023).

Examining the genetic score of KIZ and RREB1 allowed us

to investigate whether any trait was associated with EWS on the

gene level. If a gene is associated with the same set of traits, then

likely multiple SNPs in the gene will be associated with the traits,

leading to higher power than the single SNP test. However, if the

weight in the genetic score is not informative, such as imputing

gene expression in a non-relevant tissue, or if multiple SNPs in

the gene suggest a different association with the trait, we would

have diminished power. We did not observe any traits significantly

associated with the genetic scores (i.e., imputed gene expression)

of KIZ and RREB1, potentially because blood may not be the

most relevant tissue for EWS. We note that like other methods,

our results relied on the quality of GWAS data. When handling

real GWAS data, we applied a couple of filtering steps to exclude

traits that are not heritable. However, after the filtering steps,

there were still a few traits that lacked reasonable explanations

of their genetic heritability such as the inpatient record format,

or the potential mechanisms to be associated with EWS, such as

fruit intake within the past 24 hours. We suspect it was due to

the inadequate adjustment for confounding in the original GWAS

analysis (Holmes et al., 2019). Without accessing the individual-

level data, it is difficult to examine or correct the summary-level

GWAS data, although there is some recent work performing

quality control on GWAS errors using summary statistics and a

reference panel (Chen et al., 2021; Darrous et al., 2021).

To use TraitScan in real data analysis, the following additional

steps could help avoid potential power loss and increase the

interpretability of the results. First of all, we suggest removing

highly correlated traits from the pool of putative traits by

examining the empirical trait correlation matrix. The LTSS

property of TraitScan requires traits to be independent of each

other. As shown in the simulation, our method had relatively

low statistical power when the genetic variant had the effects

and correlations of the same direction on most of the traits. We

find that the decorrelation step on z-scores shifted the means of

z-scores of the truly associated traits towards zero, resulting in

a power loss. Therefore, removing such traits could potentially

improve the statistical power. Future work may be focused on

developing subset algorithms balancing the computational time

and scan sensitivity. Secondly, we recommend checking the

correlation between the decorrelated traits and raw traits. Due to

the trait decorrelation in TraitScan, trait selection and testing are

performed on the decorrelated z-scores, which are essentially linear

combinations of raw z-scores. Although the ZCA-cor decorrelation

method maximizes the average correlation between each dimension

of the decorrelated and original data, the decorrelated traits might

be considered to differ from the original traits. Therefore, this

step could improve the interpretability of the findings. In our real

data analysis, 99% of the 706 UK Biobank traits had an empirical

correlation with the original trait greater than 0.7.

The understanding of rare diseases such as childhood cancer has

long been limited. TraitScan is able to provide a list of possible

traits associated with EWS through the disease-linked genetic
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variants. As association does not imply causality, further biological

experiments or additional data analysis approaches such as MR are

required to study whether a trait and target disease are causally

linked and whether the trait is a risk factor or a consequence of

the disease.
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