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Abstract 

Background: While previous studies have reported associations of pericardial adipose tissue 

(PAT) with cardiovascular diseases such as atrial fibrillation and coronary artery disease, they 

have been limited in sample size or drawn from selected populations. Additionally, the genetic 

determinants of PAT remain largely unknown. We aimed to evaluate the association of PAT with 

prevalent and incident cardiovascular disease and to elucidate the genetic basis of PAT in a 

large population cohort. 

Methods: A deep learning model was trained to quantify PAT area from four-chamber magnetic 

resonance images in the UK Biobank using semantic segmentation. Cross-sectional and 

prospective cardiovascular disease associations were evaluated, controlling for sex and age. A 

genome-wide association study was performed, and a polygenic score (PGS) for PAT was 

examined in 453,733 independent FinnGen study participants. 

Results: A total of 44,725 UK Biobank participants (51.7% female, mean [SD] age 64.1 [7.7] 

years) were included. PAT was positively associated with male sex (β = +0.76 SD in PAT), age 

(r = 0.15), body mass index (BMI; r = 0.47) and waist-to-hip ratio (r = 0.55) (P < 1x10-230). PAT 

was more elevated in prevalent heart failure (β = +0.46 SD units) and type 2 diabetes (β = 

+0.56) than in coronary artery disease (β = +0.22) or AF (β = +0.18). PAT was associated with 

incident heart failure (HR = 1.29 per +1 SD in PAT [95% CI 1.17–1.43]) and type 2 diabetes (HR 

= 1.63 [1.51–1.76]) during a mean 3.2 (±1.5) years of follow-up; the associations remained 

significant when controlling for BMI. We identified 5 novel genetic loci for PAT and implicated 

transcriptional regulators of adipocyte morphology and brown adipogenesis (EBF1, EBF2 and 

CEBPA) and regulators of visceral adiposity (WARS2 and TRIB2). The PAT PGS was 

associated with T2D, heart failure, coronary artery disease and atrial fibrillation in FinnGen (ORs 

1.03–1.06 per +1 SD in PGS, P < 2x10-10). 

Conclusions: PAT shares genetic determinants with abdominal adiposity and is an 

independent predictor of incident type 2 diabetes and heart failure.  
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Clinical Perspective 

What is new? 

● In a large, prospective and uniformly phenotyped cohort, pericardial adipose tissue was 

independently predictive of incident heart failure and type 2 diabetes when adjusted for 

body mass index. 

● In contrast, pericardial adipose tissue was not independently predictive of atrial 

fibrillation. 

● A genome-wide association study of pericardial adipose tissue identified five novel loci, 

implicating genes influencing adipocyte morphology, brown-like adipose tissue 

differentiation and abdominal adiposity. 

What are the clinical implications? 

● Pericardial adipose tissue accumulation may reflect a metabolically unhealthy adiposity 

phenotype similarly to abdominal visceral adiposity.  
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Non-standard Abbreviations and Acronyms 

EAT: epicardial adipose tissue 

GWAS: genome-wide association study 

PAT: pericardial adipose tissue 

PoPS: polygenic priority score  
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Introduction 

The increased global burden of obesity as a leading cause and modifiable risk factor for 

cardiovascular diseases is well recognized1. Not all obesity is alike, however, and the 

distribution of adipose tissue may be as important as its quantity. Abdominal adiposity, in 

particular, is associated with higher cardiovascular disease risk than subcutaneous adiposity1,2. 

Similarly, ectopic fat storage surrounding the heart has been suggested to confer independent 

cardiovascular risk1. 

