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21 Abstract

22 Malaria remains a public health concern. Monitoring the fine-scale heterogeneity of the malaria 

23 burden enables more targeted control efforts. Although malaria indicator surveys (MIS) have been 

24 crucial in evaluating the progress of malaria control interventions, they are only designed to provide 

25 a cross-sectional national and regional malaria disease burden. Recent advances in geostatistical 

26 methods allow us to interpolate national survey data to describe subnational disease burden that is 

27 crucial in informing targeted control. 

28 A binomial geostatistical model employing Markov chain Monte Carlo (MCMC) parameter estimation 

29 methods is used to understand the spatial drivers of malaria risk in Kenya and to predict malaria risk 

30 at a fine-scale resolution, including identifying hotspots.

31 A total of 11,549 children aged six months to 14 years from 207 clusters were sampled in this survey 

32 and used in the present analysis. The national malaria prevalence based on the data was 8.4%, with 

33 the highest in the lake endemic zone (18.1 %) and the lowest in the low-risk zone (<1 %). The 

34 analysis shows that elevation, proportion of ITN distributed, rainfall, temperature and urbanization 

35 covariates are all significant predictors of malaria transmission. The 5x5 Km resolution maps show 

36 that malaria is heterogeneous in Kenya, with hotspot areas in the lake endemic area, the coastal 

37 areas, and some parts of the shores of Lake Turkana and Kajiado.

38 The high-resolution malaria prevalence maps produced as part of the analysis have shown that 

39 Kenya has additional malaria hotspots, especially in areas least expected. These findings call for a 

40 rethinking of malaria burden classification in some regions for effective planning, implementation, 

41 resource mobilization, monitoring, and evaluation of malaria interventions in the country.

42

43

44
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46 Background

47 Malaria remains a public health concern and continues to be one of the most important tropical 

48 diseases affecting human populations to date [1]. In 2020, an estimated 241 million malaria cases 

49 occurred worldwide, 90% of which were in sub-Saharan Africa [2]. The disease is caused by protozoa 

50 of the genus Plasmodium of which five known species, Plasmodium falciparum, P. vivax, P. ovale, 

51 and P. malariae, more recently, P. knowlesi, are responsible for human Infection [3,4]. The vector 

52 responsible for human transmission is the female anopheles mosquito. In Sub-Saharan Africa, 

53 malaria is one of the leading causes of morbidity and mortality, especially in children under five. 

54 Other high-risk groups include pregnant women and immunologically naïve persons like travellers 

55 coming from non-endemic places [5].

56 Malaria remains a significant public health problem in Kenya, accounting for an estimated 13% to 

57 15% of outpatient cases, with nearly 70% of the population at risk for malaria [6]. Four out of the 

58 five species of malaria parasite that cause human Infection are present in Kenya, but the 

59 Plasmodium falciparum parasite is the predominant cause of Infection in the country. Over the past 

60 decade, Kenya has substantially scaled up available malaria control tools, such as insecticide-treated 

61 bed nets, indoor residual spraying and the use of artemisinin-based combination therapies [6]. 

62 Evidence of this massive scale-up of interventions is the observed decline in prevalence. Kenya has 

63 experienced a decrease in the national prevalence of malaria among children ages six months to 

64 14 years, from 13 per cent in 2010 to 8 per cent in 2015, and % in 2020 [6].

65 One of the key objectives of the Kenya Health Policy 2014–2030 is the elimination of communicable 

66 diseases, including malaria. This is supported by the Kenya malaria strategy for 2019 to 2023, which 

67 sets a vision of a malaria-free Kenya and targets to reduce malaria incidence and mortality by 

68 seventy-five per cent by 2023, with 2016 as the baseline year[6].

69
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70 Malaria transmission in Kenya varies geographically. This could be due to varied climatic conditions, 

71 vector and parasite resistance, differences in intervention uptake across populations and other 

72 unmeasured factors that are thought to be responsible for this increasing heterogeneity [6,7]. The 

73 country is administratively divided into five malaria epidemiological zones based on risk profiles. 

