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Abstract 

 

INTRODUCTION: APOE4 genotype and lifestyle have been associated with Alzheimer’s 

disease (AD) risk, but how they interact on neuroimaging and cognitive markers of aging and 

AD remains unclear. 

METHODS: In 135 cognitively unimpaired older adults from the baseline Age-Well trial, we 

investigated the interaction between APOE4 status and cognitive activity, diet and physical 

activity on cognition and neuroimaging markers of neurodegeneration and amyloid. 

RESULTS: Higher cognitive activity correlated with lower medial temporal lobe (MTL) volume 

and perfusion in APOE4-carriers, but increased cognitive performance irrespective of APOE4 

status. Higher adherence to the Mediterranean diet correlated with higher MTL metabolism 

and attention scores in APOE4-carriers. Conversely, physical activity correlated with higher 

MTL perfusion and lower amyloid in APOE4-non-carriers only. 

DISCUSSION: Genetics and lifestyle factors act through different mechanisms to help APOE4-

carriers resist or cope with brain alterations and postpone cognitive decline. Our results support 

the need of personalized lifestyle-based interventions for AD. 

Trial Registration Information: EudraCT: 2016-002441-36; IDRCB: 2016-A01767-44; 

ClinicalTrials.gov Identifier: NCT02977819. 
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INTRODUCTION 

Alzheimer’s disease (AD) is characterized by the accumulation of amyloid plaques and 

neurofibrillary tangles, accompanied by various structural and functional brain alterations. AD 

development and progression is likely influenced by a combination of genetic and 

environmental risk factors.1 Among those, the apolipoprotein E allele e4 (APOE4) is the major 

genetic risk factor for sporadic AD.2 Associations between APOE4 status and brain integrity in 

cognitively unimpaired individuals have been inconsistent. Robust associations were found for 

amyloid load, showing increased amyloid deposition in APOE4-carriers compared to non-

carriers,3,4 while studies on gray matter volume (GMvol), glucose metabolism and perfusion 

are more discordant, showing either greater alterations,5,6 greater integrity in APOE4-

carriers,7,8,9 or no differences between groups.3,10,11 

Beyond genetics, increasing evidence highlights the importance of lifestyle factors in brain 

integrity and cognitive performance. Cognitive activity,12,13,14 adherence to the Mediterranean 

diet15,16,17 and physical activity14,18,19for review have been associated with greater cognition and 

brain integrity in cognitively unimpaired older adults, although contradictory findings exist.20  

Interestingly, APOE4 genotype and lifestyle factors might interact on cerebral and cognitive 

markers of ageing and AD. More specifically, a healthy and stimulating lifestyle could 

particularly benefit APOE4-carriers.21 For instance, previous studies highlighted an interaction 

between APOE4 status and cognitive activity on amyloid and cognition, such that higher 

cognitive activity was associated with lower amyloid deposition22 and higher cognitive scores23 

in APOE4-carriers when compared to non-carriers. APOE4-carriers with higher adherence to 

the Mediterranean diet also demonstrated increased cognitive functions.24 Additionally, 

physical activity was more strongly related to increased hippocampal volume,25 reduced 

amyloid deposition26for review and cognitive decline27 in APOE4-carriers compared to non-

carriers. However, negative findings have also been reported with no interactive effects or 

greater effect in APOE4-non-carriers for cognitive activity,28,27 adherence to the Mediterranean 

diet29,15,30 and physical activity.28,31,32 Notably, one study found that with higher cognitive 

activity, APOE4-carriers had smaller hippocampal volumes than non-carriers.28 While such 
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negative association might suggest a detrimental effect of cognitive engagement in APOE4-

carriers, it could alternatively indicate the existence of compensation mechanisms, helping 

these individuals to remain cognitively normal despite brain alterations (i.e., resilience). The 

paucity of cognitive and neuroimaging outcomes concurrently prevents from interpreting the 

results in terms of underlying reserve mechanisms and notably to differentiate these two 

opposite possible interpretations. 

 

In that context, the aim of this study was to provide a comprehensive assessment of the 

interplay between APOE4 genotype and various lifestyle factors (i.e., cognitive activity, 

adherence to the Mediterranean diet and physical activity) on multimodal neuroimaging 

markers and cognition in cognitively unimpaired older adults. By combining multimodal 

neuroimaging and cognition, we aim to better understand the mechanisms by which lifestyle 

could mitigate the effect of APOE4. For neuroimaging, we focused on AD-sensitive markers 

including neocortical amyloid burden, as well as GMvol, perfusion and glucose metabolism in 

the Medial Temporal Lobe (MTL), known to be the first site of neurodegeneration in the course 

of AD33 and to be frequently affected in APOE4-carriers.34  

Based on the existing resistance/resilience framework,35 we hypothesized three distinct 

scenarios (Figure 1). In these scenarios, APOE4-non-carriers are an optimal reference for 

healthy ageing (i.e., optimal brain and cognitive outcomes), in whom lifestyle is associated with 

mild to moderate increase in brain integrity and cognition. First, lifestyle could confer resistance 

