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Abstract 
 
Colorectal cancer (CRC) is the 2nd most commonly diagnosed cancer in the United States. Genetic testing 
is critical in assisting in the early detection of CRC and selection of individualized treatment plans, which 
have shown to improve the survival rate of CRC patients. The tissue slides review (TSR), a tumor tissue 
macro-dissection procedure, is a required pre-analytical step to perform genetic testing. Due to the 
subjective nature of the process, major discrepancies in CRC diagnostics by pathologists are reported, and 
metrics for quality are often only qualitative. Progressive context encoder anomaly detection (P-CEAD) is 
an anomaly detection approach to detect tumor tissue from Whole Slide Images (WSIs), since tumor 
tissue is by its nature, an anomaly. P-CEAD-based CRC tumor segmentation achieves a 71% ± 26% 
sensitivity, 92% ± 7% specificity, and 63% ± 23% F1 score. The proposed approach provides an 
automated CRC tumor segmentation pipeline with a quantitatively reproducible quality compared with 
the conventional manual tumor segmentation procedure.  
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1. Introduction 
 
1.1. Background  
 
Colorectal cancer (CRC) is the second most frequently diagnosed cancer in the United States for both 
sexes and is also the second most common cause of cancer-related deaths worldwide.1,2 Genetic testing is 
the cornerstone of personalized medicine, and is rapidly becoming a necessary tool for prognostication 
and treatment selection, which have the potential to enhance the 5-year survival rate of CRC patients.3 
According to the most recent NCCN guidelines,4 the most important factors that influence treatment 
selection include pathologic staging and prognostic markers, including, but not limited to, MMR status 
( with reflex for MLH1 promoter methylation or more expanded genomic testing), Her2 Immunostaining / 
Fluorescent in-situ hybridization, KRAS, NRAS, BRAF, and NTRK mutations. Next-generation sequencing 
(NGS) offers to investigate most of the above mutations / fusions.  
 
It is important to conduct genetic testing during the diagnostic process in CRC, as 5% to 15% of cases are 
caused by inherited cancer susceptibility genes.5,6 Identifying TP53 mutation status correlates with higher 
stage and influences the overall survival rate.7 EGFR inhibitor therapies are not effective for CRC patients 
with positive mutations in KRAS, BRAF, PI3KCA, and PTEN, highlighting the need for accurate genetic 
mutation status, that will ensure  successful selection of individualized therapy. Different genetic 
mutation status also impacts CRC survival, where the CRC patients with a positive mutation of LRP1B 
have a higher recurrence rate and shorter progression-free survival (PFS) compared to those with a 
positive mutation of FAT4.7 Therefore, CRC genetic testing is critical in improving predictions of CRC 
prognostics and survival rate. 
 
In conventional clinical CRC patient-care pathways, tumor samples are formalin-fixed and paraffin-
embedded into one or more tissue blocks. A guideline by Ballester and Cruz-Correa is used to determine 
if individuals should undergo genetic testing based on factors such as age at diagnosis of affected family 
members, personal and family history of colon polyps, and extracolonic cancers.8 If a patient meets the 
guideline for genetic testing, Pathologist will confirm the best-block for testing and  annotate tumor 
regions on H&E stained slides, to ensure selection of the largest and purest viable tumor area, followed by 
tumor scraping from unstained slides by cytotechnologists. This step will ensure the highest possible yield 
of DNA or RNA from this specimen, with least benign or inflammatory cell contaminants.   
 
The most important factors in ensuring a successful NGS testing are preanalytical variables, including 
selection of invasive tumor, size of invasive tumor, viability of tumor, and purity of tumor (i.e., minimal 
presence of benign cells, including inflammatory cells). The current clinical workflow for NGS testing, 
known as tissue slide review (TSR), is completely manual and suffers from significant interindividual 
variation leading to discrepancies in tumor annotation.9 To improve on this process, we are proposing to 
employ an artificial intelligence (AI) tumor segmentation algorithm to automatically detect tumor regions 
from digitized H&E-stained whole slide images (WSIs). This would allow control of multiple pre-
analytical variables through selecting the block with the largest and purest tumor surface area and 
segmenting that area for later tumor recovery for subsequent testing (Figure 1).  
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1.2. Related Work 
 
Image classification is a widely used method for detecting tumor regions in WSIs. This approach labels a 
WSI as either CRC positive or negative. However, it does not provide the exact location of the tumor 
regions in the slide with their corresponding 𝒙- and 𝒚- coordinates.10–13 On the other hand, image 
segmentation provides the 𝒙- and 𝒚- coordinates of tumor regions in CRC WSIs - which is necessary for 
the TSR process (rather than a yes no answer that tumor is present).14 While a supervised image 
segmentation approach is promising, acquiring ground truth annotations from pathologists to train the 
supervised image segmentation model can be biased, expensive, and time consuming, making the training 
process impractical.  
 