74 These zones include highland epidemic-prone areas, lake endemic areas, coast endemic, semi-arid 

75 seasonal, and low-risk malaria areas. The endemic areas lie in the lake and coastal regions with 

76 altitudes ranging from 0m to 1300 above sea level. These areas have perennial malaria transmission 

77 due to rainfall, temperature, humidity and other critical factors that drive malaria transmission. The 

78 semi-arid seasonal malaria transmission areas are in the country's northern, northeastern, and 

79 southeastern parts. These areas experience short periods of intense malaria. The highland epidemic-

80 prone areas are located within the western highlands and have seasonal malaria transmission with 

81 some yearly variation. The altitude in these zones is relatively higher than the other zones, lying 

82 1500 meters above sea level. The malaria epidemics in the highland epidemic-prone zones are less 

83 predictable. Lastly, the low-risk malaria areas cover Nairobi and the central highland. Temperatures 

84 are usually too low to allow the completion of the sporogony cycle of the malaria parasite in the 

85 vector in the low-risk zones[6] .

86 Malaria indicator surveys (MIS) measure progress on key malaria indicators in Kenya. The country 

87 has conducted four MIS in 2007, 2010, 2015 and 2020. The MIS are nationally representative 

88 household surveys that provide estimates of national and regional malaria indicators to assist 

89 malaria control programs in tracking their progress and evaluating the impact of strategies and 

90 interventions. The MIS follow a standard methodology recommended by the Roll Back Malaria 

91 Monitoring and Evaluation working group guidelines [8]. Originally, MIS surveys were designed to 

92 measure the blanket scale up of interventions like bed nets, using a classic two-stage sample design 

93 and coverage indicators as the primary endpoints. Over time, as coverage increased, interest 

94 expanded to the impact of parasite prevalence. While it is still a norm that the MIS traditionally 

95 measures progress in these areas, the survey methodologies need to consider the underlying disease 
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96 heterogeneity [8]. Recent advances in statistical analyses, including geostatistics, have made it 

97 possible to make fine-scale inferences of malaria transmission from survey data like the MIS, that is 

98 not traditionally designed for such extrapolations. In this paper, we use the Kenya 2020 MIS data to 

99 i) understand the relationship between malaria prevalence and several factors including 

100 environmental factors and ii) understand the disease heterogeneity across the country's surface  

101 including identification of hotspots.

102 Methods

103 Country Profile

104 Kenya is an East African country that covers an area of 582,550 km2. It is bordered by Ethiopia to the 

105 north, Tanzania to the south, Uganda to the west, South Sudan to the northwest, and Somalia to the 

106 northeast. Approximately 80% of Kenya's land is arid and semi-arid, only 20% is arable, and only 

107 1.9% of the total surface area is occupied by standing water. The great East African Rift Valley 

108 extends from Lake Victoria to Lake Turkana and further southeast to the Indian Ocean [9]. The 

109 country has a number of large rivers including the Tana, Galana, Turkwel and Nzoia [10]. Figure 1 

110 below is a map of Kenya showing the five epidemiological zones as defined by the national malaria 

111 program [6].

112 Figure 1: Kenya epidemiological malaria zones

113

114 Data

115 This secondary analysis used data from the Kenya MIS [6]. Access to the dataset was given to the 

116 authors on Apr 28 2022. The datasets were de-identified. The IRB-approved procedures for DHS 

117 public-use datasets do not in any way allow respondents, households, or sample communities to be 

118 identified. Authors had no access to the names of individuals or household addresses in the data 
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119 files. Additionally, the geographic identifiers only go down to the regional level, which is hard to 

120 identify individuals.

121

122 The 2020 MIS, the fourth conducted by the country, followed a similar design and set-up as the 

123 former ones. It was conducted during the peak malaria season in November and December 2020. A 

124 two-stage stratified sampling design was used, powered to give malaria parasite prevalence 

125 estimates and other key malaria indicators at the national level (urban and rural areas) and for the 

126 five epidemiological zones. The first stage sampling unit was a cluster developed from enumeration 

127 areas (EAs). EAs are the smallest geographical areas created for purposes of census enumeration. 

128 The EAs used were based on the 2019 Kenya population census. In the Kenya MIS, a cluster was 

129 defined as either an EA or part of an EA. A total of 301 clusters (134 urban and 167 rural) were 

130 sampled in this first stage using the probability proportional to size approach. The second stage 

131 sampling unit was households. In each cluster, 30 households were selected from a line listing of the 

132 sampled clusters using a systematic random sampling approach. A total of 7,952 households were 

133 sampled. All women aged 15-49 in the selected households were eligible for individual interviews. 

