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Abstract14

Health-related risks from climate change are growing exponentially1, but direct15

attribution of health outcomes to human influence on the climate remains challeng-16

ing2,3. Here, we leverage a comprehensive dataset of 50,425 population surveys4 to17

investigate whether human-caused climate change has increased the burden of child-18

hood malaria across sub-Saharan Africa. In historical data, we find that prevalence19

shows a robust response to temperature and extreme precipitation, consistent with20

expectations from previous empirical and epidemiological work. Comparing his-21

torical climate reconstructions to counterfactual simulations without anthropogenic22

climate forcings, we find two-to-one odds that human-caused climate change has in-23

creased the overall prevalence of childhood malaria across sub-Saharan Africa since24

1901. We estimate that by 2014, human-caused climate change was responsible for25

an average of 87 excess cases of malaria per 100,000 children ages 2 to 10, with26

higher elevation and cooler regions in southern and east Africa experiencing greater27

increases. Under future climate change, we project that increasing temperatures28

could accelerate the elimination of malaria in west and central Africa, where the29

present-day burden is highest, with an average overall reduction of 94 (low green-30

house gas emissions, SSP1-RCP2.6) to 1,890 (high emissions, SSP5-RCP8.5) cases31

per 100,000 children in sub-Saharan Africa by the end of the century. However, we32

find that limiting future global warming to under 2°C (SSP1-RCP2.6) compared to33

3°C (SSP2-RCP4.5) could prevent an average of 505 excess cases in southern Africa,34

and 33 excess cases in east Africa, per 100,000 children by 2100. Our study resolves35

a decades-old debate about one of the first suspected health impacts of climate36

change, and provides a template for future work measuring its true global burden.37
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Main Text38

Despite progress towards global eradication, malaria remains the single deadliest climate-39

sensitive infectious disease5. Malaria transmission is highly responsive to temperature,40

driven by both the life cycle of the ectothermic mosquito vectors (Anopheles spp.) and41

the thermal sensitivity of the parasites (Plasmodium spp.) themselves6,7. In laboratory42

conditions, P. falciparum transmission by An. gambiae peaks around 25°C, and becomes43

negligible below ∼16°C or above ∼34°C6,7,8. Given these biological constraints, climate44

change has become a major concern for populations potentially at risk of malaria in45

southern and high-elevation east Africa, where temperatures may no longer be prohibitive46

to malaria transmission9,10,11. On the other hand, in west and central Africa—where the47

burden of malaria is highest—many studies suggest that climate change will reduce or48

eventually preclude transmission9,10,12,13.49

These risks were among the first proposed health impacts of climate change14,15, but50

have been surprisingly contentious, and even described as “hot air” 16 and “dangerous51

pseudoscience” 17. Malaria experts have often claimed that observed warming trends are52

incompatible with long-term reductions in malaria prevalence across Africa, and warned53

that other factors like drug resistance and funding instability pose a more serious threat54

to malaria eradication16,18,19. Empirical evidence to test these assumptions is sparse,55

with the highest profile studies focusing on a single dataset of malaria incidence over56

several decades at a tea plantation in Kericho, Kenya. Since 2000, over a dozen studies57

have argued that these data either support20,21,22,23,24 or undermine25,26,27,28,29,30,31 the58

broader hypothesis that climate change is responsible for a resurgence of malaria in the59

east African highlands28,32,33,34,35. More recently, a study by Snow et al.4 examined60

the last century of continent-wide changes in malaria prevalence, and concluded that61

observed trends could not be neatly explained by climate change, but did so based only62

on visual correspondence between moving averages of rainfall, minimum temperature,63

and modeled malaria prevalence over the entire continent.64

In this study, we revisit these debates by applying state-of-the-art methods from65

detection and attribution, an area of climate science that quantifies the historical and66

real-time climate impacts of anthropogenic greenhouse gas emissions36,37. These meth-67

ods underpin the scientific consensus on human-caused climate change, and are regularly68

used to identify the role of climate change in the intensity, frequency, and distribution69

of specific extreme events (e.g., heatwaves, heavy precipitation, and droughts)38,39,40.70

