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A s the world emerges from the COVID-19 pandemic, there is an urgent need to understand
patient factors that may be used to predict the occurrence of severe cases and patient mortality.
Approximately 20% of SARS-CoV-2 infections lead to acute respiratory distress syndrome caused

by the harmful actions of inflammatory mediators. Patients with severe COVID-19 are often afflicted with
neurologic symptoms, and individuals with pre-existing neurodegenerative disease have an increased
risk of severe COVID-19. Although collectively, these observations point to a bidirectional relationship
between severe COVID-19 and neurologic disorders, little is known about the underlying mechanisms.
Here, we analyzed the electronic health records of 471 patients with severe COVID-19 to identify clinical
characteristics most predictive of mortality. Feature discovery was conducted by training a regularized
logistic regression classifier that serves as a machine-learning model with an embedded feature selection
capability. SHAP analysis using the trained classifier revealed that a small ensemble of readily observable
clinical features, including characteristics associated with cognitive impairment, could predict in-hospital
mortality with an accuracy greater than 0.85 (expressed as the area under the ROC curve of the classifier).
These findings have important implications for the prioritization of clinical measures used to identify
patients with COVID-19 (and, potentially, other forms of acute respiratory distress syndrome) having an
elevated risk of death.

1 Introduction

1.1 COVID-19 and neurologic symptoms

Patients with severe COVID-19 warranting hospital admission present with a variety of symptoms that are
carefully evaluated by admitting physicians. These patient evaluations have led to the identification of specific
comorbidities linked to severe forms of COVID-19 or fatal outcomes [1–3], including neurodegenerative
disorders and dementia [4–6]. Although SARS-CoV-2 infection can cause neurologic symptoms by directly
affecting the central nervous system (CNS), this phenomenon has only been shown in a very small subset
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of patients [7]. Instead, neurologic symptoms are more likely to occur due to indirect effects involving the
strong innate immune response and cytokine storm caused by SARS-CoV-2 infection.

A cytokine storm is a hyperinflammatory response to an infection caused by a sudden spike in levels
of pro-inflammatory cytokines and chemokines, including IL-1, IL-2, IL-4, IL-6, IL-7, IL-8, IL9, IL-10, IL-
18, granulocyte stimulating factor (G-CSF), IP-10, monocyte chemoattractant protein (MCP)-1, MCP-3,
macrophage inflammatory protein 1 (MIP-1A), cutaneous T-cell attracting chemokine (CTACK), IFN-γ, and
TNF-α). In turn, this phenomenon can result in overwhelming systemic inflammation, acute respiratory
distress syndrome (ARDS), and multi-organ failure [8]. Evidence suggests that a cytokine storm can trigger
various neurologic symptoms, ranging from headaches, dizziness, and disorientation to convulsions or
seizures [8].

1.2 Approach to prediction and feature selection

In this report, we present the results of a study aimed at establishing a link between COVID-19 symptoms
observed upon patient admission (within the first 24 h of hospitalization) and the risk of patient death. We
were particularly interested in the predictive value of easily observable neuropsychiatric symptoms such
as disorientation, cognitive impairment, and delirium. Our strategy involved a data-driven discovery of
predictors. Instead of postulating a priori a feasible set of clinical features likely to be associated with mortality
and then testing the resulting hypotheses using a standard generalized linear model (GLM) approach, we
retained all possible clinical features for the analysis. We used the disease outcome to train a supervised
classifier with feature ranking and selection capability. When an explainable classifier achieved high accuracy,
we queried it to determine which feature combination was responsible for its strong performance. Finally, we
hypothesized that the predictive combinations of clinical features were causally linked to mortality or that
common latent factors influenced both the mortality as well as the detected clinical characteristics.

We utilized two independent approaches to quantify the predictive power of the observations collected
at the time of patient admission, or within the first 24 h of hospitalization: elastic-net regularized logistic
regression (LR-ENET) and XGBoost classification. The use of both methods was followed by an analysis
of the relative contributions of the selected features (“explanatory variables”) to the prediction via the
SHapley Additive exPlanations (SHAP) approach. Both methods led to the identification of several important
predictive features, including neurologic symptoms.