134 They were asked questions about preventing malaria during pregnancy and treating childhood 

135 fevers. In addition, the survey included testing for anaemia and malaria among children aged six 

136 months to 14 years using a finger- or heel-prick blood sample.

137 Permission to use the dataset was obtained from The Demographic and Health Surveys (DHS) 

138 Program through the archiving office. The original study received ethical clearance from the 

139 Kenyatta National Hospital/University of Nairobi Scientific and Ethics Review Committee. All 

140 participants provided oral informed consent.

141

142 Variables 

143 Outcome variable
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144 In this analysis, the outcome variable was a binary outcome derived from the total number of 

145 children tested and the total number testing positive. This was extrapolated to estimate the cluster-

146 level plasmodium falciparum malaria prevalence (PfPR). 

147

148 Explanatory variables 

149 The explanatory variables included cluster-level factors such as rainfall, temperature, elevation, and 

150 urbanization and individual-level characteristics such as gender and age.

151 Data cleaning 

152 The data cleaning and analysis were done in R[11]. Maps produced in the analysis were further 

153 processed for better visualization in QGIS (Version 3.2). Relevant variables were extracted and 

154 renamed to shorter names for ease of coding. Coordinates in the initial dataset were given the 

155 longitude and latitude system, which were transformed into the universal coordinate system (UTM). 

156 All distances were scaled to kilometres. 

157 Exploratory analysis

158 The initial exploratory analysis was descriptive to understand the data and to explore the initial 

159 relationships between the outcome variable of prevalence with the covariates in the data set. 

160 Scatter plots with fitted linear regression lines were used for this step to observe the relationship 

161 between prevalence and the explanatory variables. To further understand the variables, correlation 

162 plots were used to understand the relationships between the variables to guide the decisions of 

163 which covariates to include in the Model. The additional exploratory analysis involved plotting the 

164 clusters on the Kenyan map's surface, showing the sampled cluster's distribution and the crude 

165 malaria prevalence.

166 Model fitting
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167 The first objective of the analysis was to understand the relationships between malaria prevalence 

168 and several factors, including environmental factors. Several steps were followed:

169 1. Fitting a generalized linear model

170 2. Assessing evidence of residual correlation

171 3. Fitting a generalized linear mixed model

172 4. Reassessing evidence of residual correlations

173 5. Fitting a binominal geostatistical model and parameter estimation

174 6. Model validation

175 The model description for the generalized linear Model and the generalized linear mixed Model are 

176 described in Supplementary file 1.

177

178 Model description for the binominal geostatistical Model

179 Let  𝑌𝑖 denote the number of individuals that test positive for plasmodium falciparum at survey 

180 cluster location  𝑥𝑖  

181 And that the survey team went to the sampled clusters given by 𝑥𝑖 and sampled  𝑚𝑖: 𝑖 = 1….𝑛 

182 individuals at risk in the cluster and recoded the outcome of every person that tests positive and 

183 negative for plasmodium falciparum malaria.

184 Then standard geostatistical Model assumes that:

185  𝑌𝑖∼Binomial ( 𝑚𝑖, 𝑃( 𝑥𝑖)

186  𝑌𝑖  is a Binomial distribution with  𝑚𝑖trials and probability of a positive test 𝑃( 𝑥𝑖)  specified in the 

187 binomial geostatistical Model below:

188  

189 𝑙𝑜𝑔{ 𝑃(𝑥)
1 ― 𝑃(𝑥)} = 𝛼 + 𝑑( 𝑥𝑖)𝑇𝛽 + 𝑆(𝑥) +   𝑍𝑖
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190 Where 𝛼 is the intercept parameter, 𝑆(𝑥) are the spatial random effects, representing the spatial 

191 variation between the sampled clusters.  𝑍𝑖 are mutually independent zero-mean Gaussian random 

192 variables with variance 𝑟 and in this analysis represent the spatial variation within cluster variation, 

193 measurement error or small-scale spatial variation.

194 𝑑( 𝑥𝑖)𝑇 is a vector of observed spatially referenced explanatory variables associated with the 

195 response  𝑌𝑖,  and  𝛽 is a vector of spatial regression coefficients for the covariates.

