Impact of four years of annually repeated indoor residual spraying (IRS) with Actellic 300CS on routinely reported malaria cases in an agricultural setting in Malawi Remy Hoek Spaans^{*1}, Albert Mkumbwa², Peter Nasoni², Christopher M. Jones^{†2-3}, Michelle C. Stanton^{†2}

- 1 Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- 2 Illovo Sugar Malawi, Nchalo, Malawi
- 3 Malawi-Liverpool-Wellcome Trust, Blantyre, Malawi
- † These authors contributed equally to this work.
- * remyhoekspaans@gmail.com

Abstract

Indoor residual spraying (IRS) is one of the main vector control tools used in malaria prevention. This study evaluates IRS in the context of a privately run campaign conducted across a low-lying, irrigated, sugarcane estate from Illovo Sugar, in the Chikwawa district of Malawi. The effect of Actellic 300CS annual spraying over four years (2015-2018) was assessed using a negative binomial mixed effects model, in an area where pyrethroid resistance has previously been identified. With an unadjusted incidence rate ratio (IRR) of 0.38 (95% CI: 0.32 – 0.45) and an adjusted IRR of 0.50 (95% CI: 0.42-0.59), IRS has significantly contributed to a reduction in case incidence rates at Illovo, as compared to control clinics and time points outside of the six month protective period. This study shows how the consistency of a privately run IRS campaign can improve the health of employees. More research is needed on the duration and timing of IRS programmes.

Introduction

Malaria is a life-threatening disease that affects 247 million people globally, with 95% of the case burden falling on the African region as defined by the World Health Organization (WHO) [1]. The two most impactful vector control tools at a national malaria control programmes' (NMCP) disposal are insecticide-treated nets (ITNs) and indoor residual spraying (IRS) [2,3]. During IRS campaigns the indoor walls and sometimes roofs of houses are treated with insecticides. Only a small number of insecticide classes are used to treat ITNs, which combined with prolonged use of IRS using these same classes, has led to the development of insecticide resistance [4]. Compared to ITNs, there is a larger range of insecticides classes used for IRS, with different modes of action (organochlorines, organophosphates, carbamates, pyrethroids, neonicotinoids, and pyrroles) [5]. Whilst ITNs are ubiquitously used by NMCPs, IRS using predominantly the insecticide dichlorodiphenyltrichloroethane (DDT) was favoured over the period 1955-1969 by the Global Malaria Eradication Programme (GMEP), after which it fell out of favour as a malaria control tool [6,7]. Although its use has been increasing again over the past 20 years, the delivery of IRS programs remains patchy and inconsistent [8]. IRS is a logistically demanding and relatively

July 14, 2023 1/14

expensive intervention, that requires long-term commitment in terms of funding, procurement, and training of the spray team [9]. Therefore, it is mostly used as a spatially-targeted intervention in high burden, densely populated areas [10]. For practical reasons and in anticipation of the malaria season, IRS campaigns are usually planned to finish close to the start of the wet season [11]. Whilst hut trials leave little doubt about the *efficacy* of IRS under controlled conditions [12–14], this data has limited generalisability [15]. The *effectiveness* of IRS on both entomological and malaria outcomes depends on variations in the local environment, which considering the long history of IRS in malaria control, are poorly understood [3, 16].

18

27

41

IRS targets mosquitoes resting on the walls and surfaces inside houses, which will either be killed or will have a reduced life span after exposure to the insecticide. Therefore, any effects observed in reduced malaria case incidence rely on the assumption that malaria transmission occurs mainly indoors. This is increasingly less so in Sub-Saharan Africa (SSA) with evidence that Anopheles spp. are shifting towards more exophagic behaviour [17–19]. Furthermore, effectiveness of IRS depends on household coverage of the study area, spray quality, and residual activity of the insecticide used. For example, the residual activity of the organophosphate Actellic 300CS in optimal conditions can be up to nine months [13]. However, when President's Malaria Initiative (PMI) field sites were compared across 17 countries, a wide range of two to nine months or residual activity was found for pirimiphos-methyl [15]. This discrepancy can be explained by a range of factors such as the final dosage of insecticide on the wall, interaction with wall surface type, adaptations to the house after spraying, and environmental conditions such as temperature and humidity [15, 20]. With increased ITNs coverage over the past decade, IRS is now more frequently used alongside ITNs, rather than as an alternative [21]. There is conflicting evidence on the added benefit of IRS when combined with ITNs. Clinical cluster-randomized trial data suggests that there is some impact of non-pyrethroid-like IRS co-deployed with ITNs, but the evidence is inconsistent [16]. WHO recommends that IRS and ITN should only be combined when different insecticide classes are used [3].

In Malawi, the number of households with at least one ITN has steadily increased from 55% to 82% from 2012 to 2017 [22]. Mass distribution campaigns have occurred in 2012, 2014, 2016, 2018, and 2021. The Malawi Malaria Strategic Plan (MSP) 2011-2016 put forward a phased roll-out of Rapid Diagnostic Testing (RDT's) and training of Health Surveillance Assistants (HSAs) [23]. Indoor Residual Spraying (IRS) implementation and coverage in the country has been patchy with a high reliance on external funding [24]. Despite the detection of widespread insecticide resistance to carbamate and pyrethroid resistance in 2010, due to financial constraints, in 2012 pyrethroids were still used in six districts and organophosphates in one district in Malawi [8,24]. After this period, nationally organised IRS was scaled down and stopped completely in 2016-2017. The MSP 2017-2022 reintroduced plans to use targeted IRS in areas with high transmission intensity with the aim to scale up to 11 districts by 2022 [25]. Since 2017, IRS coverage was scaled up to four districts in 2020-2021 with the support of PMI and the Global Fund. Three different insecticides were used: Actellic 300CS (organophosphate), SumiShield 50WG (neonicotinoid), and Fludora Fusion (mixture of pyrethroid and neonicotinoid) [24]. A recent President's Malaria Initiative (PMI) report revealed that the residual life of Actellic 300CS in Malawi varied between two and five months [24].

Several less-documented, smaller-scale IRS campaigns are conducted by the private sector in Malawi [23,26]. One of the longest privately run routine IRS campaigns is run by the Malawian branch of the Illovo Sugar Africa company with two locations in central (Nkhotakota) and southern (Chikwawa) districts [26]. The Illovo site in Chikwawa (Nchalo estate) sits within the low-lying Shire Valley in the south of Malawi,

July 14, 2023 2/14

where the main malaria vectors are An. arabiensis and An. funestus [18]. The use of irrigation systems with year-round provision of water bodies, provides an ecological niche for local vectors throughout the dry season [27–30]. IRS was implemented in 1990 but by 2014, low level resistance against the pyrethroid deltamethrin was detected, with WHO cone assays detecting 87% mortality (n = 791) [31]. After these findings the IRS programme switched the active ingredient of the insecticide from a pyrethroid (alpha-cypermerthrin) to an organophosphate (Actellic 300CS). The on-site malaria health records collated by Illovo combined with coverage data from the routine IRS provide an opportunity to investigate the impact of IRS on local clinical malaria cases. This study investigates the impact of IRS using Actellic 300CS on malaria cases reported at seven clinics over a four year period (2015-2018), compared to three control clinics outside of the estate and time periods outside of the protective period.