1.3 Related research

Data-driven investigation of COVID-19 mortality employing machine learning tools (such as XGBoost) and
feature explanation methods (SHAP values) has been demonstrated before for the processing of clinical
laboratory results [9–11], for predicting death outcomes [12–14], demonstrating links between socioeconomic
disparities and COVID-19 spread [15], and showing the impact of COVID-19 on mental health in self-
identified Asian Indians in the USA [16]. Several other articles using SHAP were reviewed recently by
Bottino et al. [17].

2 Methods and datasets

2.1 Dataset description

Electronic health record (EHR) data were obtained from 471 patients with severe SARS-CoV-2 infection. The
patients were admitted to the intensive care units (ICUs) of IU Health Methodist Hospital and Sidney &
Lois Eskenazi Hospital, both in Indianapolis, Indiana. 399 patients were eventually discharged, whereas 72
patients died. The demographic characteristics of the cohort are shown in Table 1. 246 patients self-identified
as Black or African American, and 196 patients identified as white. 245 of the patients were females, and 226
were males. There was no statistically significant difference in age between the African-American and white
patients. However, patients who identified as Hispanic or Latino were significantly younger than other
patients (p<0.001).
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Race Female Male

Alive Alive Perc. Died Died Perc. Total Alive Alive Perc. Died Died Perc. Total

Asian 3 100.0% 0 0.0% 3 5 83.3% 1 16.7% 6
Black or Afr. Amer. 123 87.9% 17 12.1% 140 85 80.2% 21 19.8% 106
Refused to identify 1 33.3% 2 66.7% 3 2 100.0% 0 0.0% 2
Unknown 10 100.0% 0 0.0% 10 5 100.0% 0 0.0% 5
White 77 86.5% 12 13.5% 89 88 82.2% 19 17.8% 107

Total 214 87.3% 31 12.70% 245 185 81.9% 41 18.1% 226

Table 1: Demographic characteristics of the investigated cohort.

2.2 Preprocessing

The original dataset consisted of data collected at multiple time points during the patients’ treatment. We
used only the data from the first time point (i.e., the initial evaluation), consisting of the earliest available
diagnostic characteristics. We retained the minimal and maximal values if multiple measurements and/or
laboratory results were provided. Because many features describe the patient’s status as very detailed and
granular, some binary factors were observed for only a few (one or two) patients. These variance-deficient
features were removed to prevent the model from outfitting, even though they might have been informative.
Another step of feature engineering (not pursued in this study) is likely needed to construct virtual features
that summarize these descriptors.

The presence of multiple correlated features related to delirium is an example of the described problem.
We found that the large number of delirium-related descriptors would lead to the emergence of 29 distinct
categories. However, because over 300 cases showed no evidence of delirium, an alternative approach would
be to combine all of the positive categories into one (e.g., “some evidence of delirium”). Although we did not
use this engineered feature in our preliminary model, we examined separately the predictive value of the
“delirium” secondary feature. Indeed, as Table 3 demonstrates, patients assigned to the class “no delirium”
had a substantially lower probability of death.

2.3 Logistic regression with elastic-net regularization model

We established a set of relevant diagnostic features by implementing an ante-hoc explainable, predictable
statistical model with embedded feature selection capability. We utilized utilize generalized linear models
(GLMs) regularized with a ridge (ℓ2), LASSO (ℓ1), or a combination of both penalties (elastic net) [18–20].
This approach allowed us to (1) create a simple model capturing all the significant sources of variability,
incorporating all of the diverse clinical descriptors/features, and (2) perform simultaneous feature selection
and feature ranking, allowing identification of the major drivers of correct prediction.