However, attribution remains challenging for the downstream impacts of anthropogenic71

climate change on people and ecosystems, and methodological frameworks for impact72

attribution are still comparatively underdeveloped3,41,42. Applications to infectious dis-73

ease dynamics are especially challenging, as relationships between climate and disease74

transmission are often complex, nonlinear, and confounded by human intervention, and75

few epidemiological datasets exist with sufficient spatial and temporal scope to resolve76

these relationships. As a result, hundreds of studies have tested for correlations between77

climate and observed changes in disease incidence or prevalence, but very few have shown78

that these changes are causally attributable to anthropogenic climate change43,2.79

Here, we draw on frameworks from climate science38,39,40, econometrics44,45, and epi-80

2

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 6, 2024. ; https://doi.org/10.1101/2023.07.16.23292713doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.16.23292713
http://creativecommons.org/licenses/by-nc/4.0/


demiology43,2 to conduct an end-to-end impact attribution study (per42), measuring the81

direct effect of anthropogenic climate change on long-term trends in the burden of an in-82

fectious disease. We apply this framework to estimates of falciparum malaria prevalence83

in children aged 2-10 in sub-Saharan Africa (Pf PR2−10), which experiences roughly 95%84

of the global burden of malaria (with 80% of deaths in children under the age of 5)46.85

We analyze a recently published dataset with unparalleled resolution and scope (Figure86

1), consisting of 50,425 surveys spanning more than a century (1900 to 2015)4, which we87

aggregate to 9,875 monthly average values at the first administrative (state or province)88

level. Leveraging climate econometric methods44,47,48, we develop a panel regression89

model that isolates the role of temperature and extreme precipitation from other con-90

founding factors that also shape malaria endemicity (Figure 2; see Methods for details).91

Nonparametric controls in the model (i.e., fixed effects) account for regional differences92

in seasonality, time periods with concerted elimination efforts, and other spatiotemporal93

variation not explained by identifiable factors, such as socioeconomic or ecological differ-94

ences between populations. To quantify statistical uncertainty in prevalence-climate re-95

lationships, we repeatedly estimate the model with 1,000 spatially-blocked bootstrapped96

samples. We apply these models to make predictions based on 10 sets of paired historical97

climate simulations with and without anthropogenic climate forcing, and estimate the98

impact of anthropogenic climate change on malaria prevalence from 1901 to 2014 (Figure99

3). Finally, we project how future climate change could further alter malaria prevalence100

between 2015 and 2100, based on three future climate change scenarios for low (SSP1-101

RCP2.6), intermediate (SSP2-RCP4.5), and high (SSP5-RCP8.5) future greenhouse gas102

concentrations (Figure 4).103

A robust signal of climate sensitivity104

Over the last century, the prevalence of childhood malaria has exhibited a strong concave105

relationship with temperature (Figure 2A). Closely aligning with theoretical expectations106

that P. falciparum transmission by Anopheles gambiae mosquitoes should peak around107

25.6°C6, observed values of Pf PR2−10 in our dataset peak around a monthly mean tem-108

perature of 25.8°C (Figure S1). Based on these biological expectations, we estimate109

the effect of temperature as a quadratic response in a panel regression model, and find110

that prevalence peaks at 24.9°C (95% confidence interval across the 1,000 bootstrapped111

models: 22.5°C, 27.0°C). These results confirm that laboratory-based studies approxi-112

mate malaria epidemiology in real populations quite well, and that temperature plays a113

substantial role in transmission dynamics: a 10°C increase or decrease from the optimal114

temperature lowers prevalence by ∼8 percentage points.115

The relationship between precipitation and malaria prevalence is more complex49,116

and likely less consequential for historical trends (Figures 2B, 2C). Contemporaneous117

monthly precipitation exhibits a nonlinear, but highly uncertain, relationship to preva-118

lence (see Figure S12). To parsimoniously capture nonlinear effects and disentangle119

divergent impacts of low and high precipitation, we define precipitation shocks with120

two binary indicator variables, equal to one when monthly precipitation falls below 10%121