Pericardial adipose tissue (PAT) comprises epicardial adipose tissue (EAT)—located between 

the visceral pericardium and myocardium—and extrapericardial adipose tissue.3–5 In addition to 

the ectopic location of PAT within the thoracic cavity, the vascular supply of EAT derives from 

branches of the coronary arteries, similarly to the myocardium which is in immediate proximity to 

EAT with no separating fascia.6 EAT displays features of brown-like or beige adipose tissue and 

has been hypothesized to have a cardioprotective role via thermogeneration and supply of free 

fatty acids.7 However, multiple studies have suggested that EAT can also promote disease via 

secretion of pro-inflammatory and pro-fibrotic mediators8. 

To date, more than 30 studies have reported the relation between PAT or EAT and a range of  

cardiovascular outcomes3,4,9–11. Meta-analyses have also demonstrated associations of EAT 

with myocardial infarction, coronary revascularization, atrial fibrillation, and cardiac death11. 

However, these studies have been limited in sample size and clinically heterogeneous as they 

have often been drawn from selected populations such as patients undergoing surgery or 

treatment for acute coronary syndromes. 

The UK Biobank (UKB) is a large and deeply phenotyped population cohort with an ongoing 

cardiac magnetic resonance (CMR) imaging substudy.12,13 Coupled with advances in deep 

learning based annotation methods, this dataset enables the assessment of cardiovascular 
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traits such as PAT at scale. Genotyping of UKB participants allows for the simultaneous 

evaluation of the heritable determinants of PAT in a sample that is many times larger than 

previous cohorts. 

In this study, we quantify PAT in 44,725 UKB participants by using a deep learning model. We 

first assess the cross-sectional and prospective disease associations of PAT with and without 

adjustment for BMI. We then evaluate the genetic determinants of PAT in UKB and the 

independent FinnGen study.  
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Methods 

Study design 

We included participants from UKB and the FinnGen study. Primary analyses examining 

pericardial adipose tissue were conducted in UKB, and secondary analyses examining a 

polygenic score for PAT were conducted in FinnGen (Supplementary Figure 1). 

UKB is a deeply phenotyped prospective population-level cohort which recruited approximately 

500,000 participants aged 40–69 in the UK between 2006–201012,13. A subset of participants 

within an imaging substudy underwent CMR with 1.5 T scanners (Magnetom Aera, Siemens 

Healthcare). This study has been conducted using the UKB Application Numbers #7089 and 

#17488 and was approved by the Mass General Brigham institutional review board (protocol 

2003P001563). 

FinnGen is a collection of prospective Finnish epidemiological and disease-based cohorts and 

hospital biobank samples linked to electronic health records (https://www.finngen.fi/en).14 A total 

of 453,733 participants from the FinnGen Data Freeze 11 were included in this study. 

Semantic segmentation of pericardial adipose tissue 

Four-chamber images at random parts of the cardiac cycle from 250 randomly selected UKB 

CMR substudy participants were manually annotated by a physician (JTR). Segmentation maps 

were traced for pericardial adipose tissue and adjacent mediastinal structures including the 

cardiac chambers (Supplementary Methods). A total of 160 images were used for training, 40 

images for validation and 50 images kept in a hold-out test set. A UNet based deep learning 

model from the fastai library v2.7.11 was constructed in PyTorch v1.13.1 using a ResNet50 

encoder15,16. The fine-tuned model was used to infer segmentation of pericardial adipose tissue 
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in the test set and all remaining UKB participants.15,16 Training parameters are detailed in the 

Supplementary Methods. 

Epidemiologic analyses 

In UKB, the following cardiovascular diseases were defined using a combination of International 

Classification of Diseases (ICD) codes, self-report, and procedure codes (Supplementary 

Table 2): atrial fibrillation of flutter (AF), coronary artery disease (CAD), heart failure (HF), 

stroke and type 2 diabetes (T2D). The associations of prevalent cardiovascular diseases with 

PAT were tested using linear regression models including PAT as the outcome and age and sex 

as covariates. The associations of PAT with incident diseases were tested using Cox 

proportional hazards models with time from imaging to diagnosis or censoring as the outcome 

and PAT (standard deviation scaled or percentile-stratified), sex, and age as the predictors. BMI 

was included as an additional covariate in adjusted models. Participants with the corresponding 

disease at the time of imaging were excluded from incident disease analyses. Follow-up time 

was censored on September 30, 2021.  