The model has been defined as follows:

(
β̂0, β̂

)
= argmin

(β0,β)∈Rp+1

[
1

2n

n∑
i=1

(
yi − β0 − xT

i β
)2

+ λ

(
1− α

2
∥β∥22 + α∥β∥1

)]
(1)

where λ is the tuning hyperparameter controlling the overall strength of the LASSO (ℓ1) and ridge (ℓ2)
penalties, and α controls the balance between them. Because the elastic net regularization penalizes the
size of the coefficients, sets some irrelevant values to 0, and minimizes the impact of irrelevant features,
the feature importance can be expressed straight from the model by the absolute values of the non-zero
coefficients of the covariates.

Unfortunately, minor adjustments in the random initialization or train-test split of the model leads to
considerable variances in the selected feature set for the majority of embedded feature selection methods.
This problem is known as a selection instability [21, 22]. In general, ℓ1 regularization in GLMs is known to
be unstable [23]. However, investigating ensemble feature selection, in which the set of optimal features is
produced from a collection of multiply independently trained models, helps resolve this issue. There are
multiple approaches to increase the feature selection stability by performing various implementations of
the ensemble approach, most notably the RENT model, which combines information about the frequency
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of feature occurrence and feature weights [21]. We followed a simple, yet effective, approach of training
10 independent models, each of which was initiated with a different random seed. To account for the data
imbalance, we used the ROSE (Random OverSampling Examples) algorithm [24]. The simulated instances
for training were generated de novo for each independent model.

2.4 XGBoost model

The extreme gradient boosting decision tree (XGBoost), developed by Chen and Guestrin, is a highly
effective, portable, and scalable machine learning system for tree boosting that is optimized under the
Gradient Boosting framework [25]. It combines a series of low-accuracy weak classifiers using the gradient
descent architecture to produce a strong classifier with higher classification performance. For a dataset
D = {(xi, yi) : i = 1...n, x ∈ R⋗, y ∈ R} with n samples and m features, the predicted value ŷi of the XGBoost
model can be represented as:

ŷi =
K∑

k=1

fk(xi) , fk ∈ F (2)

where fk represents a CART tree and the score given by the k-th tree to i-th data sample is denoted by fk(xi).
The set of K such functions is learned by minimizing the following objective function:

Obj =
n∑

l=1

l(yi, ŷi) +
K∑

k=1

Ω(fk) ,where Ω(f) = γT +
1

2
λ||w||2 (3)

Here, l is a convex training loss function that measures the difference between prediction ŷi and target yi; Ω
is a model complexity function term that penalizes the complexity of the XGBoost model, where γ and λ
are degrees of regularization. T and w refer to the number of leaves and the scores on each leaf of the tree,
respectively. The XGBoost model can be trained in an additive manner. Given ŷi

(t) as the prediction of the ith

instance at tth iteration, function ft needs to be added to minimize the objective function:

Obj(t) =
n∑

i=1

l(yi, ŷi
(t−1) + ft(xi)) + Ω(ft) (4)

By applying Taylor expansion this function is simplified as:

Obj(t) =

n∑
i=1

[gift(xi) +
1

2
hift(xi)

2] + γT +
1

2
λ

T∑
j=1

w2
j (5)

where gi and hi are the first and second derivatives obtained on the loss function, respectively. By calling the
stated tree creation model repeatedly, a large number of regression tree structures are acquired. The objective
function, Obj, is then used to choose the optimal tree structure and insert it into the existing model to create
the optimal XGBoost result.

2.5 SHapley Additive exPlanations (SHAP) values

The machine learning field has adopted the cooperative game theory concept known as SHAP (or Shapley)
values [26–29]. The SHAP values can determine the importance of a feature and its directionality influence
by comparing what a model predicts with and without that feature for each observation in the training data
and calculating the marginal contribution [27].