(we label this a “drought shock”) or above 90% (“flood shock”) percentiles of monthly122
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precipitation calculated for each subnational unit. While drought and flood events are123

complex phenomena, which develop from the combination of multiple factors (e.g., soil124

conditions and topography) in addition to rainfall over varying timescales, we use this125

drought/flood terminology as shorthand to indicate extremely low or high precipitation126

months. Although most effects are statistically insignificant, we find that drought shocks127

tend to decrease malaria prevalence 1-2 months later, while conversely, flood shocks128

have a positive effect on prevalence 2-3 months later. These effects and their timing are129

broadly consistent with expectations about how precipitation mediates the availability130

of mosquito breeding habitat: dry-out kills larvae and eggs, while inundation creates131

new breeding habitat50,51,52,53,54,55,56,57. Sensitivity analyses were also weakly sugges-132

tive of another established mechanism, in which floods may wash away eggs and larvae,133

reducing transmission in the shorter term (see Figures S10 and S12). Overall, extreme134

precipitation has a measurable effect on malaria prevalence, but may be less important135

than temperature; however, given the sparsity of weather station data58 and the uncer-136

tainty of precipitation reconstructions59, it is also possible that our analysis unavoidably137

underestimates the effect of precipitation due to measurement error.138

Additional sensitivity analyses reinforce that these prevalence-climate relationships139

are both statistically robust and biologically consistent. Key findings are generally in-140

sensitive to alternative model specifications, such as: the inclusion of lagged effects of141

temperature (Figure S7); higher-order polynomial effects of temperature (Figure S11);142

alternative definitions of drought and flood shocks (Figures S8-S10); and alternative spa-143

tiotemporal controls, which account differently for variation over space (at region, coun-144

try, and state levels), time (including yearly and monthly variation), and interactions145

among space and time (Figure S6 and Table S2).146

Historical impacts of climate change (1901-2014)147

We find that anthropogenic climate change has, more likely than not, been responsible148

for a small increase in the average prevalence of childhood malaria across sub-Saharan149

Africa since 1901 (Figures 2D). Compared to counterfactual simulations without anthro-150

pogenic climate forcing, we estimate that by 2010-2014, anthropogenic climate change151

had caused an increase in continental mean Pf PR2−10 of 0.09 percentage points (p.p.;152

95% confidence interval: -0.30 p.p., 0.51 p.p.). Simulations with an attributable increase153

in continent-wide mean prevalence outnumber those with losses by two to one (proportion154

P+ of 10,000 paired factual versus counterfactual simulations with a positive difference155

in prevalence = 0.66). These increases are almost entirely driven by rising temperatures156

from anthropogenic climate forcing; the effects of drought and flood events on prevalence157

show no distinguishable signal from anthropogenic climate forcing over time (Figure S4).158

This overall trend masks substantial regional heterogeneity in historical climate change159

impacts (Figure 3A; Figure S2), driven almost entirely by elevational and latitudinal160

gradients in temperature (Figure 3B,C). For example, attributable changes in prevalence161

across southern Africa are high in both magnitude and certainty, with an overall increase162

of 0.63 p.p. (95% CI: -0.04 p.p., 1.40 p.p.; P+ = 0.97)—nearly an order of magnitude163

greater than the continental mean. In contrast, climate change has contributed to signifi-164
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cantly lower malaria prevalence in west Africa (mean = -0.38 p.p.; 95% CI: -0.90 p.p.,0.02165

p.p.; P+ = 0.03), where temperatures already often exceed the biological optimum for166

transmission. In the central African basin, a stronghold of malaria endemicity with av-167

erage temperatures close to the 25°C optimum, the change in prevalence attributable to168

anthropogenic climate change is positive, relatively small, and uncertain (mean = 0.18169

p.p.; 95% CI: -0.19 p.p., 0.61 p.p.; P+ = 0.83). Finally, we estimate a meaningful overall170

increase in prevalence attributable to anthropogenic climate change in east Africa (mean171