In FinnGen, cardiovascular diseases were defined using a combination of International 

Classification of Diseases (ICD) codes from specialist inpatient, outpatient and cause-of-death 

registries, procedure codes, and medication reimbursement codes (Supplementary Methods). 

Genotyping, imputation, and genetic quality control 

We excluded UKB participants from genetic analyses if they had mismatch between reported 

and inferred sex, were outliers for heterozygosity or missingness, or had putative sex 

chromosome aneuploidy based on central quality control. Genotyped variants with MAF >1%, 

minor allele count >100, genotype missingness <5% and Hardy-Weinberg Equilibrium p-values 
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>1x10-15 were included in regenie step 1, and further UKB analyses were performed for imputed 

variants with INFO > 0.3 and minor allele frequency >1%. 

Sample QC, genotyping and quality control for FinnGen samples has been reported 

previously.14 The FinnGen genotype imputation protocol is available at: 

https://dx.doi.org/10.17504/protocols.io.xbgfijw.  

Genome-wide association studies 

We performed a genome-wide association study for PAT using the additive genetic model 

implemented in regenie v3.2.517. In addition to PAT, we performed new GWAS for height, 

weight, BMI, and WHR in the CMR substudy participants to ensure comparability for genomic 

correlation analyses. 

Heritability and genetic correlation analyses 

Based on the summary statistics from the custom GWAS in the UKB imaging substudy, using 

LD Score Regression (LDSC) with HapMap3 variants and a European ancestry reference 

panel18, we calculated single nucleotide polymorphism heritability for PAT and genetic 

correlations between PAT and anthropometric measurements. 

Polygenic score analyses 

We estimated PGS weights for PAT using the PRScs program in ‘auto’ mode based on a 

publicly available UKB European ancestry linkage disequilibrium panel and 1,117,404 HapMap3 

variants19. PGSs were computed for all individuals in the FinnGen study. The associations of the 

PAT PGS with cardiovascular diseases were evaluated using logistic regression models with 

sex, age at the end of study follow-up or death, genomic principal components 1–5, and the 
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genotyping array as basic covariates. BMI was included as an additional covariate in adjusted 

models. 

Additional computational and statistical software 

Variant positions were lifted over from the GRCh37 build to the GRCh38 build for polygenic 

scoring in FinnGen using the UCSC liftOver tool9. All statistical analyses not otherwise specified 

were carried out in R (version 4.3.0)10.  
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Results 

Semantic segmentation of PAT with deep learning 

We began by manually annotating PAT in 200 four-chamber CMR images from randomly 

selected UKB participants at random phases of the cardiac cycle. We then fine-tuned a deep 

learning model based on ResNet50 to annotate PAT in the remaining participants. In a held out 

test set of 50 individuals, the model achieved a Dice score of 0.80 compared with a human 

annotator, similar to a recently reported model based on UKB CMR data.5 We further excluded 

788 participants whose four-chamber images were not predicted to show at least 5 cm2 of each 

cardiac chamber as a quality control step to remove misaligned or poor-quality images 

(Supplementary Methods). The area of PAT (in cm2) was computed in all remaining 44,475 

participants. 

The associations of PAT with demographic characteristics and 

anthropometric measures 

In the study sample of 44,475 individuals, 51.7% of participants were female and the mean [SD] 

age was 64.1 [7.7] years (Table 1). The majority (96.7%) of the participants were of self-

reported White ethnic background; participant characteristics by ethnic background are 

additionally reported in Supplementary Table 1. Men had on average more PAT compared 

with women (+0.78 SD units, P < 3e-324) (Supplementary Figure 2). Greater age was also 

associated with increased PAT (r = 0.15, P = 9.3x10-229). 