71

82

100

101

102

103

105

108

109

110

Materials and methods

Illovo study site and population

The Illovo Nchalo estate is located within the Shire Valley, Chikwawa district, in the Southern Region of Malawi (-16.258539, 34.890956) (Fig 1). The Shire Valley has a unique climatic zone within Malawi characterized by hot and humid conditions, with mean monthly temperatures between 19-26 °C and a single rainy season within the period November-April [32–34]. The estate covers over 150 km2 of sugar cane fields, a perennial crop that is grown as a monoculture, growing between 2-6m high. The Shire river that flows along the eastern boundary provides water supply for the irrigation system, a combination of centre pivot, sprinklers, drip -and flood irrigation. The main vectors are An. arabiensis and An. funestus, although An. gambiae sensu stricto and An. quadriannulatus are also present [19,34]. A sugarcane processing factory, thirteen villages and seven out-patient (OPD) health clinics are present within the estate. The clinics provide free care to Illovo employees and their family members, registered as dependants. In fact, dependants make up the largest proportion of the Illovo population (80.0%), followed by employees (19.5%) with a permanent contract, and seasonal workers on a temporary contract (0.53%). As determined by the 2019 census, the on-site living population was 13,534, of which 47.7\% was female. The IRS programme started in 1990 using bi-annual pyrethroid spraying, until resistance was detected in 2014 [31]. Starting in 2015, a switch was made to yearly spraying with the long-lasting formulation of organophosphate (pirimiphos-methyl), Actellic 300CS. A spray team consisting of 10 sprayers is trained each year and villages are incrementally sprayed between May and November.

Fig 1. Study area. A) Location of the Illovo Nchalo Estate within Malawi. B) Agricultural fields of Illovo Sugar Nchalo. The seven Illovo health clinics that received IRS are indicated by circles. The three control clinics that did not receive IRS are indicated by triangles

Data collection Illovo clinics

At Illovo, monthly malaria case data are routinely collected from out-patient registers at each clinic, aggregated, and entered into Malawi's District Health Information System (DHIS2) [35]. For Illovo's own records, a differentiation is made between on-site and off-site living patients, before entry into DHIS2. For this analysis only on-site living cases were included, because off-site villages were not covered by the IRS campaign.

July 14, 2023 3/14

Illovo does not have in-patient facilities, therefore cases reflect RDT and microscopy positive out-patient cases. Every three years the on-site living population is enumerated by a census in February. Data are reported for each village, by sex, age group, and employment status (Illovo/dependant/contractor). Data from the 2016 and 2019 census were used to estimate the expected population for 2015-2018, assuming linear growth. Daily weather data were obtained from the on-site manual weather station for the period 1999-2019; humidity (measured at 14:00), temperature (min, max, dry bulb measured at 14:00), and rainfall (mm per day).

111

112

113

114

115

116

117

118

119

120

122

123

124

125

126

127

129

130

131

132

133

134

135

136

137

138

141

142

143

144

146

148

Selection of control clinics

To control for other factors that could explain reductions in malaria incidence over time (e.g. government mass bed net distributions), three control clinics with catchment areas that are not covered by IRS, were chosen. Clinics were selected based on type of health facility (out-patient clinic), distance to the boundary of the Illovo fields (<10km), completeness of data (<90%), and elevation (<100m difference to Illovo fields' maximum elevation). The clinic locations and the surrounding environments are indicated in Fig 1. The shortest distance to Illovo was 0.92km for Beleu, 5.63km for Maperera, and 7.89km for Chapwaila. Malaria data for control clinics was available through DHIS2. The indicator used was "WHO NMCP P Confirmed malaria cases", which combines outpatient RDT confirmed cases, outpatient microscopy confirmed cases, in-patient confirmed cases, and RDT positive case data from smaller village clinics within the clinic's catchment area.

Data analysis

Monthly malaria case incidence was modelled using a negative binomial mixed effects model with an offset for the expected population size, including a random intercept for clinic catchment area and a random slope for time. The aim of the analysis was to estimate the incidence rate ratio (IRR) for the effect of IRS by comparing locations and periods where IRS was implemented and effectively killing mosquitoes to locations and time points where this was not the case. The duration of the protective period afforded by Actellic 300CS was assumed to be 6 months [14, 15].

$$Y_{it}|\lambda_{it}, \kappa \ NegBin(\kappa, \lambda_{it})$$
 (1)

Where Y_{it} is the observed count of malaria cases at clinic i and time step in months t, given the rate λ_{it} of cases and κ the over-dispersion parameter.

$$\log\{\lambda_{it}\} = \alpha + f(t) + \phi IRS_{it} + (1+t)U_i$$

$$U_i \sim N(0, \nu^2)$$
(3)

$$U_i \sim N(0, \nu^2) \tag{3}$$

Where f(t) represents a temporal trend on a monthly scale, IRS_{it} represents IRS coverage for clinic i in month t, t = 1, ..., 48, and U_i represents clinic-level random effects. A random intercept for clinic with a random slope for time have been incorporated to allow changes in between-clinic variability over time to be captured.

Time series of the individual clinics showed an annually recurring seasonal pattern in malaria transmission. The temporal trend was decomposed into three components such that:

$$f(t) = \beta t + s(t) + w(t) \tag{4}$$

July 14, 2023 4/14 The t term accounts for linear changes in incidence over time due to unmeasured covariates. Periodic fluctuations in malaria incidence i.e. seasonality were captured by the s(t) term, and w(t) represents deviations from the seasonal pattern as driven by local weather condition.