= 0.33 p.p.; 95% CI: -0.14 p.p., 0.87 p.p.; P+ = 0.91), but note that changes in prevalence172

are distributed unevenly along the steep elevational gradient: increases of up to 1-2 p.p.173

in the Ethiopian highlands and the greater Rift Valley region are accompanied by small174

but significant local declines throughout lowland areas in Ethiopia, Sudan, South Sudan,175

Eritrea, and Djibouti.176

While these effects are meaningful, we caution that they are also far smaller than177

the reduction achieved through healthcare, mosquito nets, vector control, and economic178

development: previous work with the same dataset has estimated a reduction since 1900179

of 16 p.p. (that is, a continent-wide decline in average Pf PR2−10 from 40% in 1900-1929180

to 24% by 2010-20154), while our estimates of historical climate change-attributable181

changes rarely exceed 1.5 p.p. for any individual administrative region. Additionally,182

we estimate that average reductions in prevalence realized during the Global Malaria183

Eradication Program (1955-1969; estimated reduction averaged over the entire period:184

-4.80 p.p.) and recent programs like Roll Back Malaria and the Global Technical Strat-185

egy (2000–2014; estimated reduction averaged over the entire period: -3.35 p.p.) were186

substantially larger than the cumulative effects of anthropogenic climate change (Table187

S2). Relatively small and spatially differentiated climate-related changes in burden could188

have been easily concealed by the greater impact of these programs, highlighting both189

the success of elimination programs and the importance of using an empirical approach190

like ours to isolate the effect of climate from other co-evolving factors.191

Future impacts of climate change (2015-2100)192

Despite contemporary trends, we project that within the next quarter-century, anthro-193

pogenic climate change will begin to reduce the prevalence of falciparum malaria in194

sub-Saharan Africa (Figure 2D; Table S1). This trend is driven largely by rising temper-195

atures in lowland areas north of the equator, with greater possible reductions in higher196

greenhouse gas emissions scenarios (Figure 4). In these scenarios, temperature-related197

declines are slightly offset by floods, which will become more frequent across Africa36,198

although their impact on overall trends is trivial when compared to temperature (Figure199

S5). Even in a future low emissions scenario (SSP1-RCP2.6: average global warming200

across models of +1.8°C in 2048-2052; +1.9°C in 2096-2100), increases in prevalence201

due to historical anthropogenic climate change are projected to essentially be offset by202

mid-century, stabilizing around an -0.09 p.p. (95% CI: -0.41 p.p., 0.17 p.p.) projected203

decline across sub-Saharan Africa, relative to 2015-2020. In a high emissions scenario204

(SSP5–RCP8.5: +2.4°C in 2048-2052; +5.2°C in 2096-2100), we project decreases in205

prevalence would accelerate over time, reaching an average of -0.24 p.p. (95% CI: -0.80206
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p.p., 0.26 p.p.) by mid-century, and -1.90 p.p. (95% CI: -4.85 p.p., -0.07 p.p.) by the end207

of the century—a projected reduction that begins to approach the magnitude of some208

historical eradication programs.209

Though the balance across regions will begin to shift, the geographic pattern of210

future changes in malaria prevalence is likely to reproduce present-day heterogeneity in211

impacts, as malaria transmission continues to shift along latitudinal and elevational clines212

in temperature (Figure 4; Figure S3). West Africa is projected to experience the most213

dramatic transformation, especially in a high-emissions scenario (SSP5-RCP8.5), with214

a projected decline of -1.04 p.p. (95% CI: -1.86 p.p., -0.36 p.p.) by mid-century, and215

a staggering -4.25 p.p. (95% CI: -8.78 p.p., -1.52 p.p.) decrease by 2100. Similar but216

shallower declines are projected in central Africa, where end-of-century reductions could217

reach between -0.06 p.p. (SSP1-RCP2.6; 95% CI: -0.43 p.p., 0.24 p.p.) and -1.43 p.p.218