We observed modest correlations with traditional anthropometric measures suggesting that PAT 

may convey additional information: PAT was associated with height (r = 0.31), weight (r = 0.57), 
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BMI (r = 0.47) and WHR (r = 0.55) (P < 3x10-324 for all). Simple linear estimates based on WHR 

tended to underestimate PAT particularly in participants with high WHR and PAT. 

Prevalent cardiovascular diseases and PAT 

We evaluated the associations of PAT with five prevalent cardiovascular diseases at the time of 

imaging (Figure 2 and Supplementary Table 3). PAT was significantly elevated in individuals 

with prevalent T2D (+0.56 SD units in PAT, P = 6.9x10-133), HF (+0.46 SD, P = 7.0x10-19), CAD 

(+0.22 SD, P = 1.3x1021), and AF (+0.18 SD, P = 1.2x10-2), but not in individuals with prevalent 

stroke (+0.09 SD, P = 0.08). 

Predictive utility of PAT for incident cardiovascular diseases 

In survival analyses, after excluding participants with prevalent diseases at the time of imaging, 

PAT as a continuous measurement was associated with incident T2D (HR 1.63 per +1 SD 

increment in PAT, 95% CI 1.51-1.76, P = 7.2x10-36), HF (HR 1.29, 95% CI 1.17–1.43, P = 

4.8x10-7) and AF (HR 1.17, 95% CI 1.08–1.26, P = 4.6x10-5) (Supplementary Figure 3 and 

Supplementary Table 4). We did not observe significant associations between PAT and 

incident coronary artery disease (HR 1.10, 95% CI 1.00-1.20, P = 0.052) or stroke (HR 1.12, 

95% CI 0.99-1.27, P = 0.063). When including BMI as an additional covariate, PAT remained an 

independent predictor of incident T2D (HR 1.25, 95% CI 1.14–1.38, P = 1.6e-6) and HF (HR 

1.16, 95% CI 1.03–1.31, P = 0.013) (Supplementary Figure 3). 

Recapitulating the patterns in analyses of PAT as a continuous measurement, in analyses 

stratified by PAT decile (Figure 3, Supplementary Figures 4–5, and Supplementary Table 5), 

those in the highest 10% vs. those in lowest 0-90% of PAT had significantly elevated risk of 

incident T2D (HR 3.14, 95% CI 2.50–3.95, P = 1.5x10-22), HF (HR 1.91, 95% CI 1.41–2.57, P = 

2.4x10-5) and AF (HR 1.47, 95% CI 1.17–1.84, P = 8.1x10-4), but no significant elevation in risk 
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of of CAD (HR 1.33, 95% CI 0.99–1.77, P = 0.057) or stroke (HR 1.22, 95% CI 0.83-1.78, P = 

0.31). Only the associations with incident T2D and HF remained significant when adjusted for 

BMI. 

Genome-wide association study of PAT 

We performed a genome-wide association study of PAT in 41,494 UKB participants who passed 

genotyping quality control, and identified seven loci at genome-wide significance (P < 5e-8) 

(Figure 4, Supplementary Results and Supplementary Figure 7). These included the two 

previously reported loci for PAT (with lead variants in or near TRIB2 and EBF1) and five novel 

PAT loci with lead variants in or near CDCA2, WARS2, IP6K1, C5orf67/ANKRD55, and PEPD 

(Supplementary Figure 6). The single nucleotide polymorphism based heritability of PAT on 

the observed scale was 0.15 (SE 0.02). 

We used the nearest protein-coding gene and Polygenic Priority Score (PoPS) approaches to 

prioritize likely causal genes in the seven association loci20. The genes WARS2, TRIB2, RBM6, 

MIER3, EBF1, EBF2, and CEBPA were most strongly prioritized by PoPS in their respective loci 

(Supplementary Table 6). The nearest-gene approach and PoPS were concordant for WARS2, 

TRIB2, and EBF1. 