Generalized Linear Mixed Models (GLMMs) with a single fixed effect including IRS and weather-related covariates were initially fitted to reduce the number of possible model formulations and were assessed by Akaike Information Criteria (AIC), Root Mean Square Error (RMSE), correlation between predicted and observed cases, and mean residuals (Supporting information). A GLMM representing the seasonal component was fitted and later combined with the weather models. Seasonality was incorporated in the model by including a cosine function into the model where the amplitude A and horizontal shift θ are estimated, for a specified period (T) over a number of time steps t. This is referred to as harmonic regression [36,37]. In this case the outcome is measured in time steps of 1 month and period (T) is a year (12t).

$$s(t) = A * cos \left[\frac{2\pi t}{T} - \theta \right] \tag{5}$$

150

151

152

154

156

158

159

162

163

164

166

168

170

174

175

176

177

179

181

183

185

187

191

192

In order to estimate A and θ through regression, the equation needs to be transformed to:

$$s(t) = \gamma_1 * sin\left(\frac{2\pi t}{T}\right) + \gamma_2 * cos\left(\frac{2\pi t}{T}\right)$$
 (6)

A plot of the fitted harmonic regression line and methods to obtain (α) and (θ) can be found in the Supporting information. Weather variables are incorporated into the model as anomalies, i.e. deviations from the long-term trend over a 20-year time period of weather station data. Daily measured variables were first aggregated by taking the mean over each month. After calculating anomalies, each weather variable was lagged by 1 to 3 months to reflect the time it takes for climatic variables to affect malaria cases through mosquito survival, mosquito abundance, malaria transmission intensity and time to diagnosis. The best fitting uni-variate weather models were combined with a model that included the seasonal component for further model selection. The best models resulting from this process were combined with the best fitting IRS model. The previous month's malaria cases were added to the model as an auto-regressive term to adjust for potential temporal variation. Cross-validation was done by randomly splitting the data into a hold-out and training set in a 20-80% split, which was repeated 10 times to calculate the CV-RMSE. Data were analysed using R version 3.6.3. Packages used for data processing, formatting, and plotting were part of the "tidyverse", mainly "ggplot2" and "dplyr". [38]. The "lubridate" package was used for date formatting [39]. The "lme4" package was used for model fitting using the "glmer.nb" function [40]. The "imputeTS" package was used for linear interpolation of weather data, where it was missing (1 month for relative humidity) [41].

Results

The average population size over the four year study period residing within the combined catchment areas for IRS-treated clinics was 12,365, whilst the non-intervention clinics served a larger population of 73,622 on average. IRS coverage was defined as the percentage of sprayed households out of the targeted households within catchment areas. Overall coverage was 82%, ranging between 40%-100% for individual clinics in 2015, followed by 86% (54%-92%), 89% (73%-100%), and 73% (12%-81%) in subsequent

July 14, 2023 5/14

195

198

199

200

202

203

204

206

207

208

210

211

212

214

215

216

217

218

219

Table 1. IRS coverage and start dates per clinic catchment area for each year 2015 - 2018

Clinic	2015		2016		2017		2018	
	Coverage	Start date						
Alumenda	88%	11/09	88%	03/08	83%	01/08	81%	01/08
Factory	40%	13/10	54%	04/07	73%	04/07	12%	10/08
Kalulu	63%	16/10	87%	11/08	93%	09/08	79%	08/10
Lengwe	100%	23/09	99%	08/06	100%	23/05	96%	30/08
Mangulenje	88%	07/10	93%	21/07	83%	18/07	68%	27/09
Mwanza	98%	04/09	92%	16/06	94%	07/06	72%	13/08
Nkombedzi	95%	13/11	92%	18/07	94%	11/07	72%	14/09
Overall	82%	04/09 - 13/11	86%	16/06 - 11/08	89%	23/05 - 09/08	73%	01/08 - 08/10

Coverage is defined as sprayed households / targeted households within clinic catchment area. Clinic catchment areas are defined as follows: Alumenda (Alumenda, Alumenda Seniors), Factory (Factory, Mess / Riverside, Bonksville, B Compound), Kalulu (Kalulu), Lengwe (Lengwe, Sande Ranch), Mangulenje (Mangulenje, Mlambe, Paxman, Mangulenje Senior), Mwanza (Mwanza, Mechanical Pool / Old School), Nkombedzi (Nkombedzi, Post Office, D Compound). Start date is defined as first date one of the villages within the catchment area has been sprayed.

A median monthly incidence of 21.51 cases per 1000 at risk (IQR: 10.69 - 45.80) was reported for the control clinics, versus 14.38 (IQR: 7.62 - 30.90) for the population targeted by IRS. Further breakdown of case incidence per clinic and year can be found in Supporting information. Fig 2 shows case incidence for both IRS protected and unprotected populations on the left axis, with the exposure as the percentage of IRS covered households displayed on the right axis, represented in shaded gray. This is based on the assumption that IRS with Actellic 300CS is effective for 6 months [14, 15]. The last spray round in 2014 was done between September and November, using pyrethroids, which are assumed to be effective for around 3 months or less due to the detection of pyrethroid resistance at Illovo, and are therefore not depicted in Fig 2 [14,31]. For both treatment groups, the annual incidence pattern mimics the weather patterns from with a lag of 1-3 months (Supporting information). After the heavy rainfall in 2015 incidence is initially higher on the Illovo estate compared with the off-site untreated villages. During the time covered by the 2015 spray round, incidence is similar both in and outside the estate. From 2016 onwards, however, incidence drops in the IRS group compared to the non-IRS group, and this pattern is consistent throughout the 2017 and 2018 spray rounds.

Fig 2. Malaria case incidence for IRS and non-IRS treated catchment areas. Monthly malaria cases per 1000 in clinic catchment areas with IRS (blue) and without IRS (red) on the left y-axis. IRS coverage, assuming IRS is effective for six months, at Illovo Nchalo Estate as percentage of targeted houses covered in shaded grey on the right y-axis.

All fitted models are negative binomial models with a random intercept for clinic, a random slope for time, and an offset for population size. In the uni-variate analysis, a negative binomial model with random intercept for clinic and a random slope for time, IRS suppressed malaria case incidence across the four years (IRR = 0.38, 95% CI: 0.32 – 0.45). A model only accounting for malaria seasonality as modeled by including a variable for time (βt) as well as a harmonic regression component described in Equation 6, was a better fit than the model accounting for IRS as assessed by AIC,

July 14, 2023 6/14

RMSE, and CV-RMSE (Table 2). The best combination of the seasonal model with weather variables included rain anomalies lagged 3 months (mm), maximum temperature anomalies lagged 1 month, relative humidity anomalies, and minimum temperature anomalies lagged 1 month. This model, representing the modelled temporal variation for each of the clinics, was then combined with the IRS variable (Table 2, model 5). Weather variables were removed one by one to see how this would affect model fit and minimum temperature anomalies lagged by 1 month was dropped from the model. Although the effect of maximum temperature anomalies from the preceding month on malaria incidence rate was borderline significant, it was still included in the model because it improved model fit. The last constructed model, which includes a variable for malaria cases of the previous month to account for temporal auto-correlation, had a slightly improved AIC, but the RMSE and generalisability as assessed by RMSE calculated from the model validation decreased. Therefore the final model selected was model 5 from Table 2. The model formulation is described in Equation 7 and estimates from the model are presented in Table 3.

$$\log(\lambda_{ct}) = \alpha + \beta t + s(t) + w(t) + \psi IRS_{it} + (1+t)U_i \tag{7}$$

Where α is the intercept, $\beta*t$ represents the coefficient for the long-term time trend, s(t) is expressed in Equation 6, and w(t) is expressed in Equation 8. νirs_{it} represents the regression coefficient of the IRS variable at clinic i and time step t. The random effects are expressed by $(1+t)U_i$.

$$w(t) = \delta * rain + \eta * rh + \mu * temp$$
 (8)

220

221

222

224

226

228

229

232

233

234

239

241

The matrix of the vector covariates describing weather variables and their corresponding regression coefficients, w(t), includes the fixed effects for rainfall anomalies lagged 3 months $(\delta * rain)$, relative humidity anomalies $(\eta * rh)$, and maximum temperature anomalies lagged 1 month $(\mu * temp)$.