to APOE4-carriers, allowing them to maintain brain integrity and avoid pathology. In this case, 

we expect healthier lifestyles in APOE4-carriers to be associated with greater brain integrity 

and cognitive function (i.e., Resistance; Figure 1A). Second, lifestyle could allow APOE4-

carriers to better cope with brain aging and pathology. In this scenario, healthier lifestyles 

would be associated with equal or improved cognition in APOE4-carriers despite reduced brain 

integrity and/or greater pathology (i.e. Resilience; Figure 1B). A third hypothesis would be that 

lifestyle can be equally beneficial in carriers and non-carriers or cannot counteract the 
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deleterious effect of APOE4 carriage. In this case, no interactions between APOE4 status and 

lifestyle would be evidenced in terms of both brain and cognitive outcomes (Figure 1C). 

 

METHODS 

Participants  

We included 135 cognitively unimpaired older adults from the baseline visit of the Age-Well 

randomized clinical trial (RCT; Medit-Ageing European Project;36 see Flow diagram - eFigure 

S1). Individuals over 65 years were recruited from the general population from November 2016 

to March 2018. Participants were native French speakers, retired for at least 1 year, with at 

least 7 years of education, and performed within the normal range on standardized cognitive 

evaluation. Exclusion criteria included i) history of cerebrovascular disease, ii) presence of a 

chronic disease or acute unstable illness, iii) evidence of major neurological or psychiatric 

disorders (including drug or alcohol abuse), and iv) recent or current medication use that may 

interfere with cognitive functioning. Baseline data were collected between November 2016 and 

April 2018. Participants completed lifestyle questionnaires, and underwent APOE4 genotyping, 

cognitive assessments, and multimodal neuroimaging. 

 

Standard Protocol Approvals, Registrations, and Patient Consents  

The Age-Well RCT was approved by local ethics committee (Comité de Protection des 

Personnes Nord-Ouest III, Caen, France; registration number: EudraCT: 2016-002441-36; 

IDRCB: 2016-A01767-44; ClinicalTrials.gov Identifier: NCT02977819) and a written informed 

consent was obtained from each participant prior to examinations. 

 

Neuroimaging acquisitions  

All participants were assessed on the same magnetic resonance imaging (MRI; Philips 

Achievia 3.0T scanner) and positron emission tomography (PET; Discovery RX VCT 64 PET-

CT scanner, General Electric Healthcare) cameras in separate sessions at the Cyceron Center 

(Caen, France). A high-resolution T1-weighted structural image and a 3D fluid-attenuated 
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inversion recovery image were acquired in all participants. FDG- and Florbetapir-PET scans 

were acquired on two separate days (n=92 and n=134, respectively). For Florbetapir-PET, 

each participant underwent a dual phase scan, an early acquisition beginning immediately after 

the injection, used as a proxy of brain perfusion (n=133), and a late acquisition (50-min post-

injection) to obtain a measure of amyloid burden (n=134). Details on acquisition parameters 

and procedures are provided in eMethods. 

 

Neuroimaging processing  

Gray matter volume, perfusion and metabolism of the Medial Temporal Lobe 

The hippocampus (anterior and posterior), entorhinal, perirhinal (Brodmann areas 35 and 36) 

and parahippocampal cortices were automatically segmented from T1-weighted MRI with the 

Automatic Segmentation of Hippocampal Subfields (ASHS) software,37 using the ASHS-T1 

atlas (ashsT1_atlas_upennpmc_07202018).38 For each participant, segmentation of each MTL 

sub-region was visually inspected. Failed segmentations were manually edited when possible, 

or excluded. After exclusion of failed segmentations, resulting number of participants for the 

GMvol of the perirhinal cortex was 131. The whole hippocampus volume was calculated as the 

sum of anterior and posterior hippocampus volumes while the perirhinal cortex volume was 

obtained by summing Brodmann areas 35 and 36 volumes. Finally, left and right volumes were 

averaged and normalized by the total intracranial volume (TIV, estimated using SPM12) to 

account for inter-individual variability in head size (normalized volume = raw volume x 1000 / 

TIV). 

Early Florbetapir-PET was reconstructed from 1 to 6 min for a better approximation of brain 

perfusion. FDG and early Florbetapir-PET images were coregistered to each subject's T1-

weighted native space using rigid registration in Advanced Normalization Tools (ANTs) and 

then quantitatively normalized using the cerebellar cortex as a reference. ASHSs 

segmentations were used as regions-of-interest to extract MTL sub-regional glucose 

metabolism (FDG-PET) and perfusion (early Florbetapir-PET) standardized uptake value ratio 

(SUVr) in the resulting PET images.  
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Amyloid burden  

Florbetapir-PET late acquisition images were processed as previously described, to obtain a 

global neocortical measure of amyloid burden.39 Briefly, T1-weighted MRI images were 

segmented using FLAIR images and spatially normalized to the Montreal Neurological Institute 

(MNI) space using the Statistical Parametric Mapping (SPM12) software’s multiple channels 

segmentation procedure (http://www.fil.ion.ucl.ac.uk/spm/software/spm12). Florbetapir-PET 

data were coregistered onto their corresponding T1-weighted MRI and normalized to the MNI 

space using the parameters from the segmentation procedure. Resulting images were 

quantitatively normalized using the cerebellar gray matter uptake as a reference. Global 

neocortical amyloid SUVr was then extracted from these images using a predetermined 

neocortical mask including the entire gray matter, except the cerebellum, occipital and sensory 

motor cortices, hippocampi, amygdala and basal nuclei.40 

 

APOE genotyping procedure 

Fasting blood samples were obtained for all participants. APOE genotype was identified by 

restriction isotyping from genomic DNA extracted from frozen leucocytes, amplified by PCR, 

and restricted with Hhal.41 APOE4-carriers were defined as carriers of one or two ε4 alleles. 