(SSP5-RCP8.5; 95% CI: -4.36 p.p., 0.37 p.p.). On the other hand, localized increases219

in prevalence will continue in the cooler parts of the Ethiopian highlands, the greater220

Rift Valley region, and coastal southern Africa, potentially reaching 5 p.p. or more in221

some areas. The overall effect across east and southern Africa is a projected increase in222

prevalence, except in the highest emissions scenario (SSP5-RCP8.5), where both regions223

start to experience declines by mid-century, with east Africa eventually falling -0.60 p.p.224

(95% CI: -2.72 p.p., 0.95 p.p.) below present-day levels by 2100.225

Broadly, our results suggest that the main effect of climate change mitigation will226

be to keep average temperatures in sub-Saharan Africa closer to the optimum range for227

malaria transmission. However, for many cooler localities, such as in east and southern228

Africa, greenhouse gas emissions reductions would prevent substantial climate change-229

driven increases in malaria prevalence. By mid-century, limiting global warming to below230

the +2°C limit in the Paris Agreement (achieved under SSP1-RCP2.6) is projected to231

prevent an estimated 163 cases of malaria per 100,000 children in southern Africa and 20232

cases per 100,000 children in east Africa compared to an intermediate emissions scenario233

(SSP2-RCP4.5: +2.0°C in 2048-2052; +3.0°C in in 2096-2100). By the end of the century,234

these benefits would be even greater, with 505 and 33 excess cases averted per 100,000235

children in southern and east Africa, respectively (Table S1). At a more local scale, these236

benefits could be at least an order of magnitude greater (Figure S3).237

Discussion238

In this study, we apply an end-to-end impact attribution framework to a century of239

malaria surveillance, allowing us to estimate the historical and projected future impact240

of anthropogenic climate change on childhood malaria in sub-Saharan Africa. We find241

a 66% likelihood that anthropogenic climate change since 1901 has increased malaria242

burden; on average across Africa, an estimated 87 excess malaria cases per 100,000 peo-243

ple can be attributed to historical human-caused climate change. However, this burden244

falls disproportionately on southern and east Africa; we estimate a 97% and 91% likeli-245

hood, respectively, that anthropogenic climate change has increased present-day malaria246

prevalence in these regions. We project that prevalence in both southern and east Africa247

will remain elevated in the future: even in a low emissions scenario likely to limit global248
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warming below +2°C (SSP1-RCP2.6), we estimate these regions will face 339 and 98 ex-249

cess cases of malaria per 100,000 children by 2100, respectively. In contrast, across many250

other regions of Africa, we project that the overall impact of future climate change will251

be a net reduction in malaria: these changes are projected to be most dramatic in west252

and central Africa, where future climate change could reduce prevalence by up to ∼4,200253

(west Africa) and ∼1,400 (central Africa) cases per 100,000 children in a high-emissions254

scenario (SSP5-RCP8.5). Our results suggest that climate change could be synergistic255

with eradication efforts in countries like Nigeria and the Democratic Republic of the256

Congo, where the present-day burden of malaria is highest, but will continue to create257

new risks in countries like Ethiopia and South Africa.258

Spanning multiple centuries, our analysis is the most comprehensive look to date259

at the impact of climate change on any infectious disease, and brings new clarity to a260

decades-long debate in malaria research. Whereas some work has questioned the plau-261

sibility that overall declines in continent-wide prevalence would conceal a climate-linked262

increase4,19, the 0.087 percentage point increase in Pf PR2−10 that we attribute to histor-263

ical anthropogenic climate change could easily be masked by the nearly 200-fold greater264

overall reduction observed across sub-Saharan Africa over the same period. Our regional265

estimates also generally align with previous lab-based or site-specific empirical work,266

which suggests that east and southern Africa are experiencing shifts towards tempera-267

tures that are permissive to transmission for the first time or over longer seasons9,10,268

while in west and central Africa, climate change impacts have been harder to detect, and269

future warming might exceed the physiological limits of malaria transmission9,10,13,60.270