Table 2. Model comparisons

	-			
	Covariates	AIC	RMSE	CV-RMSE
1	No covariates	5115	173.31	182.93
2	IRS	5033	172.76	182.48
3	Seasonal	4960	151.48	157.32
4	Seasonal + weather	4941	150.17	162.46
5	Seasonal + weather + IRS	4883	139.69	151.77
6	Seasonal + weather + IRS + $cases_{t-1}$	4870	148.07	162.29

All models are negative binomial models with a random intercept for clinic, a random slope for time, and an offset for population size. Models 3-6 also include time (months) as part of the seasonal component of the model as well as a harmonic regression component as described earlier in Equation 6 (Supporting information). The selected weather variables for models 5 and 6 included: rain anomalies lagged 3 months (mm), maximum temperature anomalies lagged 1 month, and relative humidity anomalies. Model 4 included a fourth weather variable (minumum temperature anomalies lagged 1 month) which was dropped after inclusion of IRS in model selection for model 5, because removal slightly improved model fit. AIC: Akaike Information Criterion, RMSE: root mean square error, CV-RMSE: mean RMSE for the hold-out set after 10 repeats or random 20-80% splits.

July 14, 2023 7/14

Table 3. Selected negative binomial mixed regression model estimates

Co-variate	IRR	95%	6 CI	P-value
Intercept	0.03	0.02	0.05	< 0.001
Time step (month)	0.98	0.97	1.00	0.024
Sin-term*	1.00	1.00	1.00	< 0.001
Cos-term*	1.00	1.00	1.00	< 0.001
Rain anomalies lag 3**	1.09	1.02	1.17	0.018
Relative humidity anomalies***	0.75	0.66	0.84	< 0.001
Maximum temperature anomalies lag 1***	0.64	0.39	1.03	0.067
IRS lag 1	0.50	0.42	0.59	< 0.001

Results of the final model as presented in Equation 7 * As defined in Equation 6, **variable re-scaled by factor 100, ***variable rescaled by factor 10. IRR = incidence rate ratio. CI = Confidence Interval. Time is month of the study period (1-48). IRS is expressed as a proportion of coverage for a specific month and clinic (0-1). Anomalies calculated as difference between value for that month and 20-year average.

After controlling for seasonal factors and weather anomalies, the effect of IRS is still present. During the months that IRS was implemented with full coverage, monthly malaria incidence is halved across the Illovo estate (IRR= 0.50, 95% CI: 0.42-0.59). The conditional modes of random intercept for clinic and the corresponding time slopes for the clinics from the final model are presented in Fig 3. The majority of clinics covered by the IRS programme show higher random intercepts compared to the control clinics. After adjusting for seasonal effects and IRS, there are still unmeasured covariates that vary at the clinic level are affecting malaria incidence, this is most pronounced for the Lengwe and Nkombedzi clinics. The decrease in time slope for Illovo clinics while was generally greater compared to control clinics.

244

245

247

249

251

252 253

257

259

260

264

Fig 3. Conditional modes of the random effects of the fitted model The left panel presents the conditional modes of the random intercept for each clinic. The right panel shows the time slope fitted for each of those clinics for a monthly time step. Illovo based clinics that were covered by the IRS programme are in blue and clinics outside of Illovo are in red.

The plotted time series for each clinic in Fig 4 show the observed malaria cases as points and the model fit as a red line. The correlation between observed and predicted values was 0.90 and the the mean of the residuals was -0.18. The model fit captures the seasonal pattern reasonably well, and mostly captures the effect of the extreme weather in the beginning of 2015. The model fit appears better for the Illovo clinics as compared to the control clinics. The shaded areas that indicate a period of IRS protection, assumed to last 6 months from the start of spraying, often co-occur with periods of lower malaria cases for the Illovo clinics. However, this could also be explained by the seasonal decline in cases. Similar to Fig 3, a difference in temporal slope can be observed; an increase for control clinics and a decline for most of the Illovo clinics.

Discussion

This study provides evidence that repeated annual rounds with Actellic 300CS is effective at reducing routinely reported malaria case incidence rates during an assumed protective IRS period of 6 months within a low-lying agricultural environment in Malawi.

July 14, 2023 8/14

Fig 4. Time series of malaria cases (black) and fitted line (red) per clinic with IRS period (shaded) Time series of observed monthly malaria cases are plotted as black points. The fitted line is shown in red. Periods of 6 months duration after the start of IRS are shaded in light-grey. Top row indicates the control clinics, while the rest of the panels received IRS. Note that the scales on the y-axis are not equal between panels

Actellic 300CS is a viable alternative for the Illovo IRS programme, in an agricultural setting with pyrethroid resistance and good ITN coverage [31]. IRS implementation appears to start too early to provide full coverage over the period of high malaria incidence it is intended to provide protection for, as seen in Fig 3 and Fig 4. Additional malaria control measures are recommended to bridge the gap between IRS rounds.

270

272

274

276

277

278

279

281

282

283

285

289

291

293 294

297

298

302

304

306

308

310

311

312

In neighbouring Zambia similar impacts of Actellic 300CS on malaria outcomes have been found by several studies. Hast et al. reported a prevalence rate ratio (PRR) of 0.72 (CI: 0.62, 0.84), over three rounds of Actellic 300CS between 2012-2017. IRS coverage within the study area was approximately 54% with only moderate reductions in An. qambiae and An. funestus household densities [42,43]. Furthermore, an effect of IRS on PRR was only observed within the targeted areas during the 6 months after the intervention, that coincided with the rainy season, similar to the time frame in our study [42]. Less pronounced reductions were found by Keating et al. comparing historical malaria incidence between clinics that received IRS with Actellic 300CS in a pyrethroid resistant area, with an IRR of 0.91 (CI: 0.84-0.98) [44]. Although the modeling approach was similar to that used here, the authors assumed the effect of IRS was present throughout the one year study period, which may have resulted in a higher IRR. Similarly in Zambia in 2016, in an area with good ITNs coverage, the incremental protective efficacy (IPE) of pirimiphos-methyl CS compared to the before spray period was not significant beyond 6 months and showed the largest impact between 1-3 months (IPE:0.63, CI: 0.57-0.69) [45]. In western Kenya, a single round of Actellic 300CS resulted in reduced test-positivity rates among febrile patients from 33.3% to 20.6% (12.7%) in IRS treated areas, whilst non-interventions sites reported a 33.2% to 30.4% (2.8%) reduction [46]. During the post-IRS period (15 months) malaria cases dropped between 44-65\% in the sub-country hospitals [46].