Recapitulating correlations between measured PAT and many anthropometric variables, we 

also observed moderate genetic correlations between PAT and weight (rg = 0.48, SE = 0.04,  P 

= 5.9x10-30), BMI (rg = 0.50, SE = 0.04, P = 4.3x10-30), and WHR (rg = 0.60, SE = 0.05, P = 

2.7x10-30) (Supplementary Table 7). In contrast, PAT was not genetically correlated with 

measured height (rg = 0.05, P = 0.31). 
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Meta-analysis of genome-wide association studies of PAT 

We additionally performed a meta-analysis of the UKB GWAS and a previously published 

smaller GWAS meta-analysis (n = up to 12,204)21. This meta-analysis of up to 53,698 

participants was conducted based on p-values and effect direction due to the lack of effect size 

estimates in the previous meta-analysis that incorporated PAT indices from different imaging 

modalities (Supplemental Methods). In the new meta-analysis, we identified one novel locus 

(CYP26B1). The CDCA2 locus did not reach significance, potentially because the three closely 

clustering variants driving the association in UKB were not included in the previously published 

meta-analysis and could not be analyzed together. (Supplementary Figures 8–9 and 

Supplementary Table 8). 

Predictive utility of a polygenic score for PAT 

Lastly, we constructed a genome-wide polygenic score (PGS) for PAT using the PRS-CS 

method based on the summary statistics from the UKB GWAS. We subsequently evaluated the 

disease associations of the PAT PGS in 453,733 participants of the independent FinnGen 

study, sample characteristics of which are shown in Supplementary Table 914. In logistic 

regressions, the PAT PGS was significantly associated with T2D, HF, CAD, AF or flutter, and 

stroke (P < 0.004 for all) (Figure 5A and Supplementary Table 10). These positive 

associations remained significant even when including BMI as an additional covariate (P < 

0.007 for all) (Figure 5B and Supplementary Table 10).  
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Discussion 

In this study, we examined the cardiovascular associations and genetic determinants of PAT in 

more than 40,000 individuals from a large, prospective and uniformly phenotyped cohort. These 

analyses enable several insights. We expand prior knowledge linking PAT as an independent 

predictor to HF and T2D. Genetic loci suggest that variation in PAT is influenced by regulators 

of adipocyte morphology, brown-like adipose tissue differentiation and abdominal adiposity. Our 

findings are consistent with PAT as a thoracic fat depot reflective of metabolically unhealthy 

adiposity independent of BMI. 

Considerable interest has been focused on EAT as a potential local driver of cardiovascular 

disease. EAT has been hypothesized to contribute to AF by local secretion of profibrotic or 

inflammatory factors8. Paracrine or vasocrine release of cytokines and immune response factors 

from EAT to coronary diseases has been suggested to drive the development of 

atherosclerosis7. PAT—a superset that includes extrapericardial adipose in addition to EAT—

has also been associated with visceral adipose tissue, as well as similar profiles of 

cardiovascular risk factors and metabolic syndrome5,22, which raises the question of whether 

many of the observed disease associations may reflect global consequences of unhealthy 

visceral adiposity rather than more localized cardiac effects. 

Here, we identify PAT to be most predictive of incident T2D and HF even after controlling for 

BMI. Our findings are in keeping with recently reported associations with incident T2D in 42,598 

UKB participants and with incident heart failure with preserved ejection fraction in 6,785 

participants of the Multi-Ethnic Study of Atherosclerosis (MESA)4. We observed a positive 

although non-significant association with incident CAD, which was attenuated when controlling 

for BMI. Significant independent predictive utility of PAT for incident CAD has previously been 

reported in a study of 6,814 MESA participants3. Finally, while we replicate an association 
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between PAT and prevalent AF9, PAT had no predictive utility for AF when controlling for BMI, in 

keeping with an analysis of 7,991 participants from MESA and Jackson Heart Study23. In 

combination, these patterns of prospective associations are consistent with metabolically 

unhealthy adiposity. 