Notably, our study does provide robust, empirical evidence that human-caused climate271

change has at least marginally contributed to malaria resurgence in high-altitude Kenya272

and Ethiopia, consistent with local epidemic time series or simulated dynamics based on273

local weather station data21,24,34.274

Our study therefore reconciles three long-standing ideas that are sometimes treated275

as paradoxical: anthropogenic climate change is not the primary force shaping past, or276

probably future, trends in malaria prevalence4,16,19. However, anthropogenic climate277

change has increased the burden of malaria in sub-Saharan Africa14,15,21,24, and at high278

elevations and latitudes, will continue to for several more decades9,10. Nevertheless,279

rising temperatures at lower latitudes and elevations in Africa will mostly align with280

future efforts to eradicate Plasmodium falciparum from sub-Saharan Africa10,19,60.281

In spite of climate change, elimination campaigns have already achieved substan-282

tial reductions in malaria endemicity over the last century. This history underscores283

the value of disease surveillance, healthcare, and vector control as core components of284

climate change adaptation, as well as the plausibility of malaria eradication within a285

generation61—a point echoed by the recent work on the elimination of malaria from286

Hainan Island in China62. At the same time, several recent anecdotes have raised rel-287

evant concerns about the fragility of elimination, such as the resurgence of malaria in288

Ecuador and Peru associated with migration from Venezuela63, or the estimated 10,000289

excess deaths due to malaria – and 3.5 million untreated cases – caused by healthcare290

disruptions during the 2014 Ebola virus epidemic in West Africa64. Concerns about291
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climate-linked resurgence are also more credible given the ongoing invasion of the An.292

stephensi mosquito, which thrives in cities, has already been reported in several locations293

in east Africa, and may be able to transmit P. falciparum up to much higher tempera-294

tures (∼37◦C) than An. gambiae can (∼30◦C)8,65. If An. stephensi were to become a295

dominant vector across the continent, climate change might become an even more press-296

ing concern66,67. These risks only add more urgency to the global goals of eliminating297

both malaria and greenhouse gas emissions.298
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Methods299

Malaria prevalence data300

We use a recently published database of Plasmodium falciparum clinical prevalence in301

Sub-Saharan Africa4. This compendium, compiled by Snow et al. over more than302

two decades, is one of the most spatially and temporally complete publicly-available303

databases of infectious disease burden. The database covers the period from 1900 to304

2015, though sampling has increased substantially since the turn of the century (pre-2000:305

n = 32, 533; post-2000: n = 17, 892). Most prevalence surveys used microscopy for diag-306

nostics (n = 36, 805) but a substantial portion of data also derive from rapid diagnostic307

tests (n = 11, 154). The data have been compiled from a mix of archival research through308

public health documents, including the records of colonial governments and elimination309

campaigns from different periods; national survey data; electronic records published in310

peer-reviewed journals and grey data sources (e.g., World Health Organization technical311

documents); and a mix of other sources compiled by international organizations. Records312

were georeferenced in the original study using a standard set of protocols, with a 5km313

grid uncertainty threshold for point data, and broader areas stored as administrative314

polygons. In total, the data include a total of 50,425 prevalence surveys at a total of315

36,966 unique georeferenced locations.316

For our models, we used the estimates of malaria prevalence for children aged two317

to ten years old, as falciparum malaria has the highest mortality in children and preg-318

nant women. The Snow et al. data cover all available prevalence surveys, including all319

age ranges, but were converted by the authors of the original study to a standardized320

estimate of prevalence in children aged 2-10 (Pf PR2−10), using a catalytic conversion321

Muench model. For our model, we aggregated data by averaging Pf PR2−10 at the first322

administrative level within-country (i.e., state or province level, or as shorthand, ADM1),323

using shapefiles provided by the Database of Global Administrative Areas dataset version324