196 The Matérn correlation function for the stationary Gaussian processes  𝑆(𝑥)  used in this analysis, a 

197 two-parameter family is given by:

198

199 𝑝(𝑢,𝜑, 𝑘)=  2𝑘―1(𝑢/𝜑) k         𝐾𝐾 + (𝑢/𝜑)

200 Where:

201  𝑢 denotes the distance between two locations x and x′,

202  𝜑 >0 is a scale parameter that determines the rate at which correlation decays to 0 as the 

203 distance increases, and

204  𝑘 >0, is a smoothness parameter which determines the analytic smoothness of the underlying 

205 process 𝑆(𝑥).

206 In the binomial geostatistical regression for this analysis, the Matérn shape parameter 𝑘 was set to 

207 0.5 variance parameters τ2 to 0.

208 The covariates  𝑑( 𝑥𝑖)𝑇 used in the binomial geostatistical Model for prediction were obtained from 

209 an exploratory analysis set to understand the relationship of the variables with the outcome variable 

210 of malaria prevalence. This Model included the covariates: elevation, ITN usage, mean temperature, 

211 rainfall, and cluster urbanization (urban vs rural). The Markov chain Monte Carlo (MCMC) methods 

212 were used for parameter estimation in this Model. Confidence intervals of the estimates are 

213 calculated on the log scale then transformed back to the non-log scale that is used to report the 

214 results. 
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215 To test whether there was any evidence against spatial correlation in the data, empirical variogram 

216 methods are used. A simulation of 1000 empirical variograms around the fitted Model is ran and 

217 these are used to compute 95% confidence intervals at any given spatial distance of the variogram. A 

218 conclusion is reached that that there is a spatial correlation in the data if the empirical variogram 

219 obtained from the data falls outside the 95% tolerance bandwidth.

220 The second objective is to understand the disease heterogeneity across the surface of the country, 

221 including identification of hotspots and the uncertainty attached to these hot spots. For this 

222 purpose, a binomial geostastical model was used as described above but with covariates that were 

223 available as raster. These included urbanization, temperature, and precipitation. The target for the 

224 predictions was a prevalence of malaria over the 5 x 5 km regular grid surface covering the whole 

225 surface of Kenya. A map of malaria prevalence was generated. Uncertainty of the prevalence was 

226 addressed using Exceedance Probabilities, an approach that is more relevant to policy makers, than 

227 the traditional approach of using confidence intervals. Exceedance Probabilities (EP) method sets 

228 policy relevant thresholds. The EP can be formally expressed as:

229 EP=Probability {, 𝑃( 𝑥𝑖)> t |data}

230 where t is the prevalence threshold, set to 10% in this analysis.

231 Results

232 A total of 11,549 children aged six months to 14 years were sampled. The analysis used 297 clusters. 

233 The number of clusters per transmission zone is shown in Table 1 below. The lake endemic area had 

234 the greatest number of clusters (98), while the coastal endemic area had the lowest number of 

235 clusters (29). The national malaria prevalence based on the data was 8.4%, with the highest in the 

236 lake endemic zone (18.1 %) and the lowest in the low-risk zone (<1 %).
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237 Table 1 Malaria Prevalence in Kenya across five epidemiological zones

238

239 The map in Figure one below shows the sampled locations on the left and the cluster-level malaria 

240 prevalence on the right. The lake endemic area has the highest number of clusters sampled and is 

241 also the zone with the highest prevalence estimates at the cluster level. 

242 Figure 2 Map of Sampled locations(left) and Malaria Prevalence (Right)

243 The weather pattern varies across the surface of Kenya. The maps in Figure 2 below show the 

244 variation in temperature across space on the top, and the variation in annual precipitation for the 

245 year 2020 on the bottom.

246 Figure 3 Mean temperature (degrees Celsius) (top) and Annual precipitation (mm)in Kenya (2020) 

247 (Bottom)

248

249

250 Binomial geostatistical model results

251 The binomial geostatistical Model results indicate that the elevation, proportion of ITN distributed, 

252 rainfall, temperature and urbanization covariates are all significant predictors of malaria 

253 transmission (Table 2).