The nature of our retrospective study meant not all desired information was available. Socio-economic differences and housing quality between Illovo and surrounding villages could not be accounted for. On-site living employees reside in houses built and maintained by Illovo, which are on average of a higher standard than houses from nearby villages. Smaller catchment areas at Illovo may mean access to care is better. Analysis without the inclusion of non-intervention clinics showed a very similar effect size to that of the final model, indicating that it is unlikely that these limitations affect the overall conclusion. Other unmeasured variables that could have influenced malaria incidence levels in the region are behavioural factors such as outdoor sleeping and ITN use, but also the seasonal influx of workers during the harvesting season [47]. When seasonal workers residing in high prevalence areas travel to other to work at Illovo, there might be an observed spike in positive malaria tests, because of the mRDT taken during the health check they receive at the start of their contract. No household level data was available on bed net distributions. Therefore it is unlikely that the long-term reduction in malaria IRR is solely attributable to IRS. Despite this uncertainty, the fact that this study compares effect of IRS between time points within IRS covered clinics, as well between IRS and control clinics, does support the idea that adding IRS to ITNs provides additional benefit.

July 14, 2023 9/14

In the case of Illovo Sugar Malawi, a benefit of privately funded IRS is the continuity in funding and training of the spray team since 1990 [23]. By introducing mono-culture and irrigation to an area, large-scale agricultural businesses alter the dynamics of malaria transmission in an area. Irrigation provides a steady year-round water supply, which, depending on whether it's active or passive irrigation, and how well-maintained irrigation channels are, could increase mosquito breeding site availability. Employees and their families living closely to these breeding sites, could be exposed to more mosquito bites. On the other hand, economic prosperity may negate some of the malaria risk through improved housing and access to care. There is a strong incentive for businesses, especially those hiring for labour-intensive jobs, to promote good health among their employees. This is both a social responsibility and good business sense, as it will lead to less absenteeism, greater worker satisfaction, and therefore increased productivity. There have been multiple examples of companies running malaria control programmes, mostly in the agricultural and mining industry, which in some cases benefit the wider population [48]. A draw-back from privately organised IRS campaigns is the lack of standardised, publicly available data on monitoring and evaluation. Sharing information with the NMCP and scientific community could help in the detection of insecticide resistance, residual effect of insecticides, improve training and reporting practices, and increase accountability of both the NMCP and private companies.

313

315

317

319

321

322

328

329

330

331

332

334

336

339

340

343

344

345

347

350

352

353

355

356

357

Whilst a systematic review of hut trials shows that the probability of pirimiphos-methyl killing mosquitoes entering the house starts to decline after 6 months, there are not many studies looking at the time-span for which Actellic 300CS provides protection against malaria [14]. Whilst our study reports effective protection for an assumed period of 6 months, finer-scale temporal data is needed to provide more insight into this. Field reports from PMI Malawi suggest a residual life of 2-5 months, much lower than effectiveness measured in experimental studies, which could be explained by environmental and housing factors influencing degradation of the insecticide, or IRS application procedures [24]. Improved reporting by IRS campaigns on spray quality indicators, and both entomological and disease outcomes at regular time intervals, could provide the data necessary to uncover the reasons why IRS with Actellic 300CS performance is inconsistent across settings. The timing of IRS and the length of time periods where no coverage should not be overlooked in the planning of IRS and trials assessing interventions. Studies have shown, consistent with results presented here, that there can be a strong rebound effect at the end of the protective period [49].

Conclusion

Within an agricultural, low-lying area of malaria, where pyrethroid resistance has been reported in malaria vectors, IRS with Actellic 300CS significantly contributes to lowering malaria incidence. The implementation of annual spraying with pirimiphos-methyl (Actellic 300CS) over the years 2015-2018 has reduced monthly malaria incidence by approximately half during the protective period compared to time periods outside of the protective period and compared to control clinics. This study is an example of how privately funded IRS programmes can contribute to malaria control and the health of employees. Further research is needed on the optimal temporal coverage of IRS and other malaria control tools to maximise benefits.

July 14, 2023 10/14

Supporting information

Acknowledgments

References

- 1. Organization WH, et al. World malaria report 2022. Geneva; 2022.
- 2. Bhatt S, Weiss D, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526(7572):207–211.

359

- 3. Organization WH. Guidelines for malaria vector control. Geneva; 2019.
- 4. Organization WH, et al. Global report on insecticide resistance in malaria vectors: 2010–2016. World Health Organization; 2018.
- van den Berg H, da Silva Bezerra HS, Al-Eryani S, Chanda E, Nagpal BN, Knox TB, et al. Recent trends in global insecticide use for disease vector control and potential implications for resistance management. Scientific reports. 2021;11(1):23867.
- Wilson AL, Courtenay O, Kelly-Hope LA, Scott TW, Takken W, Torr SJ, et al. The importance of vector control for the control and elimination of vector-borne diseases. PLoS neglected tropical diseases. 2020;14(1):e0007831.
- 7. Nájera JA, González-Silva M, Alonso PL. Some lessons for the future from the Global Malaria Eradication Programme (1955–1969). PLoS medicine. 2011;8(1):e1000412.
- 8. Tangena JAA, Hendriks CM, Devine M, Tammaro M, Trett AE, Williams I, et al. Indoor residual spraying for malaria control in sub-Saharan Africa 1997 to 2017: an adjusted retrospective analysis. Malaria journal. 2020;19(1):1–15.
- 9. Mwendera CA, De Jager C, Longwe H, Kumwenda S, Hongoro C, Phiri K, et al. Challenges to the implementation of malaria policies in Malawi. BMC health services research. 2019;19(1):1–9.
- 10. Pinchoff J, Larsen DA, Renn S, Pollard D, Fornadel C, Maire M, et al. Targeting indoor residual spraying for malaria using epidemiological data: a case study of the Zambia experience. Malaria Journal. 2016;15(1):1–6.
- 11. Worrall E, Connor S, Thomson M. A model to simulate the impact of timing, coverage and transmission intensity on the effectiveness of indoor residual spraying (IRS) for malaria control. Tropical Medicine & International Health. 2007;12(1):75–88.
- 12. Oxborough RM, Kitau J, Jones R, Feston E, Matowo J, Mosha FW, et al. Long-lasting control of Anopheles arabiensis by a single spray application of micro-encapsulated pirimiphos-methyl (Actellic® 300 CS). Malaria journal. 2014;13(1):1–16.
- 13. Rowland M, Boko P, Odjo A, Asidi A, Akogbeto M, N'Guessan R. A new long-lasting indoor residual formulation of the organophosphate insecticide pirimiphos methyl for prolonged control of pyrethroid-resistant mosquitoes: an experimental hut trial in Benin. PloS one. 2013;8(7):e69516.