Individuals with no ε4 allele were defined as APOE4-non-carriers. 

 

Lifestyle assessment 

Cognitive and complex mental activities 

Frequency of participation in leisure cognitive activities was assessed using an adapted and 

French translated version of the Cognitive Activities questionnaire (CAQ)42 and the Lifetime of 

Experiences Questionnaire (LEQ).43,44 In this study we focused on current lifestyle. Therefore, 

while both questionnaires assessed lifetime activities, only the current period of the CAQ and 

the late-life sub-score of the LEQ were used. 

The CAQ assesses the frequency of participation in cognitive activities involved in seeking or 

processing information (e.g., reading books or newspapers, writing letters or emails, playing 
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games or going to the library), relatively common and with minimal demands or requirements 

to participation, across different age epochs: 6, 12, 18, 40 years and the current period.42 For 

each type of activity, participants are invited to report its frequency using a 5-point response 

scale (1-once a year or less, 2-several times a year, 3-several times a month, 4-several times 

a week, 5-every day). The CAQ current period sub-score was obtained by averaging the 5 

items referring to the current period, with higher scores representing a greater engagement in 

cognitive activities.  

The LEQ assesses complex mental activity through 3 life periods: young adulthood (13–30 

years), mid-life (30–65 years), and late-life (from 65 years to present date). Each life period 

includes a specific (e.g., education, occupational complexity) and a non-specific (e.g., visits to 

family or friends, music practice, writing, reading, physical activities, travelling) components, 

which are summed up to obtain one global score per period. Late-life LEQ (specific + non-

specific) was used in the present study, with higher scores representing greater engagement 

in complex mental activities. 

 

Adherence to the Mediterranean diet 

Adherence to the Mediterranean diet was measured using the self-administered 

Mediterranean Diet Adherence Screener (MEDAS).45 This questionnaire includes 14 

questions. (12 questions on food consumption frequency, and 2 questions on food intake 

habits) which are considered critical to assess adherence to the traditional Mediterranean diet 

(e.g., “do you use olive oil as the principal source of fat for cooking?”, “do you prefer to eat 

chicken, turkey or rabbit instead of beef, pork, hamburgers or sausages?”). One point was 

given to answers that were favorable to the Mediterranean diet, and 0 point to answers that 

were not favorable. The MEDAS score ranges from 0 to 14, with higher scores indicating higher 

adherence to the Mediterranean diet. 
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Physical activity 

We assessed physical activity with the Modifiable Activity Questionnaire (MAQ),46 using the 

French version adapted to be self-administered.47 Briefly, the questionnaire evaluates the 

frequency and duration of leisure and work-related physical activities over the past 12 months. 

As all participants were retired, only the leisure activity score was considered. Participants had 

to select from a list all activities they did at least 10 times over the past 12 months (e.g. 

gardening, walking, hiking, jogging, biking), and estimate the amount of time they spent doing 

each activity (i.e., how many months per year, time per month and minutes each time). For 

each activity, the average number of hours of physical activity per week was obtained as 

follows: [(number of months per year) x (number of times per month) x (minutes per time) / 60 

(min)] / 52 (week per year). These scores were then summed to derive a total score. The total 

physical activity score reflects the average hours per week of leisure-time physical activity over 

the past 12 months. MAQ data was missing for one participant. 

 

Cognitive assessment 

The neuropsychological evaluation included tests assessing global cognitive functioning, 

episodic memory, executive functions and attention. To obtain robust proxies of cognitive 

abilities and limit multiple statistical testing issues, composite scores were computed. The 

Preclinical Alzheimer’s Cognitive Composite 5 (PACC-5)48 was calculated as an index of global 

cognitive functioning, along with composite scores of episodic memory, executive functions 

and attention. Details for each score’s calculation are provided in eMethods and eTable 1. 

 

Statistical analysis 

First, APOE4 carriers and non-carriers characteristics were compared using two-sample t-

tests. General linear models were then used to assess i) the associations of APOE4 and 

lifestyle factors separately with each neuroimaging and cognitive measure, and ii) the 

interactions between each lifestyle factor and APOE4 on each neuroimaging and cognitive 

measure. All analyses were controlled for age, sex and education. In complementary analyses, 
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the interactions between lifestyle factors and APOE4 on neuroimaging or cognition were 

further controlled for the other lifestyle factors. 