Briefly, the exact Shapley values are computed based on the following procedure. Let’s consider an
M-player cooperative game in which the objective is to maximize the payoff, and let S ⊆ M = {1, ...,M}
be a subset of |S| players. Further, let’s assume we have a contribution function v(S) that maps subsets of
players to real numbers, which we refer to as the worth or contribution of coalition S . The worth of coalition
S describes the expected total sum of payoffs that the members of S can obtain through cooperation [30].
The Shapley value is one method for distributing the total gains to the players, assuming that they are all
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Sex Status Age, mean Age, IQR Braden score, mean Coma score, mean P(Clear speech) (95% CI)

Female alive 55.08 25.61 16.92 13.80 0.84 (0.79, 0.88)
died 80.27 19.35 13.90 12.84 0.48 (0.32, 0.65)

Male alive 56.70 20.18 17.11 14.14 0.82 (0.76, 0.87)
died 75.31 12.85 14.15 13.29 0.56 (0.41, 0.7)

Table 2: Mean ages, Braden scores, Glasgow coma scores, and probabilities of demonstrating a clear speech pattern for
patients in the investigated cohort.

cooperating. It is a “fair” distribution (i.e., characterized by efficiency, symmetry, null player property, and
linearity) and is expressed as:

φj(v) = φj =
∑

S⊆M\{j}

|S|!(M − |S| − 1)!

M !
(v(S ∪ {j})− v(S)), j = 1, . . . ,M (6)

which is the weighted mean over contribution function differences for all subsets S of players not con-
taining player j. Colloquially, the S values illustrate how important each player is to the overall cooperation
and what payoff the player can reasonably expect from participation in the game. SHAP values provide a
straightforward way to determine which features contribute to a prediction by considering a model trained
on a set of features as a value function on a coalition of players. Importantly, Shapley values may have
causal interpretations where the conventional “conditioning by observation” as in Pearl’s do-calculus, can be
replaced by “conditioning by intervention” [31, 32].

3 Results

3.1 Patients characteristics

Patients who died of COVID-19 were significantly older than patients who survived (p<0.001) in both the
female and male groups. The average Braden score was slightly lower among patients who died (females:
p=0.035, males: p=0.021). There was no observable difference between the mean Glasgow Coma scores of
patients who died or survived (females p=0.14, males: p=0.15). Patients who presented with clear speech
and, therefore, presumably had intact cognitive ability were significantly over-represented among those who
survived (odds ratio of being admitted with clear speech for surviving patients: 5.65 (p<0.001) for females,
3.6 (p<0.001) for males). See Table 2 for a summary of the findings.

Sex Status P(Death) LCL UCL

Female No delirium 0.08 0.05 0.12
Delirium 0.39 0.25 0.56

Male No delirium 0.13 0.09 0.19
Delirium 0.46 0.30 0.62

Table 3: Probability of death given sign of delirium
at the hospital admittance and accompanying lower
(LCL) and upper (UCL) 95-percentile confidence
limits.

The composite feature describing the presence of any
delirium-related symptoms was an excellent univariate
predictor of patient outcomes. Patients exhibiting delir-
ium symptoms had a significantly higher probability of
death, a relationship that was evident in both the female
and male groups. See Table 3.

To compare the formulated models to a benchmark,
we created a simple GLM employing the composite delir-
ium feature, sex, race, Braden score, and age category
discretized into three tertiles: young [<55.7], middle [51.7,
66.8] and older[>66.9]. The model is represented as:

log

[
P (Class = died)

1− P (Class = died)

]
= α+ β1(DeliriumYes) + β2(SexFemale) + β3(AgeMiddle) +

β4(AgeOlder) + β5(RaceBlack) + β6(RaceOther/Unknown) + β7(Braden)

(7)

Inspection of the model demonstrates that age is the most important predictive factor, followed by
delirium symptoms and the Braden score. There is no significant difference between patients of different
races. Table 4 shows the results of the statistical analysis, and 5 presents the average marginal means
computed from the model. After fitting, the model has an AUC of 0.87, a sensitivity of 0.94, and a specificity
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of 0.3. Post-hoc analysis demonstrated that after controlling for race, sex, age group, and the Braden score,
the odds of death for patients exhibiting delirium symptoms increased by 5.23 (p<0.001).

