ABSTRACT
Despite their long history, it can still be difficult to embed clinical decision support into existing health information systems, particularly if they utilise machine learning and artificial intelligence models. Moreover, when such tools are made available to healthcare workers, it is important that the users can understand and visualise the reasons for the decision support predictions. Plausibility can be hard to achieve for complex pathways and models and perceived ’black-box’ functionality often leads to a lack of trust. Here, we describe and evaluate a data-driven framework which moderates some of these issues and demonstrate its applicability to the in-hospital management of community acquired pneumonia, an acute respiratory disease which is a leading cause of in-hospital mortality world-wide. We use the framework to develop and test a clinical decision support tool based on local guideline aligned management of the disease and show how it could be used to effectively prioritise patients using retrospective analysis. Furthermore, we show how this tool can be embedded into a prototype clinical system for disease management by integrating metrics and visualisations for assisting decision makers examining complex patient journeys, risk scores and predictions from embedded machine learning and artificial intelligence models. Our results show the potential of this approach for developing, testing and evaluating workflow based clinical decision support tools which include complex models and embedding them into clinical systems.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study was supported by the Leicester National Institute for Health and Care Research Biomedical Research Centre.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Ethics committee of the University of Leicester, UK gave ethical approval for this work.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
DATA AVAILABILITY STATEMENT
The EASUL framework is licensed under the GNU Lesser General Public Licence v3.0 (LGPL-3.0) and is available at https://github.com/rcfgroup/easul. The evaluation presented in the manuscript was part of a quality improvement exercise, therefore we do not have ethical approval to share the data used to produce these results.