Analyses were conducted using the R software (R Core Team, 2019) and results considered 

significant at p<.05. Considering the exploratory nature of this work, no correction for multiple 

comparisons was applied. 

The MAQ (physical activity) score was not normally distributed. Therefore, MAQ values were 

log-transformed after the addition of a constant of 1 to each score (as values of 0 cannot be 

directly log-transformed).  

 

RESULTS 

Participants’ characteristics 

Participants’ characteristics are detailed in Table 1. The 36 APOE4-carriers did not differ from 

the 99 non-carriers in terms of age, education, female/male ratio or lifestyle. 

Due to missing data (see Methods), sample size slightly varies across analysis. Final sample 

size per neuroimaging modality is summarized in eTable 2. 

 

Association of APOE4 status with neuroimaging and cognition 

APOE4-carriers had higher global amyloid burden compared to non-carriers (β=0.24, 

p=0.006). No associations were found between APOE4 status and MTL subregions volume, 

metabolism, perfusion, nor with cognitive functions (all ps>0.05; eTable 3).  

 

Association of lifestyle factors with neuroimaging and cognition 

Higher CAQ was associated with reduced GMvol in the parahippocampal cortex (β=-0.2, 

p=0.02). No associations were found between the CAQ and the other MTL subregions or 

neuroimaging modalities, nor between the LEQ, MAQ or MEDAS and neuroimaging measures 

(all ps>0.05; eTable 4).  

Higher CAQ was associated with higher PACC-5 (β=0.23, p=0.004), executive function 

(β=0.24, p=0.003) and attention (β=0.25, p=0.002). Higher LEQ was associated with higher 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 17, 2023. ; https://doi.org/10.1101/2023.07.17.23292755doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.17.23292755


 11 

PACC-5 (β=0.2, p=0.01) and episodic memory (β=0.21, p=0.01). The MEDAS and MAQ were 

not associated with cognition (all ps>0.05; eTable 5). 

 

Interactions between APOE4 status and lifestyle factors 

Full statistics are reported in Table 2. 

Interactions between APOE4 status and cognitive activity 

CAQ: An interaction between APOE4 status and the CAQ was found for GMvol in the 

parahippocampal cortex (β=-1.01 p=0.02), and for perfusion in the entorhinal and perirhinal 

cortices (β=-1.08, p=0.02 and β=-1.08, p=0.02, respectively) such that, in APOE4-carriers 

higher CAQ was associated with lower GMvol and perfusion compared to non-carriers (Figure 

2A). We found no interactions between APOE4 status and the CAQ on cognition, suggesting 

that the better cognition associated with higher CAQ (see paragraph 3.3) did not differ between 

APOE4-carriers and non-carriers (Figure 2B).  

LEQ: We found a significant interaction between APOE4 status and the LEQ for perfusion in 

the parahippocampal cortex (β=-1.26, p=0.02), such that with higher LEQ, APOE4-carriers had 

lower perfusion compared to non-carriers (Figure 2A). A trend was found in the same direction 

for the parahippocampal cortex metabolism (β=-1.32, p=0.05). No interactions were found 

between APOE4 status and the LEQ on cognition, suggesting that the positive association 

previously evidenced between the LEQ and cognition (see above) did not differ between 

APOE4-carriers and non-carriers (Figure 2B).  

 

Interactions between APOE4 status and adherence to the Mediterranean diet 

We found an interaction between APOE4 status and the MEDAS on hippocampal and 

entorhinal cortex metabolism (β=0.76, p=0.02 and β=0.93, p=0.006, respectively), such that, 

compared to non-carriers, APOE4-carriers showed a higher metabolism with higher MEDAS 

(Figure 3A). Similarly, an interaction between APOE4 and the MEDAS was found on attention 

(β=0.52, p=0.05; Figure 3B), revealing better attention as a function of MEDAS in APOE4-
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carriers, compared to non-carriers. No interactions were found for the other neuroimaging or 

cognitive measures (Table 2 for details).  

 

Interactions between APOE4 status and physical activity 

An interaction between APOE4 status and the MAQ was found on hippocampal perfusion (β=-

0.51, p=0.04; Figure 4A) and amyloid deposition (β=0.53, p=0.03; Figure 4B). The interactions 

were such that, compared to APOE4-carriers, non-carriers with higher MAQ scores showed 

higher perfusion and lower amyloid deposition. No interactions were found on the other 

neuroimaging or cognitive measures (Table 2).  

 

Complementary analyses 

Interaction analyses were replicated while controlling for the other lifestyle factors and results 

remained similar, except for the interaction between APOE4 status and the LEQ on 

parahippocampal cortex metabolism that became significant (β=-1.56, p=0.026), while the 

interaction between APOE4 status and the MEDAS on attention was attenuated (β=0.45, 

p=0.07) (eTable 6). 

 

DICUSSION 

Our study provides insights on the complex interactive effects of genetics and lifestyle factors 

on complementary cerebral and cognitive outcomes in cognitively unimpaired older adults. 