Attempting to find other approaches in order to mitigate the shortcomings of requiring pathologist-
provided annotations, the use of a Generative Adversarial Network (GAN) is explored for unsupervised 
anomaly detection.15 It is used to identify patterns of pixels that deviate from the established pattern in 
training images, without the need for high-quality pixel-level annotations from pathologists. This 
approach is particularly useful in tumor segmentation, as tumor tissue is a type of anomalous colon 
tissue.16,17  
 
The GAN-based anomaly detection algorithm, referred to as GANomaly18, is a commonly used 
unsupervised anomaly detection approach. However, the GANomaly approach is based on the deep 
convolutional GAN (DCGAN)19, which is not meant for very high-resolution images, like colon WSIs. 
Different from DCGAN, the progressive GAN, also known as pGAN, is specifically designed for high 
resolution image data20. In pGAN, two major components, the generator (G) and discriminator (D), are 
trained gradually starting from 4 x 4 resolution. Image layers of increasing resolution are incrementally 
added to G and D, allowing the model to be progressively trained from 4 x 4 up to 1024 x 1024, 
increasing by a multiple of 2, while keeping all the existing layers trainable during the entire training 
process. In addition, to maintain a smooth transition from lower to higher resolutions during the training 
of G, new layers are faded in smoothly while doubling the current resolution of image features using 
nearest neighbor filtering. A newly added toRGB layer with weight 𝜶 increases linearly from 0 to 1, 
which further projects the features to the R(red)G(green)B(blue) color channels. Reversely, another newly 
added fromRGB layer with the same weight 𝜶 projects the RGB color images to the feature vectors. The 
features are further faded into a new convolutional layer to halve their resolution using the average 
pooling strategy. Similarly, a smoothed training process for D is performed. This process could 
downscale the input images to match the requirements for the current image sizes of the network. This 
unique progressive GAN architecture is able to outperform the other conventional GAN architectures in 
generating photorealistic high-resolution normal colon WSIs by providing a global view focus on the 
normal colon histology representation from the entire slide in a relatively lower resolution level, and a 
local view focus on the detailed nuclei morphology patterns in a relative higher resolution level. 
Therefore, applying the progressive context encoder anomaly detection pipeline (P-CEAD)21 was 
proposed for CRC tumor segmentation. 
 
2. Materials and Methods 
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The objective of this research is to automate the process of segmenting CRC tumor regions from WSI 
using P-CEAD. P-CEAD is a distinctive anomaly detection pipeline based on pGAN. Its training process 
consists of three phases (Figure 2).21 In Phase 1, a pGAN architecture is trained using an image 
inpainting technique22 on normal colon WSIs exclusively, in order to produce photorealistic normal (non-
diseased) colon WSIs. This training phase enables pGAN to learn a reliable reference distribution of 
normal colon tissue representations by minimizing the error distance values between the input real normal 
colon WSIs and the generated photorealistic colon WSIs. Since not all pixels in a WSI are part of the 
tissue regions, the Otsu23 method was used to identify these regions and extract image patches from them. 
Image patches were extracted from tissue regions on WSIs in 1024 x 1024 pixels, then downsampled to 
512 x 512, 256 x 256, 8 x 8, and 4 x 4 pixels. The training data is saved in TFRecord files24, with each file 
containing binary image patch tensors and the corresponding file name, height, width, and number of 
channels for each patch respective to different resolution levels. After completing phase 1 of the training, 
the weights of pGAN are frozen.  
 
The goal of phase 2 in the training process is to calculate the normal error reference distribution (NERD). 
NERD is a multivariate gaussian distribution of the absolute errors, also known as reconstruction errors, 
between the input real WSIs and the generated photorealistic WSIs. Because, during phase 1, pGAN is 
only trained on normal colon WSIs, the absolute errors between the input real normal colon WSIs and the 
generated photorealistic normal colon WSIs should be small. The reconstruction errors between the input 
real CRC and the generated photorealistic CRC WSIs are expected to be relatively large because the GAN 
never learned how to encode features present in anomalous tissues and is therefore more prone to create 
higher reconstruction errors. 
 
During phase 3 of the training, the NERD and reconstruction errors are used to calculate pixel-level 
Mahalanobis distances. The goal of this phase is to identify a cut-off threshold to distinguish between 
normal and CRC tumor pixels in a WSI. If the Mahalanobis distance for a given pixel is higher than the 
threshold, it is considered an abnormal colon pixel; otherwise, it is considered a normal colon pixel.  
 