3.6 (www.gadm.org). This provided sufficient granularity to capture climate impacts and325

local heterogeneity in confounders, while ensuring sufficient data coverage within these326

units. This aggregation scale is supported by previous work that models this dataset at327

the same spatial resolution4.328

Climate data329

We used two sets of climate data in this study. The first is an observational dataset330

from the Climatic Research Unit (hereafter, CRU-TS; version 4.03 for model training331

and bias correction), which is constructed from monthly observations from extensive332

networks of meteorological stations from around the globe68. CRU-TS provides land-333

only climatic variables at a high spatial resolution of 0.5° × 0.5° extending from 1901 to334

present (though our analysis is limited to the period 1901-2014). The second set of data335

is from ten global climate models (GCMs) selected from the sixth phase of the Coupled336

Model Intercomparison Project (CMIP6). In our historical analysis, we analysed (per337

GCM) one model realization of the “Historical” simulation, which includes anthropogenic338
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greenhouse gas emissions, and one realization from the “Historical-Natural” simulation,339

which includes only solar and volcanic climate forcing. For both the Historical and340

Historical-Natural (hereafter and in the main text, “historical climate” and “historical341

counterfactual”) simulations, we analysed the period 1901-2014.342

To investigate the continued effect of climate change on malaria prevalence between343

2015 and 2100, we analysed three CMIP6 future climate change simulations from each344

of the 10 GCMs. Shared socio-economic pathways (SSPs) refer to the level of potential345

future global development (social, economic, and technological) and the implication for346

climate change mitigation and/or adaptation actions or policy69,70. SSPs are combined347

with various possible future radiative forcings (representative concentration pathways;348

RCPs) to form the climate change scenarios used in CMIP6. Of the available SSP–RCP349

scenarios, we selected and used three. The first two suggest enhanced human develop-350

ment outcomes with increased potential towards a more sustainable (SSP171) or a less351

sustainable (SSP572) economy. The third, SSP273, is a mid-way scenario, which assumes352

a future that mostly follows historical trends70. We selected these scenarios in combina-353

tion with a low (SSP1-RCP2.6), intermediate (SSP2-RCP4.5), and high (SSP5-RCP8.5)354

greenhouse gas concentration scenario.355

We apply a standard quantile-quantile (Q-Q) bias-correction74,75 to the CMIP6 pre-356

cipitation and temperature datasets for both of the historical simulations for the period357

1901-2014, and all three future simulations for the period 2015-2100. Before the bias-358

correction, we first remap all simulated CMIP6 precipitation and temperature datasets359

to the same grid cell size (0.5° × 0.5°) as the CRU-TS observation data. We then per-360

form for each CMIP6 model, the Q-Q bias correction at each grid-point by mapping the361

quantile values (qi) for the empirical cumulative distribution functions for each of the 12362

months over the period 1901-2014 (for each grid point) onto the corresponding quantiles363

in the observational dataset (CRU-TS), so that the observed precipitation or tempera-364

ture values associated with qi become the bias-corrected value in the simulations. For365

the counterfactual (and future) simulations, we first determine, at each grid-point, for366

each value of precipitation or temperature (for each month) over the period 1901-2014367

(2015-2100) the equivalent quantile (qj) in the factual simulation and then identify the368

precipitation or temperature value associated with qj in the observational dataset as the369

bias-corrected value. We detrended both precipitation and temperature datasets before370

applying the bias-correction procedure, and then added the trends back after75.371

For every climate dataset (all CRU-TS and CMIP6 models), we extract the average372

value of monthly precipitation and temperature within each ADM1 unit. To construct373

polynomial variables for temperature and precipitation (see below), all data were trans-374

formed at the grid cell level prior to aggregation to the ADM1 unit; extreme precipitation375

cutoffs were defined at the ADM1 level and so were applied after aggregation.376

Statistical model377

The influence of climatic conditions on malaria prevalence has been heavily studied us-378

ing transmission models based in vector ecophysiology and calibrated using laboratory379

experiments6,7. The important benefit of this approach is that the mechanistic links380
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between a particular environmental condition (e.g., temperature) and malaria prevalence381

in the human population, such as effects on biting rate and survival probability, can be382