Predictor

Class: died/survived Log odds (SE)

Delirium symptoms 1.655∗∗∗ (0.339)
Female −0.707∗∗ (0.319)
Age [51.8, 66.9) 2.486∗∗ (1.058)
Age [over 66.9] 4.440∗∗∗ (1.028)
Black −0.158 (0.317)
Other 0.108 (0.785)
Braden score −0.043∗∗ (0.021)
Constant −4.330∗∗∗ (1.081)

Observations 471
Log Likelihood -136.291
AIC 288.583
R2 Tjur 0.282
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4: Statisitical summary of the model
shown in Equation 7

Factor AME p-value LCL UCL

Age [51.8, 66.9) 0.072 0.002 0.027 0.117
Age [over 66.9] 0.322 0.000 0.251 0.393
Braden score -0.004 0.041 -0.008 0.000
Delirium symptoms 0.187 0.000 0.105 0.268
Black -0.014 0.620 -0.071 0.043
Other 0.010 0.892 -0.139 0.159
Female -0.063 0.022 -0.118 -0.009

Table 5: Average marginal means, lower and upper
confidence intervals associated with the factors incor-
porated in the benchmark model introduced in Equa-
tion 7

3.2 Logistic regression model results

LR model training was performed using a grid search through the space of parameters λ and α. An example
of a training grid is illustrated in Figure 1.

The performance of the trained LR models is demonstrated in Figure 2. The classifier performed well,
and was consistently able to reach AUC of approximately 0.9.

10-4
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0.25 0.50 0.75 1.00
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0.5             0.9

Figure 1: Changes in performance of
the elastic-net regularized model in the
classification of COVID-19 patients, ex-
pressed as AUC, given different values
of αand γparameters.
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Figure 2: Performance of the elastic-net regularized model in the classifi-
cation of COVID-19 patients. Ten independent rounds of model training
are shown.

Each of the regularized logistic regression models in the ensemble was trained to limit the number of
utilized features to approximately 20. For the training and feature selection process, each classifier used the
available data augmented with synthetic cases generated using ROSE algorithm [24]. The augmentation
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step was incorporated to counter any data imbalance. Each of the runs employed a newly synthesized set
of points for augmentation, contributing to additional variability that challenged the ensemble classifier.
Training cross-validation was performed utilizing the 0.632 bootstrap.

After each run, absolute values of the different LR-ENET models were collected and scaled to [0,1]
intervals. These measures were considered reflective of the predictors’ importance. Due to instability, several
lower-performing predictors were observed with non-zero coefficients though only in a few runs. On the
other hand, consistent predictors emerged in most or all of the runs. All of the scaled predictive importance
values were subsequently analyzed, and the top 20 were picked for the final selection.

The results illustrating the identified predictive EHR features are summarized in Figure 3.

Ventilator RR (Low, min)
Pupil size (Left, min)

Edema laterality RG (Bilateral)
Pupil size (Right, max)
Pupil size (Right, min)
Pupil size (Left, max)

Intubated prior to admission
Progressive mobility level

Braden score (Nutrition, min)
Delirium (Unable to assess

PICC number of lumens
Edema assessment RG

Characteristics of speech (Unable to assess)
Braden score (Nutrition, max)

Characteristics of speech (Clear)
Age

Urine count (min)
Braden score (Moisture)

Awake and alert, able to respond
Urine count (max)

0.0 0.2 0.4

Importance

Figure 3: Importance of elastic-net selected features shown as the normalized absolute value of the regression coefficients

As mentioned before, given the instability of sparse classifiers, every run may provide a slightly different
list of selected features. Therefore, formally, the SHAP analysis should be performed for every one of the
runs. However, to gather some preliminary insight into the explanatory power of the selected features, we
ran the SHAP analysis only for one of the ten LR-ENET-trained classifiers. The results are demonstrated in
Figure 4.

3.3 XGBoost model results

XGBoost performed comparably to the LS algorithm, although it is noted that the acquired specificities were
often lower. We optimized the XGBoost hyperparameters to maximize the AUC as opposed to explicitly
minimizing the number of utilized features. Therefore, the algorithm was allowed to employ as few or as
many features as were required to optimize its performance.

The XGBoost model can be used as a feature selection wrapper. In the process of training the features are
selected in ignored in the created trees. On the basis of that, the XGBoost method ranks the most significant
characteristics according to “Gain,” “Cover,” and “Frequency.” The gain reflects how crucial a characteristic
is for making a branch of a decision tree pure. Coverage measures the proportion of observations affected by
a feature. A feature’s frequency is the number of times it is used in all created trees (See Figure 5).