Cognitive activity was associated with lower gray matter volume and perfusion within the MTL 

in APOE4 carriers only, but higher cognitive performance in both APOE4 carriers and non-

carriers. Adherence to the Mediterranean diet showed a greater positive association with both 

cerebral glucose metabolism and cognition (i.e. attention scores) in APOE4 carriers when 

compared to non-carriers. By contrast, physical activity was associated with higher MTL 

perfusion and lower global amyloid load in APOE4 non-carriers only, with no effects on 

cognition.  
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In this study, APOE4 carriage was associated with greater amyloid deposition. This finding is 

consistent with a large body of evidence showing increased amyloid burden in APOE4-

carriers.3,4 However, APOE4 was not associated with GMvol, metabolism or perfusion of the 

MTL, or with cognition. While deleterious effects of the APOE4 allele on these measures have 

been evidenced,5,6,49,50 the literature provides mixed results.9,11,10,3,51,52 These inconsistencies 

could reflect the fact that, except for amyloid deposition, effects of APOE4 in cognitively 

unimpaired individuals are more subtle.3,53 Differences in methodology and sample 

characteristics across studies, including differences in lifestyle and cognitive reserve, might 

also explain these discrepancies. 

Concerning lifestyle factors, only cognitive activity was directly associated with differences in 

neuroimaging markers and cognition. More particularly, higher cognitive activity was 

associated with lower GMvol in the parahippocampal cortex, which contrasts with previous 

research showing positive associations between cognitive activity and GMvol, including in the 

MTL.14 On the other hand, cognitive activity was associated with greater cognitive performance 

(i.e., global cognition, episodic memory, executive function and attention), in line with existing 

literature.23,54 The association between higher cognitive activity and greater atrophy, lower 

perfusion and higher cognitive performance could suggest the existence of compensation 

mechanisms. Specifically, compensation mechanisms may be promoted by a greater 

engagement in cognitive activities, reflecting a resilience mechanism (Figure 1B).35 The 

interaction between APOE4 status and cognitive activity suggests that this effect was mainly 

driven by APOE4-carriers.  

Previous literature has highlighted interactions between APOE4 status and cognitive activity 

such that cognitive activity could limit the deleterious effect of APOE4 on AD biomarkers.22,55 

Conversely, a study showed that with higher cognitive activity, APOE4-carriers had smaller 

hippocampal volume than non-carriers.28 According to the authors, this result could reflect the 

existence of compensatory mechanisms in APOE4-carriers allowing them to maintain levels of 

cognitive performance comparable to non-carriers. Our findings support this view showing an 

interaction between APOE4 and cognitive activity on volume and perfusion of the MTL, such 
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that with higher engagement in cognitive activity APOE4-carriers had lower GMvol and 

perfusion, but increased cognition, similar to non-carriers. This result suggests that higher 

cognitive activity could promote resilience and help APOE4-carriers to cope with brain 

alterations, possibly via greater efficiency of cognitive processes56 (Figure 1.B).  

The same pattern of interactions was replicated using two different and complementary 

measures of cognitive engagement (i.e., the CAQ and the LEQ), even though they concerned 

partially different neurodegeneration markers and cognitive domains. Specifically, APOE4 

interacted with the CAQ on parahippocampal cortex volume, entorhinal and perirhinal cortices 

perfusion and with the LEQ on parahippocampal cortex perfusion (and metabolism, to a lesser 

extent). This suggests the existence of common mechanisms, supported by different types of 

cognitive activities that could influence complementary markers of cognitive and brain integrity. 

 

In the current study, adherence to the Mediterranean diet was not directly associated with any 

of the neuroimaging or cognitive parameters considered, in contrast with most prior 

research.15,16,17 However, there was an interaction with APOE4 status on hippocampal and 

entorhinal cortices metabolism and attention scores. More specifically, APOE4-carriers with 

higher adherence to the Mediterranean diet showed higher metabolism and cognitive 

performance compared to non-carriers. These results align with previous evidence suggesting 

that dietary adjustments could be of particular importance to mitigate the deleterious effects of 

APOE4 on brain and cognition in carriers.57,58 However, prior studies provide mixed 

results.15,29,24,30,59 Methodological differences between studies (e.g., sample size, mean age, 

sex ratio, design) might explain these discrepancies and would require further investigations. 

The association of a greater adherence to Mediterranean diet with both higher MTL metabolism 

and attention scores in APOE4-carriers (in the absence of negative associations with other 

brain outcomes that would suggest the existence of greater brain alterations) aligns with the 

hypothesis of a protective effect of lifestyle that would help to limit brain changes (here 

neurodegeneration), in line with the concept of resistance (Figure 1A).35 Therefore, the 
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Mediterranean diet would promote reserve in APOE4-carriers through mechanisms that are 

different from those outlined for cognitive activity, potentially by supporting brain maintenance.  