After completing all three phases of training, the pGAN model was fed 1024 x 1024 resolution image 
patches extracted from tissue regions on a test set of WSI containing CRC. From this, the reconstruction 
errors between the input and generated images from the trained pGAN were calculated and binarized 
based on the Mahalanobis distance threshold. Using the shapely package for Python25, polygon objects 
were created around the identified CRC tumor pixels and saved into a GeoPandas dataframe25. The 
comparison between predicted and pathologist-annotated CRC tumor polygon objects were used to 
calculate a confusion matrix, including pixel-level counts of true positive (TP), false positive (FP), true 
negative (TN), and false negative (FN) areas of the WSI. TP was defined as the number of pixels of the 
areas that are within both the predicted and annotated CRC tumor polygons. FP was defined as the 
number of pixels of the areas that are within the predicted CRC tumor polygons but are not within the 
annotated CRC tumor polygons. TN was defined as the number of pixels of the areas that are outside of 
both the predicted and annotated CRC tumor polygons. FN was defined as the number of pixels of the 
areas that are outside of the predicted CRC tumor polygons but are within the annotated CRC tumor 
polygons. Sensitivity, specificity, and accuracy are derived from these values to provide a quantitative 
measurement of the model performance. The codebase, including the training and inference pipeline, is 
publicly available via https://github.com/quincy-125/tsr_crc_tumor_seg.  
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A total of 277 WSIs scanned by the Aperio GT450 scanner26 at the Mayo Clinic were used for training 
and inference (Table 1). Out of these, 140 were normal colon WSIs and 137 were CRC WSIs. All WSIs 
underwent quality control examination by a senior cytotechnologist and a senior anatomic pathologist. 
During the training process, 140 normal colon WSIs were used. Out of these, 100 were used for Phase 1, 
20 were used for Phase 2, and the remaining 20 were used for Phase 3. Model inference was performed 
using all 137 CRC WSIs. The manual annotations of CRC tumors were required to compute the statistical 
metrics (i..e, confusion matrix, sensitivity, specificity, and accuracy). Tumor annotations from all 137 
CRC WSIs were drawn by pathologists using QuPath.27  
 
3. Results & Discussion 
 
The P-CEAD model demonstrated a sensitivity, specificity, and accuracy of 71% ± 26%, 92% ± 7%, and 
63% ± 23%, respectively, as determined by the confusion matrix values derived from the inference results 
of 137 CRC tumor WSI (Figure 3). 
 
A notable advantage of the P-CEAD-based CRC tumor segmentation pipeline is its fully unsupervised 
nature. This eliminates the need for time-consuming and costly pathologist annotations during the training 
process, underlining one of the benefits of implementing the unsupervised P-CEAD approach for CRC 
tumor segmentation in WSI. 
 
However, our ground truth for CRC tumor annotation, meticulously done by a pathologist, is microscopic 
and encapsulates large non-tumor areas surrounding the main lesion, inclusive of whitespace regions. 
These anomalies are a source of model error since our model focuses only on tissue-containing patches, 
excluding the whitespace regions. Consequently, the manually annotated CRC tumor areas (TP) tend to 
be larger than the predicted tumor areas (TP+FP), leading to an increase in false negative predictions 
(Figure 4 A). One potential solution could be to remove whitespace regions from the manually annotated 
areas to reduce the false negatives in future iterations.  
 
Originally designed as an anomaly detection model, P-CEAD identifies all regions diverging from the 
norm, which includes inked tissue, inflamed tissue, and malignant areas from WSI. This could lead the 
model to classify artifacts such as on-slide annotations as anomalies, thereby increasing the false positive 
predictions (Figure 4 B). To mitigate this, we propose adopting Jiang et al.'s28 ink-removal technique as 
part of the data preprocessing procedure before model inference in future experiments. 
 