July 14, 2023 11/14

- 14. Sherrard-Smith E, Griffin JT, Winskill P, Corbel V, Pennetier C, Djénontin A, et al. Systematic review of indoor residual spray efficacy and effectiveness against Plasmodium falciparum in Africa. Nature communications. 2018;9(1):1–13.
- 15. Dengela D, Seyoum A, Lucas B, Johns B, George K, Belemvire A, et al. Multi-country assessment of residual bio-efficacy of insecticides used for indoor residual spraying in malaria control on different surface types: results from program monitoring in 17 PMI/USAID-supported IRS countries. Parasites & vectors. 2018;11(1):1–14.
- 16. Pryce J, Medley N, Choi L. Indoor residual spraying for preventing malaria in communities using insecticide-treated nets. Cochrane Database of Systematic Reviews. 2022;(1).
- 17. Suh E, Grossman MK, Waite JL, Dennington NL, Sherrard-Smith E, Churcher TS, et al. The influence of feeding behaviour and temperature on the capacity of mosquitoes to transmit malaria. Nature ecology & evolution. 2020;4(7):940–951.
- Mburu MM, Mzilahowa T, Amoah B, Chifundo D, Phiri KS, van den Berg H, et al. Biting patterns of malaria vectors of the lower Shire valley, southern Malawi. Acta tropica. 2019;197:105059.
- Sherrard-Smith E, Skarp JE, Beale AD, Fornadel C, Norris LC, Moore SJ, et al. Mosquito feeding behavior and how it influences residual malaria transmission across Africa. Proceedings of the National Academy of Sciences. 2019;116(30):15086–15095.
- 20. Opiyo MA, Paaijmans KP. â€~We spray and walk away': wall modifications decrease the impact of indoor residual spray campaigns through reductions in post-spray coverage. Malaria journal. 2020;19(1):1–6.
- 21. Chanda E, Mzilahowa T, Chipwanya J, Ali D, Troell P, Dodoli W, et al. Scale-up of integrated malaria vector control: lessons from Malawi. Bulletin of the World Health Organization. 2016;94(6):475.
- 22. Programme NMC. Malawi Malaria Indicator Survey. Lilongwe, Malawi; 2017.
- 23. National Malaria Control Programme KWTRP, of Hygiene & Tropical Medicine LS. Malawi: A Profile of Malaria Control and Epidemiology; 2018.
- 24. Initiative USPM. Malawi Malaria Operational Plan FY 2022; 2022.
- 25. Programme MNMC. Malaria Strategic Plan 2017-2022. Lilongwe; 2016.
- 26. Chanda E, Mzilahowa T, Chipwanya J, Mulenga S, Ali D, Troell P, et al. Preventing malaria transmission by indoor residual spraying in Malawi: grappling with the challenge of uncertain sustainability. Malaria journal. 2015;14(1):1–7.
- 27. Ijumba JN, Mosha F, Lindsay S. Malaria transmission risk variations derived from different agricultural practices in an irrigated area of northern Tanzania. Medical and veterinary entomology. 2002;16(1):28–38.
- 28. Frake AN, Namaona W, Walker ED, Messina JP. Estimating spatio-temporal distributions of mosquito breeding pools in irrigated agricultural schemes: a case study at the Bwanje Valley Irrigation Scheme. Malaria journal. 2020;19(1):1–21.
- 29. Keiser J, De Castro MC, Maltese MF, Bos R, Tanner M, Singer BH, et al. Effect of irrigation and large dams on the burden of malaria on a global and regional scale. The American journal of tropical medicine and hygiene. 2005;72(4):392–406.

July 14, 2023 12/14

- 30. Ijumba J, Lindsay S. Impact of irrigation on malaria in Africa: paddies paradox. Medical and veterinary entomology. 2001;15(1):1–11.
- 31. Lissenden NJ. Quantifying the impact of indoor residual spraying of pyrethroids on Anopheles malaria vectors in Nchalo, Southern Malawi: A baseline study. Liverpool School of Tropical Medicine. Podunk IN; 1996.
- 32. Chirombo J, Ceccato P, Lowe R, Terlouw DJ, Thomson MC, Gumbo A, et al. Childhood malaria case incidence in Malawi between 2004 and 2017: spatio-temporal modelling of climate and non-climate factors. Malaria journal. 2020;19(1):1–13.
- 33. Ngongondo C, Xu CY, Gottschalk L, Alemaw B. Evaluation of spatial and temporal characteristics of rainfall in Malawi: a case of data scarce region. Theoretical and applied climatology. 2011;106(1):79–93.
- 34. Spiers A, Mzilahowa T, Atkinson D, McCall P. The malaria vectors of the lower Shire Valley, Malawi. Malawi Medical Journal. 2002;14(1):4–7.
- 35. of Health M. Malawi HMIS; 2015. Available at http://www.hispmalawi.org.mw/%5Cnhttp://www.webcitation.org/6eLAqrlXG (2020/10/15).
- 36. Stolwijk A, Straatman H, Zielhuis G. Studying seasonality by using sine and cosine functions in regression analysis. Journal of Epidemiology & Community Health. 1999;53(4):235–238.
- 37. Ramanathan K, Thenmozhi M, George S, Anandan S, Veeraraghavan B, Naumova EN, et al. Assessing seasonality variation with harmonic regression: accommodations for sharp peaks. International journal of environmental research and public health. 2020;17(4):1318.
- 38. Wickham H, Averick M, Bryan J, Chang W, McGowan LD, Fran Asois R, et al. Welcome to the tidyverse. Journal of Open Source Software. 2019;4(43):1686. doi:10.21105/joss.01686.
- 39. Grolemund G, Wickham H. Dates and Times Made Easy with lubridate. Journal of Statistical Software. 2011;40(3):1–25.
- Bates D, Mächler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software. 2015;67(1):1–48. doi:10.18637/jss.v067.i01.
- 41. Moritz S, Bartz-Beielstein T. imputeTS: Time Series Missing Value Imputation in R. The R Journal. 2017;9(1):207–218. doi:10.32614/RJ-2017-009.
- 42. Hast MA, Chaponda M, Muleba M, Kabuya JB, Lupiya J, Kobayashi T, et al. The impact of 3 years of targeted indoor residual spraying with pirimiphos-methyl on malaria parasite prevalence in a high-transmission area of Northern Zambia. American journal of epidemiology. 2019;188(12):2120–2130.
- 43. Hast MA, Stevenson JC, Muleba M, Chaponda M, Kabuya JB, Mulenga M, et al. The Impact of Three Years of Targeted Indoor Residual Spraying with Pirimiphos-Methyl on Household Vector Abundance in a High Malaria Transmission Area of Northern Zambia. The American journal of tropical medicine and hygiene. 2021;104(2):683.