254 The odds of malaria transmission are less in the urban clusters compared to the rural ones. Urban 

255 clusters have nearly 68% less malaria prevalence than rural ones (OR 0.32 CI: 0.26-0.39, P value 

256 <0.0001). The higher the rainfall, the higher the risk of malaria transmission. Every mm increase in 

Epidemiological 

Zone

Total

clusters

Number 

tested(N)

Number positive(n) Prevalence

(n/N)%

Coastal Endemic 29 1088 59 4.95

Highland Epidemic 

Prone

55 2122 33 1.56

Lake Endemic 97 4621 836 17.93

Low Risk 54 1307 1 0.08

Seasonal 56 2210 33 1.49
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257 the average rain increases malaria prevalence by 1.9 times (OR 1.91 CI 1.69- 2.15, P value <0.0001). 

258 Rise in mean temperature also increases the risk of malaria prevalence. Every degree increase in 

259 temperature increases the odds of malaria prevalence by 1.4 times (OR 1.37CI 1.28-1.47, P value 

260 <0.0001).

261 Table 2: Binomial geostatistical Model

262

Estimate Standard error Lower Bound Upper Bound p-value

Intercept 0.00 3.54 0.00 0.00 <0.0001

elevation 1.86 1.05 1.70 2.02 <0.0001

INT coverage 3.15 1.07 2.75 3.61 <0.0001

Urban vs Rural 0.32 1.11 0.26 0.39 <0.0001

Rainfall(mm) 1.91 1.06 1.69 2.15 <0.0001

Temperature 1.37 1.04 1.28 1.47 <0.0001

Age in months (ref <12)

 12-23 1.93 1.54 0.83 4.48 <0.001

24-35 2.72 1.52 1.19 6.21 <0.01

36-47 3.56 1.51 1.59 7.96 <0.001

48-59 7.84 1.45 3.76 16.35 <0.001

Female vs male 1.20 1.08 1.03 1.40 <0.001

Sigma^2* 0.56 1.44 0.27 1.14 NA

Phi** 59.57 1.85 17.87 198.50 NA

Tau^2*** 0.95 2.24 0.20 4.58 NA

263 sigma2 is the variance of the Gaussian process, phi is the scale parameter of the spatial correlation 

264 and tau2 is the variance of the nugget effect 

265 Model validation 

266 Using variogram-based techniques described above, the Model above was tested for evidence of 

267 spatial correlation. The results of this process are shown in figure 4 below. Since the empirical semi-

268 variogram (solid line) falls within the 95% confidence interval (grey envelope), this shows that the 

269 Model is valid; the Model for malaria prevalence is compatible with the data.
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270 Figure 4 Model Validation

271

272 Prediction 

273 To understand the disease heterogeneity across the country's surface, including the identification of 

274 hotspots, a 5 × 5 km resolution map for malaria prevalence in children six months to 14 years is 

275 presented in Figure 5 below. Overall, malaria prevalence is low in most parts of the country. 

276 Hotspots were notable in Western Kenya in the lake endemic areas around Lake Victoria, in the 

277 endemic coastal regions along the Indian Ocean and three hotspot areas within the seasonal 

278 epidemiological zone, one around the Lake Turkana region, one around the humid and sub-humid 

279 belt in Meru County and the other in the semi-arid belt of Kajiado County.

280 Figure 5 Malaria prevalence predictions among children six months- 14 years in Kenya

281 Figure 6 below presents a map of malaria exceedance and probabilities, showing areas where p(x)≥ 

282 10% with certainty on the colour gradient.

283 Figure 6 Exceedance Probabilities.

284

285 Discussion

286 Understanding the spatial distribution of malaria and the factors that drive its transmission are key 

287 in malaria control. Given the heterogeneity of malaria transmission in Kenya, defining the malaria 

288 burden at more localized locations is important to allow for targeted control activities. The national 

289 malaria indicator surveys performed in the country are not designed to provide malaria prevalence 

290 estimates at localized levels. This paper uses Model-Based geostatistical methods to understand 

291 malaria transmission drivers in Kenya and map out malaria prevalence at a very high resolution (5 x 5 

292 Km square grid).
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293 In our analysis, we have found that several factors influence malaria transmission. These include 

294 gender, age, temperature, rainfall, bed net coverage, elevation, and urbanization. This is consistent 

295 with the well-known predictors of malaria transmission. Studies in the same area have previously 

296 found a higher risk of malaria among males and an increasing risk with age compared to the first 

297 year of life [11]. Both the natural environment and the artificial environment are known to affect 

298 malaria transmission. Temperature, humidity, and rainfall all have interactions with mosquitos at 

299 specific points in their life cycle. Temperature regulates the development of mosquitos at each 

300 stage. The laying of eggs by mosquitos is reduced in temperature extremes, either too cold or too 

301 hot [12]. Temperature also affects the mosquito stage transition, with the optimal temperature 

302 being between 22 and 26 degrees Celsius[11].