 

Lastly, we found an interaction between APOE4 status and physical activity on hippocampal 

perfusion and global amyloid burden, such that higher levels of physical activity were 

associated with higher perfusion in the hippocampus and lower amyloid load in non-carriers 

only. While this finding is in agreement with another study showing more prominent effects of 

exercise on AD biomarkers in APOE4-non-carriers,60 most studies report greater effects in 

APOE4-carriers.26 for review Previous studies reporting a beneficial effect of physical activity on 

hippocampal cerebral blood volume61 and perfusion62 did not investigate the modulating role 

of APOE4 on these associations. Our results suggest that such effects could be driven by 

APOE4-non-carriers, in whom physical activity would support mechanisms particularly efficient 

to promote brain integrity. 

On the other hand, physical activity was not associated with cognition, nor interacted with 

APOE4 on cognition. Previous results are mixed, showing greater beneficial effect of physical 

activity in APOE4-carriers,27 in non-carriers,31,63 in both groups,64 no effect,65 or decreased 

cognitive abilities in APOE4-carriers.32 These contradictory findings need to be further explored 

in order to clarify the mechanisms involved. Our results suggest that, contrary to cognitive 

activity and diet, physical activity was not associated with higher reserve in APOE4-carriers 

(Figure 1C), but was specifically associated with greater brain outcomes in non-carriers.  

 

The strengths of this study include the assessment of multiple lifestyle factors within the same 

individuals, allowing investigations into the relative effect of different lifestyle factors on brain 

and cognitive integrity. Multimodal neuroimaging, including state-of-the-art assessment of MTL 

structures, combined with cognitive assessments allows a better approach to studying the 

reserve mechanisms underlying the moderating effect of lifestyle on APOE4-related changes. 

This study also has some limitations, including a relatively modest sample size when splitting 

by APOE4 status. The use of questionnaires to assess lifestyle factors only allows the 
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estimation of lifestyle behaviors and can be biased by individuals’ perception and memory. 

Nevertheless, these questionnaires are widely used and their validity and reliability have been 

previously reported.42,43,46,45 Moreover, only current lifestyle was evaluated in individuals 

without cognitive impairments, limiting the likelihood of major recollection biases. Due to the 

exploratory nature of the study, no corrections were made for multiple comparisons and further 

replication will be needed to address the robustness of these findings. Finally, the cross-

sectional design prevents evaluating the reserve mechanisms’ dynamically in APOE4-carriers 

as brain alterations progress. Longitudinal studies, including interventional studies, would 

enhance our understanding of the complex interactions between APOE4 status and lifestyle. 

 

Overall, our study demonstrates that APOE4 genotype interacts with lifestyle to influence brain 

integrity and cognition with different patterns of association depending on the lifestyle factor. 

Our results suggest that higher cognitive activity could promote resilience, while higher 

adherence to the Mediterranean diet might instead promote resistance in APOE4-carriers. On 

the other hand, physical activity had a beneficial effect only in APOE4-non-carriers. Our 

findings highlight a complex interplay between genetics and lifestyle, which differentially help 

APOE4-carriers to resist or cope with brain alterations and postpone cognitive decline. In the 

absence of a treatment for AD, these results may deepen our understanding of how lifestyle 

interacts with AD genetic risk to alter the pathological phenotype and help provide lifestyle 

recommendations for personalized interventions to prevent or delay AD. 
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Table 1 Demographics 
 
  APOE4 

carriers 
  APOE4 non-
carriers 

  p Value 

N (%) 36  99   

Age, years (mean ±SD) 69.12 (±4.13)  69.51(±3.69)  0.595 

Female/Male ratio 18/18 65/34   0.100 

Education, years (mean ±SD) 13.11 (±3.41) 13.17 (±2.98)  0.920 

Physical activity, hours per week (MAQ, 
mean ±SD) 

6.50 (±5.22) 6.24 (±4.81)  0.783 

Cognitive activity (CAQ, mean ±SD) 17.56 (±3.59) 17.53 (±3.12)  0.962 

Complex mental activity (LEQ, mean ±SD)  27.94 (±4.23) 28.21 (±4.61)  0.764 

Adherence to the Mediterranean Diet 
(MEDAS, mean ±SD) 

6.89 (±2.58) 7.18(±1.99)  0.487 

PACC-5 score (mean ±SD) -0.06 (±1.14) 0.02 (±0.95)  0.653 

Episodic memory score (mean ±SD) 0.02 (±1.11) -0.01 (±0.97)  0.873 

Executive functions score (mean ±SD) 0.09 (±1.01) -0.04 (±1)  0.493 

Attention score (mean ±SD)  0.08 (±1.09) -0.03 (±0.98)  0.566 

P-values were obtained from two-sample t-tests. Abbreviations: SD, standard deviation; 
APOE, apolipoprotein E gene; PACC-5, Preclinical Alzheimer's Cognitive Composite 5. 
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Table 2 Interactions of APOE4 with lifestyle factors on neuroimaging values or cognitive scores 
 

 

*P < 0.05, **P < 0.01, ***P < 0.001. Abbreviations: GM, gray matter; CAQ, Cognitive Activities Questionnaire; LEQ, Lifetime of Experiences 
Questionnaire; MAQ, Modifiable Activity Questionnaire; MEDAS, Mediterranean Diet Adherence Screener. 