July 14, 2023 13/14

- 44. Keating J, Yukich JO, Miller JM, Scates S, Hamainza B, Eisele TP, et al. Retrospective evaluation of the effectiveness of indoor residual spray with pirimiphos-methyl (Actellic) on malaria transmission in Zambia. Malaria Journal. 2021;20(1):1–7.
- 45. Hamainza B, Sikaala CH, Moonga HB, Chanda J, Chinula D, Mwenda M, et al. Incremental impact upon malaria transmission of supplementing pyrethroid-impregnated long-lasting insecticidal nets with indoor residual spraying using pyrethroids or the organophosphate, pirimiphos methyl. Malaria journal. 2016;15(1):1–20.
- 46. Abong'o B, Gimnig JE, Torr SJ, Longman B, Omoke D, Muchoki M, et al. Impact of indoor residual spraying with pirimiphos-methyl (Actellic 300CS) on entomological indicators of transmission and malaria case burden in Migori County, western Kenya. Scientific reports. 2020;10(1):1–14.
- 47. Searle KM, Lubinda J, Hamapumbu H, Shields TM, Curriero FC, Smith DL, et al. Characterizing and quantifying human movement patterns using GPS data loggers in an area approaching malaria elimination in rural southern Zambia. Royal Society open science. 2017;4(5):170046.
- 48. Jones RT, Tusting LS, Smith HM, Segbaya S, Macdonald MB, Bangs MJ, et al. The role of the private sector in supporting malaria control in resource development settings. The Journal of Infectious Diseases. 2020;222(Supplement_8):S701–S708.
- 49. Namuganga JF, Epstein A, Nankabirwa JI, Mpimbaza A, Kiggundu M, Sserwanga A, et al. The impact of stopping and starting indoor residual spraying on malaria burden in Uganda. Nature communications. 2021;12(1):1–9.