The XGBoost algorithm was not directly constrained by the number of used features. The performance of
the XGBoost classifier is shown in Figure 6. The XGBoost-discovered features were exposed to the SHAP
analysis, the results of which are demonstrated in Figure 7.
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Braden score (Nutrition) 

Urine count (max) 

Urine count (min)

Awake and alert, able to respond

Braden score (Moisture)

PICC number of lumens

Delirium (Unable to assess)

Characteristics of speech (Unable to assess)

Characteristics of speech (Clear)

Age

-0.25 0.00 0.25

SHAP values
alive died

Figure 4: Example of the SHAP value distribution for all of the tested patients and the augmented dataset. The
visualization was created based on one of the trained LR-ENET classifiers.

3.4 Discovered predictive features

Both feature-selection strategies identified a number of clinical characteristics that reflect overall patient
health, cognitive status, and hospitalization risks associated with the patient’s condition. Here, we list
some of the identified features, with a particular focus on those discovered by the LR-ENET model, which
demonstrated superior AUC, sensitivity, and specificity compared to the XGBoost approach.

CNS and cognition-related features. A set of features related to the patient’s neurologic status was
selected. The LR-ENET approach generated a model richer in these features than the XGBoost model.

Ventilator tidal volume (max)
BUN (max)

Characteristics of speech (unable to assess)
Oxygen saturation (max)

Elevation of the head of bed (max)
Delirium (unable to assess)
Suction catheter size (min)

Orally consumed fluid (volume, max)
Intubated prior to admission?

Emergency airway management (min)
Oral fluid consumed (volume, min)

Respiratory technician required?
Urine count (min)
Urine count (max)

Meal consumed (percent, min)
Meal consumed (percent, min)

Age
BNP (min)
BNP (max)

Ventilator respiratory rate (max)

0.00 0.01 0.02 0.03 0.04 0.05

Frequency

Figure 5: Importance of features employed by XGBoost algorithm expressed as the frequency at which each feature was
used in the created classification trees.
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• Inability to assess the patient’s speech may be caused by neurologic symptoms (such as loss of con-
sciousness or the presence of delirium), but it may also be related to intubation. This EHR observation
represents a surrogate measurement of the patient state in both instances, and its existence significantly
suggests an elevated mortality risk.

• Unclear and slurred speech observed by nurses or physicians could be a key indicator of delirium [33].
Delirium is related to adverse outcomes during hospitalization (e.g., increased risk of complications) in
post-acute care settings, and long-term follow-up (e.g., prolonged cognitive and functional impairment).
The lack of speech clarity is only a surrogate measure for delirium that might be considered low value
given that the presence of delirium is another explicitly defined feature in the analyzed dataset. How-
ever, it should be noted that there is a significant rate of under-recognition and lack of documentation
of delirium in admitted patients, with less than 3% of cases documented by International Classification
of Diseases-9 (ICD-9) codes in patients’ medical records [33, 34]

• Any evidence of delirium. Among the delirium-related characteristics included in the dataset is the
expressly stated “Presence of delirium.” However, the feature selected as predictive was “Inability
to assess delirium,” which may appear odd and counterintuitive. Examining the explicit delirium
feature reveals a biserial correlation between the feature and the patient’s registered death of only 0.13,
whereas the inability to assess delirium scores -0.25. This curious selection may be partially explained
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Figure 6: Performance of the XGBoost model in repeated independent cross-validation rounds classifying the COVID-19
patients.
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Figure 7: Example of SHAP value distribution for all of the tested patients. The visualization was created based on one of
the trained XGBoost classifiers.
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by the procedure required to assess delirium, which also explains the under-recognition of delirium in
general.