We replicated two known genetic loci and identified five novel loci for PAT. Previously, a meta-

analysis of 11,596 participants from heterogeneous imaging cohorts reported genetic loci 

containing TRIB2 and EBF1, but provided no effect estimates for further assessments21. Here, 

the expansion of association loci allows several biological insights. A prominent finding is 

considerable genetic correlation and locus overlap with abdominal adiposity. Among genomic 

loci linked with PAT in this study, all have been previously associated with WHR24. Four of 

seven loci (IP6K1, CDCA2, C5orf67, and PEPD) have been associated with visceral adipose 

tissue, while the WARS2, TRIB2 and EBF1 loci may be more specific to PAT25. We also 

demonstrated that a polygenic score for PAT, when tested in the independent FinnGen study, 

recapitulated the disease-specific patterns observed in prospective UKB analyses, lending 

further validity to the phenotype definitions and suggesting that shared genetic variation affects 

both PAT and cardiovascular morbidity. 

Prioritization of potentially causal genes in the association loci highlights interconnected 

biological pathways influencing PAT accumulation. On separate chromosomes, we prioritize the 

transcription factor encoding genes EBF1 and EBF2. EBF1 is a regulator of adipose cell 

morphology and lipolysis26, and decreased levels of EBF1 have been observed in white adipose 

tissue hypertrophy. EBF2 is a promoter of brown-like / beige adipose cell differentiation27. 

CEBPA, prioritized in another locus, encodes for the transcription factor CCAAT/enhancer 

binding protein alpha (C/EBPα), which shares binding sites with Peroxisome proliferator-

activated receptor gamma (PPARγ) and acts as a co-stimulator of adipogenesis and adipocyte 

differentiation28,29. In a previously identified PAT locus, we also prioritize TRIB2, which is a 
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promoter of CCAAT/enhancer binding protein beta, which transactivates the expression of both 

C/EBPα and PPARγ30. Finally, WARS2 encodes the mitochondrial trytophanyl-tRNA synthetase; 

a mutant Wars2 mouse model exhibits reduced food intake, resistance to diet-induced obesity, 

and changes in relative visceral adiposity.31 Although many of the association loci overlap with 

more general measures of adiposity, they may represent a targeted subset of drivers of 

unhealthy adiposity, unlike many loci linked with BMI that may exert their effects via neuronal 

pathways and hunger regulation32. 

The findings should be interpreted in the context of the study design. Firstly, in our quantitation 

of PAT we were not able to differentiate between epicardial and paracardial (extrapericardial) 

adipose tissue. Secondly, PAT quantitation was based on a single CMR slice. The relative 

localization of PAT surrounding the heart may carry added significance. Thirdly, the accuracy of 

PAT quantitation was not perfect. However, reduced accuracy is more likely to predispose to  

type II rather than type I error, and the identification of known and novel GWAS loci suggests 

that the increased sample size still outweighs reduced accuracy for genomic discovery. Fourth, 

participants in the UKB are healthier than the overall population33, which may affect the external 

validity of disease risk estimates. Lastly, UKB participants were mostly of European ancestry, 

which may limit the generalizability of the findings to other ancestries. 

In conclusion, we identify PAT as an independent predictor of incident T2D and HF. Individual 

variation in PAT is likely influenced by genes regulating abdominal adiposity, adipocyte 

morphology and brown-like adipogenesis. The intrathoracic accumulation of PAT may reflect a 

metabolically unhealthy adiposity phenotype similar to abdominal visceral adiposity.
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Appendices 

Data availability 

UK Biobank data are made available to researchers from research institutions with genuine 

research inquiries, following IRB and UK Biobank approval. GWAS summary statistics and 

polygenic score weights will be made available upon publication at the Broad Institute 

Cardiovascular Disease Knowledge Portal ( http://www.broadcvdi.org ). Pericardial adipose 

tissue measurements will be returned to the UK Biobank for use by any approved researcher. 

