Abstract
Malaria remains a public health concern. Monitoring the fine-scale heterogeneity of the malaria burden enables more targeted control efforts. Although malaria indicator surveys (MIS) have been crucial in evaluating the progress of malaria control interventions, they are only designed to provide a cross-sectional national and regional malaria disease burden. Recent advances in geostatistical methods allow us to interpolate national survey data to describe subnational disease burden that is crucial in informing targeted control.
A binomial geostatistical model employing Markov chain Monte Carlo (MCMC) parameter estimation methods is used to understand the spatial drivers of malaria risk in Kenya and to predict malaria risk at a fine-scale resolution, including identifying hotspots.
A total of 11,549 children aged six months to 14 years from 207 clusters were sampled in this survey and used in the present analysis. The national malaria prevalence based on the data was 8.4%, with the highest in the lake endemic zone (18.1 %) and the lowest in the low-risk zone (<1 %). The analysis shows that elevation, proportion of ITN distributed, rainfall, temperature and urbanization covariates are all significant predictors of malaria transmission. The 5x5 Km resolution maps show that malaria is heterogeneous in Kenya, with hotspot areas in the lake endemic area, the coastal areas, and some parts of the shores of Lake Turkana and Kajiado.
The high-resolution malaria prevalence maps produced as part of the analysis have shown that Kenya has additional malaria hotspots, especially in areas least expected. These findings call for a rethinking of malaria burden classification in some regions for effective planning, implementation, resource mobilization, monitoring, and evaluation of malaria interventions in the country.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This secondary analysis was not funded by any grant.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Permission to use the dataset from The Demographic and Health Surveys (DHS) Program was obtained from the archiving office. The original study obtained ethical clearance from the Kenyatta National Hospital/University of Nairobi Scientific and Ethics Review Committee. All participants provided oral informed consent.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Footnotes
↵†Shared first authors
Data Availability
The datasets used and/or analyzed during the current study are available upon request from the Demographic Health Survey Programme Team. The request can be made via the link https://dhsprogram.com/Data/.