The Confusion Evaluation Method, the most used delirium assessment tool, requires an in-person,
bedside discussion with the patient [35]. Because delirium fluctuates, interview-based approaches may
overlook delirium that occurs beyond bedside interviews. It has been reported that manual searches of
all records (e.g., nursing and physician notes, discharge summaries) may allow the determination of
signs of delirium despite the lack of explicit notes in the records [33]

• “Awake and able to response” is another important neurologic assessment feature. A patient is scored
positively if considered “awake,” “able to respond” (i.e., responding appropriately), and “oriented”
(aware of self, place, and time) [36]. However, the patient’s situation may change on the first day
after admission. Therefore, patients who were sedated and unable to be subjected to the neurologic
examination may demonstrate full-strength cognitive abilities later. Thus, yet again, this feature
provides value in combination with other features and cannot be considered in isolation. Interestingly,
the Glasgow coma scale (GCS), which a measure used to determine the level of consciousness in trauma
or critically ill individuals with impaired consciousness and which was also available in the dataset,
has not been utilized by the models.

Patient frailty-related features. Several identified features described the patient’s overall condition and
frailty upon hospital admission.

• Braden score describes the frailty of the patients. The Braden scale was created to identify early pressure,
sore-prone patients. Six sub-scales of the score measure sensory perception, skin wetness, activity,
mobility, friction and shear, and nutrition [37]. Although ample evidence exists for the usefulness and
applicability of the Braden scale in predicting patients’ conditions during hospitalization [38], the scale
has been criticized for lacking explainability and detail from the machine learning perspective [39]. On
the other hand, a retrospective study of 146 COVID-19 patients demonstrated that the Braden score is
indeed helpful for risk stratification at hospital admission, as the mortality among patients with BS≤15
was significantly higher than in patients with BS>15 [40].
In our research context, Braden score features also appear to identify particularly vulnerable patients.
Interestingly, only two sub-scales (moisture and nutrition) have been included by the LR classifier in
the final model. On the other hand, the XGBoost model did not rely on Braden scores.

• Number of lumens Multiple studies have demonstrated a substantial correlation between the number
of PICC lumens and the risk of complications, including central-line associated bloodstream infection
(CLABSI), venous thrombosis, and catheter occlusion [41, 42].

• The requirement for a respiratory technician to be present during the transportation of the patient is
yet another predictive EHR feature that communicates the severity of the patient’s condition.

• The urine voiding count feature is connected with the lower urinary tract symptoms. The medical
literature describes an association between LUTS and COVID [43–45]. According to these reports,
there was a high prevalence of abnormal urinary storage symptoms, urine frequency, urgency, and
urinary incontinence among the SARS-CoV-2-infected patients. The data indicate that the majority
of COVID-19 patients may experience increased urination frequency, nocturia, and urgency during
the infection. Also, patients with urine storage symptoms were found to have considerably higher
COVID-19 severity levels than those without urine storage symptoms [45]. The urinary symptoms
might be caused directly by inflammation or indirectly by COVID-19-related general dysfunction in the
autonomic nervous system [46].

Clinical laboratory test results report on the patient’s physiological status. Specifically, two test results
were identified by our feature selection methods.

• The measurement of urea nitrogen in serum or plasma (BUN SerPl test) assesses the kidney’s function.
High urea nitrogen levels in the BUN test indicate problems with renal function or a reduction in blood
supply to the kidneys. A reduction in urea nitrogen, as measured by the BUN test, indicates serious
liver illness or malnutrition. The outcomes of the BUN test were put into the XGBoost model’s identified
collection of features. However, they were not among the top 20 features identified by LR-ENET. In the
analyzed cohort, there was a significant difference in test findings between patients who died and those
who survived (p<0.001). These observations are consistent with literature reports [47, 48].
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• Brain natriuretic peptide (BNP) is an active fragment (1-32) of the cardiac cell-produced ProBNP. It is
elevated in right-sided and left-sided heart failure, as well as systolic and diastolic heart failure. It is
therefore used to identify and treat heart failure. BNP test was recognized as an important feature by
the XGBoost-feature selection, but not the LR-ENET. In the tested cohort, the values of the BNP test
were substantially higher for male patients who died (p<0.001) but not for females (p=0.23). Others have
recently postulated that BNP should be considered an early predictor of clinical severity in patients
with COVID-19 pneumonia [49].