The Finnish biobank data can be accessed through the Fingenious® services 

(https://site.fingenious.fi/en/) managed by FINBB. Finnish Health register data can be applied for 

from Findata (https://findata.fi/en/data/).  
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Tables 

Table 1. Characteristics of the study sample at the time of imaging 

 

Characteristic Women Men All 

N 22972 21503 44475 

Male sex (%) 0 (0.0) 21503 (100.0) 21503 (48.3) 

Age (mean (SD)) 63.4 (7.6) 64.8 (7.8) 64.1 (7.7) 

Ethnicity    

  White (%) 22246 (96.9) 20768 (96.6) 43014 (96.7) 

  Mixed ethnic background (%) 131 (0.6) 73 (0.3) 204 (0.5) 

  Asian or Asian British (%) 175 (0.8) 307 (1.4) 482 (1.1) 

  Black or Black British (%) 163 (0.7) 138 (0.6) 301 (0.7) 

  Chinese (%) 80 (0.3) 49 (0.2) 129 (0.3) 

  Other ethnic group (%) 125 (0.5) 101 (0.5) 226 (0.5) 

Height, cm (mean (SD)) 162.7 (6.2) 176.00 (6.6) 169.2 (9.3) 

Weight, kg (mean (SD)) 69.0 (13.1) 83.6 (13.4) 76.1 (15.1) 

Body mass index, kg/m2 (mean (SD)) 26.1 (4.7) 27.0 (3.9) 26.5 (4.4) 

Waist circumference, cm (mean (SD)) 82.7 (11.8) 94.3 (10.8) 88.3 (12.7) 

Hip circumference, cm (mean (SD)) 100.8 (9.8) 100.7 (7.4) 100.8 (8.7) 

Waist-to-hip ratio (mean (SD)) 0.82 (0.07) 0.94 (0.06) 0.88 (0.09) 

PAT, cm2 (mean (SD)) 21.8 (8.2) 30.6 (12.5) 26.0 (11.4) 

Diabetes type 2 (%) 551 (2.4) 1128 (5.2) 1679 (3.8) 

Heart failure (%) 76 (0.3) 240 (1.1) 316 (0.7) 

Coronary artery disease (%) 300 (1.3) 1334 (6.2) 1634 (3.7) 

Atrial fibrillation or flutter (%) 412 (1.8) 956 (4.4) 1368 (3.1) 

Stroke (%) 167 (0.7) 300 (1.4) 467 (1.1) 
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Baseline characteristics at the time of imaging are shown for UK Biobank cardiac magnetic 

resonance imaging substudy participants with automated pericardial adipose tissue (PAT) area 

quantitation from four-chamber images. Anthropometric measurements were taken during the 

imaging visit. Prevalent diseases were ascertained based on a combination of self-reported data 

and International Classification of Diseases codes. 
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Table 2. Lead variants from the genome-wide association study of 

pericardial adipose tissue in UK Biobank 

 

Chr Position rsID NEA EA 
Nearest 
Gene 

Nearest 
Gene 
Annotation 

Top 
PoPS 
gene EAF Beta SE P 

1 119699426 rs7530762 A G WARS2-AS1 intronic WARS2 0.67 -0.62 0.075 2.4E-16 

2 12882822 rs16350 ATC A TRIB2 UTR3 TRIB2 0.47 0.52 0.072 6.1E-13 

3 49799046 rs577934120 CA C IP6K1 intronic RBM6 0.45 0.42 0.075 1.8E-08 

5 55794632 rs30351 G A C5orf67 intergenic MIER3 0.74 -0.46 0.081 2.0E-08 

5 158009651 rs553600342 A AG EBF1 intergenic EBF1 0.24 -0.60 0.086 2.3E-12 

8 25464670 rs73221948 G T CDCA2 intergenic EBF2 0.29 -0.86 0.082 6.7E-26 

19 34015904 rs41119 G T PEPD intergenic CEBPA 0.36 -0.42 0.076 3.7E-08 

 
 