303 Rainfall has been shown to be positively correlated with high malaria transmission. During the rainy 

304 season, there is usually water logging in the ground, creating mosquito breeding grounds. This 

305 analysis observed that prevalence nearly doubles for every mm increase in the annual rainfall. The 

306 areas observed to have a higher prevalence of malaria in Kenya are known to have prolonged rainy 

307 seasons[6]. 

308 The analysis also identified that malaria transmission is higher in rural areas compared to urban 

309 areas. This finding is consistent with other studies in the same region. Urban areas may have better 

310 housing and improved health services that are easier to access. These factors contribute to the lower 

311 risk of malaria. Conversely, rural areas are primarily associated with favourable conditions for 

312 malaria, including stagnant water, poor housing, inaccessible health services and agricultural 

313 activities [13].

314 The finding of increasing malaria prevalence with higher bed net coverage can be explained through 

315 reverse causality, which is often observed due to the higher distribution of bed nets in areas heavily 

316 affected by malaria. 
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317 Malaria hotspot areas identified in the analysis include the entire lake and coastal regions classified 

318 as malaria endemic [6]. This finding is in keeping with other previous analyses done for past time 

319 points  [18). The climatic condition in these areas is known to support malaria transmission. We do 

320 find additional hotspots, which highlights the strength in our analysis approach. Localized malaria 

321 hotspots are identified in the county of Turkana. Though this area is classified as a seasonal malaria 

322 transmission zone, a reactive case detection in the area conducted from 2018 to 2019 also detected 

323 high malaria transmission with a prevalence as high as 33.6% [15] . Another study in a refugee camp 

324 in the same region identified a malaria prevalence of 64.2% [15]. Evidence from a recent study 

325 examining the contribution of P. falciparum parasite importation to local malaria transmission in 

326 Central Turkana confirms that malaria in the area is rather endemic, with intense local transmission 

327 as opposed to the importation of malaria [16]. Due to its malaria risk classification status, Turkana is 

328 often left out of malaria control activities. This is an important finding where an area's transmission 

329 is misclassified. The recent WHO malaria surveillance guide calls for countries to view malaria 

330 transmission as a continuum in space and stratify the malaria burden for better targeting and 

331 improved efficiency of malaria interventions[8]. As malaria transmission declines, it becomes 

332 increasingly focal and prone to outbreaks. Understanding and predicting patterns of transmission 

333 risk becomes an essential component of an effective elimination campaign, allowing limited 

334 resources for control and elimination to be targeted cost-effectively. In this study, we also find 

335 additional hotspots in the counties of Meru and Kajiado, areas with humid and arid weather 

336 conditions, respectively. There is a need for more local surveillance in the area. These areas are also 

337 characterized by low implementation of malaria control measures.

338

339 There are several strengths and limitations of the data used in the analysis. To the best of our 

340 knowledge, this is the latest nationally representative data on malaria prevalence. With this, the 

341 results of this study are generalizable to the entire population of Kenya. Use of the geostatistical 

342 Model as opposed to the traditional non-spatial Model, is a key strength. It allows us to borrow 
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343 information from the sampled cluster to infer for the unsampled ones and at the same time, account 

344 for predictors that influence malaria transmission. The major limitation in the analysis is the lack of 

345 adequate environmental covariates to improve spatial predictions.

346 Conclusion

347 This analysis has shown that rainfall, urbanization, temperature, and bed net coverage are important 

348 factors that affect malaria transmission. The high-resolution malaria prevalence maps produced as 

349 part of the analysis are important in identifying hotspots which is an essential element in planning, 

350 implementation, resource mobilization, monitoring, and evaluation of malaria interventions in the 

351 country. We have also identified malaria hotspots in areas not traditionally classified as endemic, 

352 highlighting the need to rethink the classification of malaria transmission epidemiology in Kenya.
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