In our P-CEAD-based model, peritumoral changes were included in the predicted CRC tumor areas. As 
discussed earlier, P-CEAD aims to detect all anomalous tissues, not solely malignant CRC tumors. 
Hence, the model included benign stromal tissue connected to malignant CRC tumors within the 
predicted areas, a factor contributing to false positives. For model training, we relied on normal colon 
WSIs (Section 2). A potential amendment could be to introduce benign tissues into the training set to 
adjust the Normalized Error Rate Difference (NERD), thereby reducing false positive predictions from 
non-malignant tissues (Figure 4 C) 
 
In summary, our P-CEAD model, an unsupervised anomaly detection-based tumor segmentation 
approach, yielded 71% ± 26% sensitivity, 92% ± 7% specificity, and 90% ± 7% accuracy in segmenting 
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CRC tumors from WSI. This underscores the value in further exploration of the P-CEAD-based tumor 
segmentation algorithm in other cancer types. To optimize model performance, we recommend adding 
WSIs with artifacts or non-malignant CRC tumor anomalous tissue to the training data set. This could 
reduce the misclassification of such tissues as malignant CRC tumors when utilizing the anomaly 
detection approach of P-CEAD. Further, image preprocessing approaches such as ink-removal and 
whitespace removal using the Otsu method could enhance both quantitative (i.e., reducing false positives 
and negatives) and qualitative model performance. 
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Figures 

*Color must be used for Figure 1, Figure 2, Figure 3, and Figure 4. 

Figure 1. Diagram of manual workflow of tissue slide review (TSR). There are ten components included 
in the figure. Component (a) is a CRC tumor tissue; (b) is a cut CRC tumor biopsy sample; (c) is a glass 
slide with the non-stained two-dimensional CRC tumor tissue block cut from (b); (d) is a glass slide with 
the H&E-stained two-dimensional CRC tumor tissue block section cut from (b), which is the adjacent 
two-dimensional CRC tissue block section to (c); (e) illustrates the general anatomic pathology practice 
workflow for pathologists to make cancer diagnostics using microscope on glass slides; (f) is the 
pathologists diagnostics with red polygon highlighting the CRC tumor tissue regions from (d); (g) is the 
black CRC tumor polygon on (c) that has been aligned with the red CRC tumor polygon on (d); (h) 
illustrates the clinical workflow for cytotechnologists to scrape the CRC tumor tissue on (g); (i) is the 
NGS device used for genetic testing; (j) is the genetic testing results from the NGS technology. Two sub-
figures included in this figure, A). Biopsy Sample Preparation Pipeline; B). Tissue Diagnostics and 
Genetic Testing Pipeline. 
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Figure 2. Training and Inference Pipeline Diagram of P-CEAD in CRC Tumor Segmentation. Phase 1). 
Phase 1 of the Training Pipeline, pGAN Training; Phase 2). Phase 2 of the Training Pipeline, 
Calculating NERD; Phase 3). Phase 3 of the Training Pipeline, Selecting Cut-Off Mahalanobis Distance 
Threshold; Inference Phase). Evaluating P-CEAD performance in CRC Tumor Segmentation. 
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Figure 3. Quantitative Measurement Results of P-CEAD Inference Performance in CRC Tumor 
Segmentation on 137 CRC Tumor WSIs. The Statistical Metrics Including the Sensitivity, Specificity, and 
F1 Score. Each CRC WSI is a blue dot.  
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Figure 4. Qualitative Model Performance Evaluations. Note that the red lines are the boundaries of the 
ground truth CRC tumor annotations; the blue lines are the boundaries of the predicted CRC tumor 
areas. A). Impacts of whitespace of WSIs on model performance evaluation with a1) - a4) four example 
patches. All whitespace areas presented on a1) - a4) are all included in manual CRC tumor annotation 
regions, but not included in the model prediction regions. B). Impacts of predicted artifacts on model 
performance evaluation with b1) - b4) four example patches. b1) and b2) are example patches with green 
on-slide annotation inks that are within the model prediction regions, but outside the manual CRC tumor 
annotation regions. b3) and b4) are example patches with black on-slide annotation inks that are within 
the model prediction regions, but outside the manual CRC tumor annotation regions. C). Impacts of 
predicted non-malignant CRC tumor anomalous tissue on model performance evaluation with c1) - c4) 
four example patches. On each of the two example patches, c1) and c3), tissues on the left to the red 
polygon boundary line are included in the manual CRC tumor annotations; tissues on the right to the red 
polygon boundary line are not included in the manual CRC tumor annotations but included in the model 
prediction regions. On each of the rest two example patches, c2) and c4), tissues on the lower regions 
toward the red boundary line are included in both the annotated and predicted CRC tumor areas; tissues 
on the upper regions toward the red boundary line are only included in the predicted- but are not 
included in the annotated CRC tumor areas.  
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Tables 
*Color is not necessary to be used for Table 1. 

Table 1. Data Information Summary Table with WSI Type and Number of WSIs Information Regarding 
Each of the Three Training Phases and One Inference Phase.  
 

Phase Name Slide Type Number of Slides 

Training Phase 1 Normal Colon 100 

Training Phase 2 Normal Colon 20 

Training Phase 3 Normal Colon 20 

Inference Phase Colorectal Cancer 137 
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