July 14, 2023 14/14

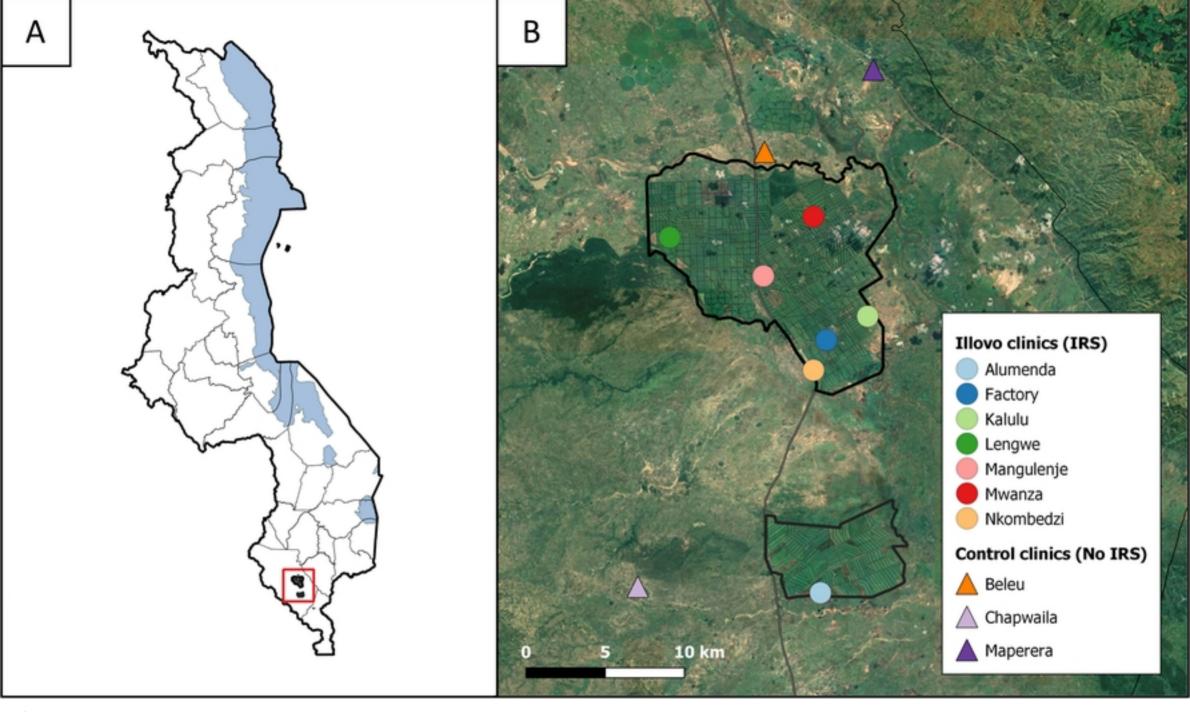


Figure 1

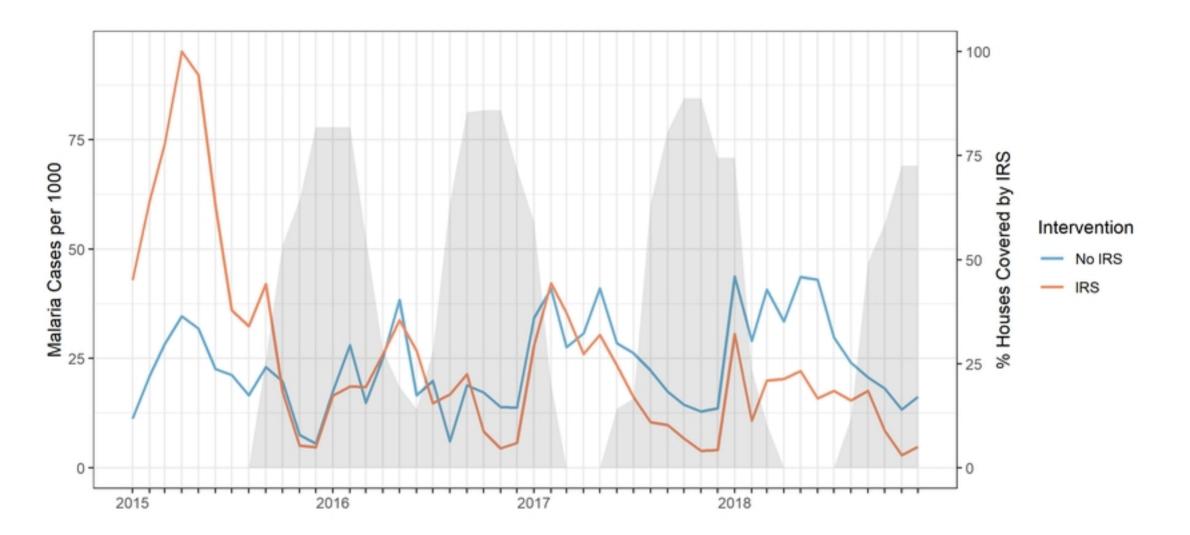


Figure 2

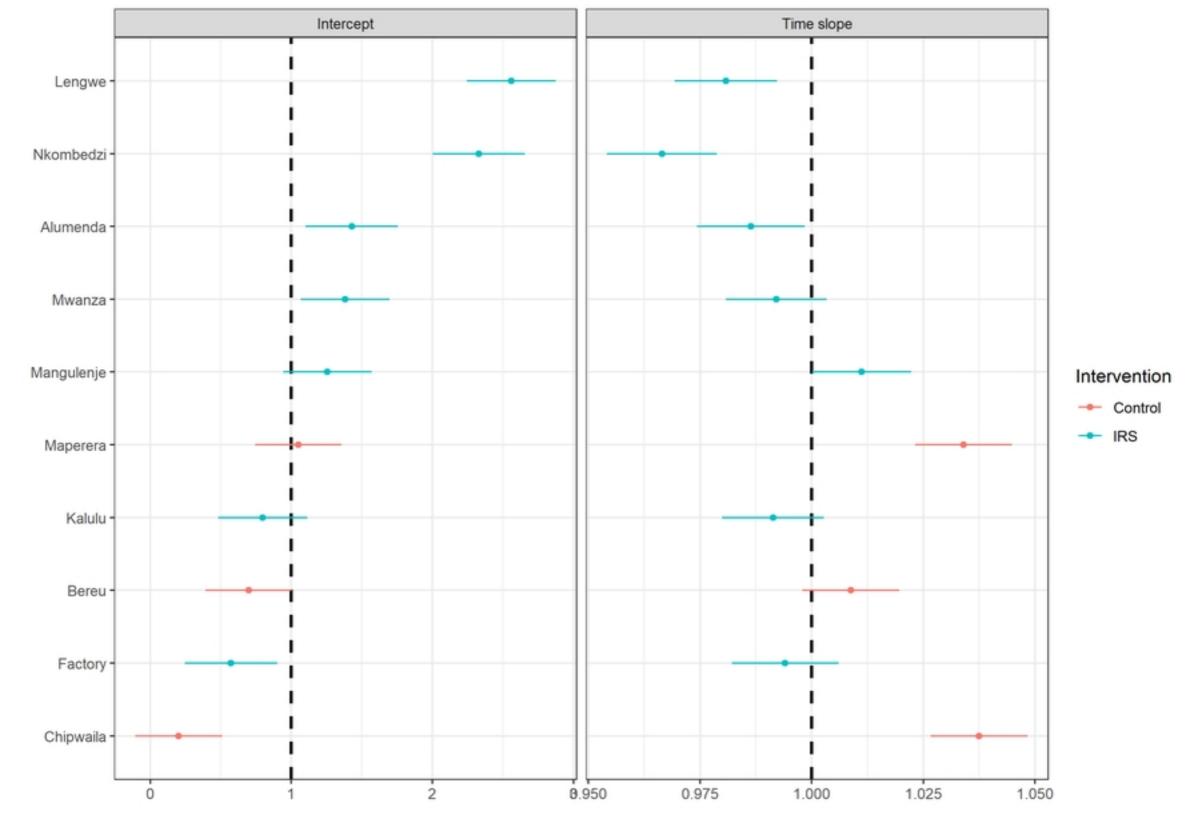


Figure 3

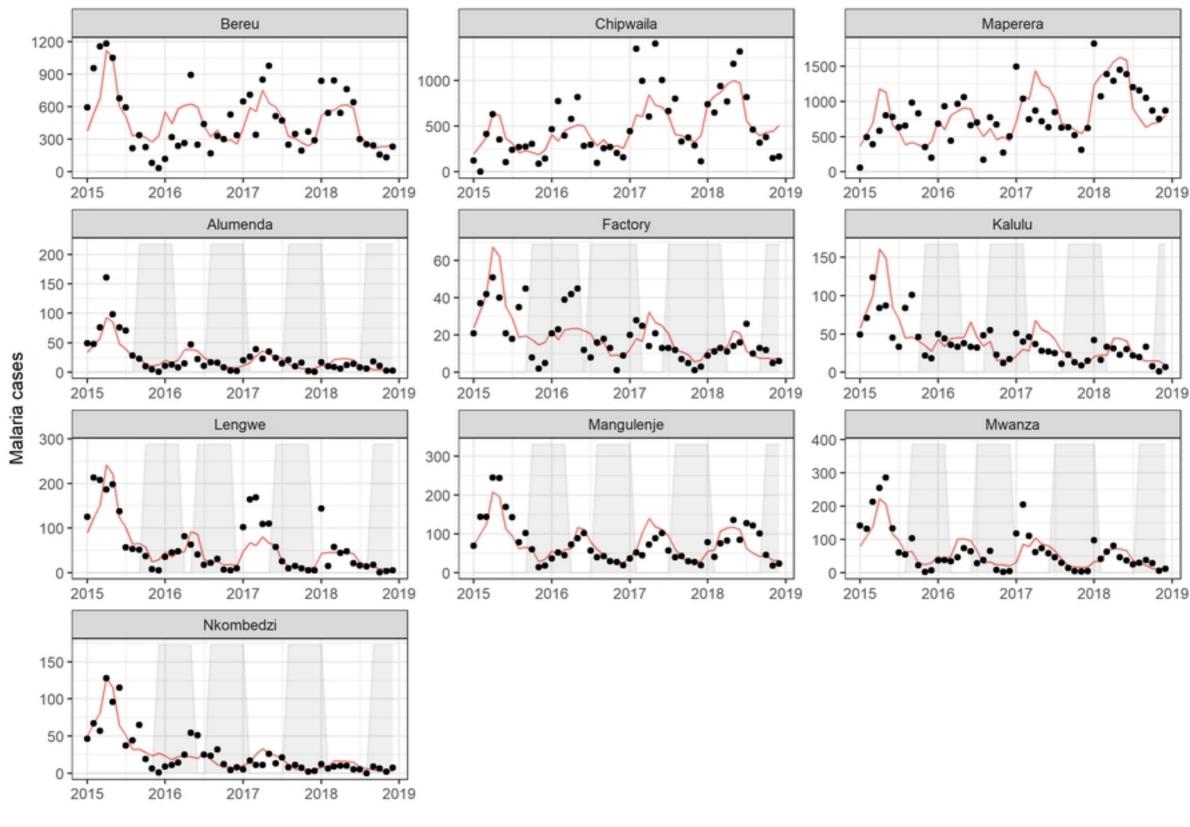


Figure 4