4 Discussion

When analyzing disease mortality causes, the search for predictive factors typically begins with the formula-
tion of a hypothesis based on domain knowledge of the underlying diseases and initial preliminary evidence,
such as case studies and anecdotal reports. This hypothesis-driven process is philosophically well-established
and operationally widely accepted. Despite the fact that this conventional path of hypothesis-driven re-
search has been challenged numerous times in recent years, particularly by the rise of genomics, for many
researchers it is virtually synonymous with the scientific method itself [50]. The alternative paradigm, often
referred to as data-driven research, begins with an agnostic stance that does not involve a preconceived
hypothesis and instead employs either a data reduction process that results in the emergence of a model or a
supervised model-building process that reveals predictive features that explain observed outcomes.

Here, we examined three methods for identifying factors predictive of mortality among COVID-19
patients with severe disease necessitating hospitalization. As a baseline, we utilized a standard statistical
technique for formulating a hypothesis and generating or selecting hypothesized predictive factors through a
GLM framework. In carrying out this method, we used a composite delirium factor, which is a combination
of multiple EHR characteristics/symptoms associated with delirium occurrence. We also accounted for age,
race, and sex, which we recognized as notable confounding variables plausibly related to the outcome. The
developed model revealed a significant increase in the likelihood of death for hospitalized patients exhibiting
any symptom of delirium.

Subsequently, we developed two feature discovery models using two well-established machine learning
techniques. The first model utilized regularized elastic-net logistic regression. A sparse collection of predictors
was generated using the model’s inbuilt feature selection capability. However, as previously established, the
model was unstable, and the selection of reliably predictive features necessitated many model runs and a
compilation of the findings. The most consistently predicted variables across numerous runs were evaluated
using the SHAP method to obtain insight into their local significance for patient classification.

The second machine-learning model involved the use of XGBoost tree learning. In contrast to the sparsity
of the LR-ENET method, this approach freely utilized all of the available clinical features. Throughout nu-
merous rounds of independently run training and cross-validation, the algorithm demonstrated significantly
higher stability, ultimately producing very similar results. To represent the feature importance, data from the
internals of trained classifiers (gain and frequency) were extracted. A secondary XGBoost model was trained
using the top features, and its SHAP values were assessed.

Our findings demonstrate that the two distinct classifiers relied on very different sets of predictive features
during optimization and training. Age, surrogate measures for the patients’ cognitive status (neurological
observations), features broadly describing the patients’ overall condition upon admission (such as the Braden
score), and features associated with a risk of serious complications requiring hospitalization (such as the
number of catheter lumens) were the descriptors that the LR-ENET model selected. It is interesting to note
that common clinical laboratory test results were not chosen during the feature selection process by LR-ENET.

XGBoost, on the other hand, placed considerable emphasis on laboratory test results, including values
obtained from the BUN and BNP tests. XGBoost captured the patient’s overall condition by analyzing
variables such as oral fluid consumption, oxygen saturation, ventilator use, etc. Despite the fact that the
features chosen by XGBoost are frequently more quantitative and objective, the overall performance of the
XGBoost model was marginally inferior in terms of specificity (such as in the case of the laboratory test
results).
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5 Conclusions

Risk stratification of hospitalized COVID-19 patients is crucial for informing individual treatment decisions
that also account for resource allocation. Multiple risk models proposed so far have been based on mechanistic
hypotheses regarding the SARS-CoV-2 mode of action, the association between comorbidities and observed
outcomes, as well as hypothesized models of disease progression. In this report, we demonstrated the use
of a machine learning-based, hypothesis-agnostic methodology for the discovery of predictive risk factors,
which produces an easily understandable, observable, explainable, and actionable set of clinical features that
may cause or be closely associated with in-hospital COVID-19 mortality. Our findings suggest that analyses
of these features should be prioritized to identify patients with COVID-19 (and, potentially, other forms of
acute respiratory distress syndrome) having an elevated risk of mortality.
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