Variant positions are in the GRCh37 genome build. The nearest gene and the gene most 

strongly prioritized by the Polygenic Priority Score (PoPS) are shown for all lead variants. AF = 

allele frequency, Chr = chromosome, EA = effect allele, EAF = effect allele frequency, NEA = 

non-effect allele, PoPS = Polygenic Priority Score, SE = standard error. 
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Figures 

Figure 1. Automated quantitation of pericardial adipose tissue in 44,475 UK 

Biobank participants 
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Pericardial adipose tissue (PAT) was quantified with deep learning in 44,475 UK Biobank 

participants based on a separate training and test set of 250 4-chamber cardiac magnetic 

resonance images. The associations between PAT and baseline characteristics (at the time of 

imaging) and incident diseases were evaluated. A genome-wide association study of PAT was 

conducted in 41,494 participants and the resulting summary statistics were used in gene 

prioritization, gene set enrichment and genetic correlation analyses. The disease associations of 

a polygenic score for PAT were evaluated in 453,733 participants of the FinnGen study. 

Magnetic resonance images are reproduced by kind permission of UK Biobank ©. Parts of the 

figures were generated using Servier Medical Art, provided by Servier, licensed under a 

Creative Commons Attribution 3.0 unported license.  
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Figure 2: The associations of prevalent cardiovascular diseases with 
pericardial adipose tissue 
 

 
The associations of prevalent diseases with pericardial adipose tissue (PAT) were examined 

with linear regression models including the respective disease, age, and sex as predictors and 

PAT as the outcome. Each bar corresponds to the difference in PAT (in SD units) between 

those with prevalent disease and those without. Error bars correspond to positive 95% 

confidence intervals.  
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Figure 3: The associations of pericardial adipose tissue with incident 
cardiovascular diseases 
 

Cumulative incidence curves for cardiovascular diseases are shown for participants stratified by 

PAT deciles at the time of imaging (top 10% vs others). The shaded areas correspond to 95% 

confidence intervals. Individuals with the corresponding disease at the time of imaging were 

excluded from the incident disease analyses. P-values were estimated using Cox Proportional 

hazards models with age and sex as additional covariates.   
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Figure 4: Manhattan plot of the genome-wide association study of 
pericardial adipose tissue in UK Biobank 
 

 

A genome-wide association study of pericardial adipose tissue was performed in 41,494 UK 

Biobank participants. Each variant is plotted as a data point, with the corresponding -log10(P) 

shown on the y-axis and the genomic position shown on the x-axis grouped by chromosomes. 

The genome-wide significance threshold (P = 5x10-8) is shown with a darker dashed line and a 

suggestive threshold (P = 1x10-5) is shown with a lighter dashed line. Genomic loci with at least 

one variant reaching genome-wide significance are labeled with the name of the nearest gene, 

and all variants within 500 kilobases of the lead variant are colored in a darker blue for 

visualization purposes. The y-axis is truncated to only show variants with a P-value ≤ 0.1.  
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Figure 5: The predictive utility of a polygenic score for pericardial adipose 
tissue in FinnGen 
 

A polygenic score (PGS) for pericardial adipose tissue (PAT) was constructed using PRS-CS 

based on summary statistics from the genome-wide association study of PAT in UK Biobank 

and subsequently applied to 453,733 participants in the FinnGen study. A. The associations of 

the PAT PGS with cardiovascular diseases were evaluated using logistic regression models 

with sex, age at the end of study follow-up or death, genomic principal components 1–5 and the 

genotyping array as basic covariates. B. The associations of the PAT PGS with cardiovascular 
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diseases were examined including body mass index (BMI) as an additional covariate. Odds 

ratios are shown per SD increment in PAT PGS. 
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