 Lifestyle 
factors 

GM volume 
Hippocampus Entorhinal cortex Perirhinal cortex Parahippocampal cortex 

b ß  t Value p Value b ß  t Value p Value b ß  t Value p Value b ß  t Value p Value 
CAQ -0.021 -0.675 -1.511 0.133 0.001 0.129 0.282 0.778 -0.019 -0.743 -1.605 0.111 -0.016 -1.007 -2.33 0.021* 
LEQ -0.001 -0.035 -0.061 0.951 0.003 0.607 1.068 0.288 -0.01 -0.595 -1.027 0.306 -0.007 -0.721 -1.291 0.199 
MAQ -0.014 -0.051 -0.208 0.836 0.008 0.134 0.537 0.592 -0.099 -0.412 -1.644 0.103 0.01 0.068 0.274 0.784 
MEDAS 0.003 0.039 0.142 0.887 0.003 0.203 0.734 0.464 -0.014 -0.221 -0.775 0.44 -0.003 -0.083 -0.306 0.76  

Glucose metabolism 
Hippocampus Entorhinal cortex Perirhinal cortex Parahippocampal cortex 

CAQ 0.000 0.025 0.05 0.96 -0.001 -0.139 -0.274 0.785 -0.000 -0.036 -0.072 0.943 0.002 0.281 0.557  0.579 
LEQ -0.002 -0.45 -0.671 0.504 -0.002 -0.603 -0.889 0.377 -0.004 -0.777 -1.158 0.25 -0.006 -1.315 -1.992 0.05 
MAQ 0.011 0.188 0.612 0.542 0.007 0.136 0.439 0.662 0.017 0.25 0.814 0.418 -0.007 -0.111 -0.362 0.718 
MEDAS 0.011 0.762 2.314 0.023* 0.012 0.929 2.818 0.006** 0.007 0.403 1.18 0.241 0.003 0.16 0.47 0.639  

Perfusion  
Hippocampus Entorhinal cortex Perirhinal cortex Parahippocampal cortex 

CAQ -0.003 -0.648 -1.406 0.162 -0.006 -1.081 -2.357 0.02* -0.006 -1.083 -2.351 0.02* -0.003 -0.646 -1.455 0.148 
LEQ -0.002 -0.607 -1.056 0.293 -0.003 -0.966 -1.685 0.095 -0.003 -0.745 -1.28 0.203 -0.004 -1.257 -2.294 0.024* 
MAQ -0.024 -0.512 -2.049 0.043* -0.003 -0.069 -0.27 0.788 -0.008 -0.151 -0.589 0.557 -0.021 -0.418 -1.718 0.088 
MEDAS 0.001 0.059 0.207 0.836 0.001 0.102 0.359 0.72 0.001 0.104 0.364 0.716 -0.000 -0.016 -0.058 0.954  

Amyloid load   
Global SUVR 

CAQ 0.008 0.427 0.942 0.348 
LEQ 0.000 0.001 0.002 0.998 
MAQ 0.094 0.534 2.177 0.031* 
MEDAS -0.016 -0.35 -1.274 0.205  

Cognitive composite scores  
Global cognition Episodic memory Executive function Attention 

CAQ -0.031 -0.25 -0.626 0.533 -0.036 -0.283 -0.674 0.502 -0.06 -0.483 -1.2 0.232 -0.007 -0.055 -0.133 0.895 
LEQ -0.019 -0.243 -0.48 0.632 -0.049 -0.616 -1.191 0.236 0.01 0.132 0.254 0.8 0.041 0.515 0.976 0.331 
MAQ -0.057 -0.05 -0.22 0.826 -0.152 -0.132 -0.568 0.571 -0.181 -0.159 -0.692 0.49 -0.087 -0.075 -0.326 0.745 
MEDAS 0.082 0.275 1.099 0.274 0.008 0.027 0.106 0.916 0.09 0.302 1.196 0.234 0.156 0.518 2.026 0.045* 
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Figure 1 

 

 

 

Figure 1 Potential mechanisms for the interaction between APOE4 and lifestyle factors. 
(A) Resistance in APOE4 carriers: lifestyle counteracts the deleterious effect of APOE4 

genotype, such that APOE4 carriers with more active lifestyle would show higher brain integrity 

and cognition. (B) Resilience in APOE4 carriers: lifestyle helps APOE4 carriers to compensate 

for the presence of brain alterations and remain cognitively healthy. (C) No APOE4 x lifestyle 

interaction: lifestyle does not counteract the deleterious effect of APOE4 on brain and/or 

cognition. The y-axis represents brain integrity or cognition. The x-axis represents the degree 

of engagement in lifestyle factors. Abbreviations: APOE, apolipoprotein E gene. 
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Figure 2 

 

 

 

Figure 2 Interactive effects of cognitive activity (CAQ, LEQ) and APOE4 on 
neuroimaging (A) and cognitive (B) outcomes. Statistics were obtained from general linear 

models controlling for age, sex and education. Raw values are plotted. Dotted lines represent 

confidence intervals (95%). Abbreviations: APOE, apolipoprotein E gene; CAQ, Cognitive 

Activities Questionnaire; LEQ, Lifetime of Experiences Questionnaire 
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Figure 3 

 

 

 

 

Figure 3 Interactive effects of Mediterranean diet adherence and APOE4 on 
neuroimaging (A) and cognitive (B) outcomes. Statistics were obtained from general linear 

models controlling for age, sex and education. Raw values are plotted. Dotted lines represent 

confidence intervals (95%). Abbreviations: APOE, apolipoprotein E gene. 
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Figure 4 

 

 

 

 

Figure 4 Interactive effects of physical activity and APOE4 on neuroimaging (A) and 
cognitive (B) outcomes. Statistics were obtained from general linear models controlling for 

age, sex and education. Raw values are plotted. Dotted lines represent confidence intervals 

(95%). Abbreviations: APOE, apolipoprotein E gene.  
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Appendix 

Collaborators - Medit-Ageing Research Group 

 

Name Location Role Contribution 

Allais Florence, BA EUCLID/F-CRIN Clinical 
Trials Platform, Bordeaux, 
France 

Data manager Data management 

André Claire, PhD  Institut National de la Santé 
et de la Recherche 
Médicale, Caen, France 

PhD student Acquisition, analysis, or 
interpretation of data 

Arenaza Urquijo 
Eider, PhD  

Institut National de la Santé 
et de la Recherche 
Médicale, Caen, France 

Postdoctoral 
researcher 

Study design; acquisition, 
analysis, or interpretation 
of data 

Baez Lugo Sebastian, 
MSc  

University of Geneva, 
Geneva, Switzerland 

PhD student Acquisition, analysis, or 
interpretation of data 

Bejanin Alexandre, 
PhD  

Institut National de la Santé 
et de la Recherche 
Médicale, Caen, France 

Postdoctoral 
researcher 

Acquisition, analysis, or 
interpretation of data 

Botton Maelle, MSc  Institut National de la Santé 
et de la Recherche 
Médicale, Caen, France 

Neuropsychologist Acquisition, analysis, or 
interpretation of data 

Champetier Pierre, 
PhD  

Institut National de la Santé 
et de la Recherche 
Médicale, Caen, France 

PhD student Acquisition, analysis, or 
interpretation of data 

Chauveau Léa, MSc  Institut National de la Santé 
et de la Recherche 
Médicale, Caen, France 

PhD student Acquisition, analysis, or 
interpretation of data 

Chételat Gaël, PhD  Institut National de la Santé 
et de la Recherche 
Médicale, Caen, France 

Coordinator,Work 
Package Leader 

Obtained funding, study 
design 

Chocat Anne, MD  Institut National de la Santé 
et de la Recherche 
Médicale, Caen, France 

Neurologist Investigating doctor 

Collette Fabienne, 
PhD  

University of Liege, Liege, 
Belgium 

Group leader Obtained funding, study 
design 

Dautricourt Sophie, 
MD,PhD  

Institut National de la Santé 
et de la Recherche 
Médicale, Caen, France 

PhD student Acquisition, analysis, or 
interpretation of data 

de Flores Robin, PhD  Institut National de la Santé 
et de la Recherche 
Médicale, Caen, France 

Postdoctoral 
researcher 

Acquisition, analysis, or 
interpretation of data; 
administrative, technical, 
or material support 

de la Sayette Vincent, 
MD, PhD 

Centre Hospitalier 
Universitaire de Caen, 
Caen, France 

Neurologist Principal Investigating 
doctor 

Delarue Marion, MSc  Institut National de la Santé 
et de la Recherche 
Médicale, Caen, France 

Neuropsychologist Acquisition, analysis, or 
interpretation of data 

Demnitz-King Harriet, 
MSc  

University College London, 
United Kingdom 

PhD student Acquisition, analysis, or 
interpretation of data 

Egret Stéphanie, MSc  Institut National de la Santé 
et de la Recherche 
Médicale, Caen, France 

Neuropsychologist Acquisition, analysis, or 
interpretation of data 
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El Sadawy  Rawda, 
MSc  

Institut National de la Santé 
et de la Recherche 
Médicale, Caen, France 

Neuropsychologist Acquisition, analysis, or 
interpretation of data 

Espérou Hélène, MD  Institut National de la Santé 
et de la Recherche 
Médicale, Paris, France 

Group leader Sponsor 

Fauvel Séverine, BA  Institut National de la Santé 
et de la Recherche 
Médicale, Caen, France 
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interpretation of data 

Felisatti Francesca, 
MSc  

Institut National de la Santé 
et de la Recherche 
Médicale, Caen, France 

PhD student Acquisition, analysis, or 
interpretation of data 
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et de la Recherche 
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Institut National de la Santé 
et de la Recherche 
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Trials, Platform, Bordeaux, 
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Methodologist Acquisition, analysis, or 
interpretation of data 

Gonneaud Julie, PhD  Institut National de la Santé 
et de la Recherche 
Médicale, Caen, France 

Group leader Obtained funding, study 
design 

Hamel Anaïs, MSc  Institut National de la Santé 
et de la Recherche 
Médicale, Caen, France 
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design 
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design 
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