independently isolated. However, this approach is limited in its ability to generalize to383

real-world contexts, where complex socioeconomic factors interact with modeled relation-384

ships based on laboratory conditions. Clinical data, which measures malaria prevalence in385

human populations, has been used to validate modeled results6, but inconsistent findings386

arise due to challenges in statistically isolating the role of climate from the many corre-387

lated factors influencing prevalence, such as public health interventions, drug resistance,388

conflict and social instability, and economic shocks19,60,76,77,78.389

This study seeks to provide generalizable population-scale evidence of the malaria-390

climate link across sub-Saharan Africa using field-collected clinical data and a statistical391

approach designed to isolate changing environmental conditions from spatiotemporal con-392

founding factors. Specifically, we draw on the climate econometrics literature47, which393

has developed causal inference approaches to quantify and project the impacts of anthro-394

pogenic climate change on a host of socioeconomic outcomes, from agricultural yields79,395

to civil conflict80, to all-cause mortality48. This approach is designed to approximate396

controlled experiments by semi-parametrically accounting for unobservable spatial and397

temporal confounding factors, isolating variation in the climate system that is as good as398

randomly assigned81. This approach is often referred to as “reduced-form”, as it allows for399

a causal interpretation of recovered relationships between socioeconomic conditions and400

the climate, but it does not easily enable the researcher to isolate individual mechanisms401

linking a changing climate to shifts in outcomes (e.g., mosquito population dynamics or402

parasite development rates). However, causal estimates enable counterfactual simulation403

in which climate is changed and all other factors are held constant; this is the exercise404

conducted here and in many applications of climate econometric frameworks. More-405

over, these relationships can be used to calibrate more structured transmission models406

by providing empirical grounding from observational data.407

We develop a statistical model using monthly survey-based malaria prevalence data408

for children aged 2 to 10 (PfPR2−10) covering all of sub-Saharan Africa over 115 years.409

Our outcome variable is the average prevalence for each first administrative unit i (e.g.,410

province or state) in country c during month m and year t, which we denote PfPRicmt.411

We estimate prevalence as a flexible function of monthly temperature Ticmt and precipi-412

tation Picmt variables as follows:413

PfPRicmt = f(Ticmt) +
L∑

`=0

g`(Picm−`t) + αi + γrm + hc(datemt) (1)

+ δ11{intervention 1}mt + δ21{intervention 2}mt + εicmt

where f(·) and g(·) represent nonlinear transformations of grid-cell level temperature and414

precipitation conditions, respectively, and where ` subscripts indicate monthly temporal415

lags. In our main specification, we model f(·) as a quadratic in contemporaneous average416

temperature, while g(·) contains a vector of dummy variables indicating whether an417
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administrative unit’s monthly rainfall can be categorized as drought (defined as ≤ 10%418

of the long-run location- and month-specific mean) or flood (defined as ≥ 90% of the419

long-run location- and month-specific mean) during month m − `. We allow for up to420

three monthly of lags (i.e., L = 3) for these extreme precipitation conditions in our421

main specification, based on hypotheses from prior literature regarding the timescales of422

larvae drying and of “flushing” 50,53,82. A variety of sensitivity analyses detailed below423

demonstrate that key findings are robust to including lags for temperature (Figure S7), to424

the drought and flood cutoffs used for precipitation (Figures S8-S10), and to alternative425

functional forms of temperature (Figure S11).426

Equation 1 uses a suite of semi-parametric spatiotemporal controls to isolate plau-427

sibly random variation in climatological conditions, following standard practices in the428

climate impacts literature.47,45 First, αi is a vector of indicator variables for each of 853429

first administrative units (i.e., “ADM1” units) across our multi-country sample. These430

spatial “fixed effects” control for all time-invariant characteristics of an administrative431

unit that may confound the relationship between temperature, rainfall, and prevalence.432

For example, higher altitude regions may exhibit cooler temperatures, but they also may433

be composed of lower-income and more geographically isolated communities with lim-434

ited access to malaria prevention interventions. By controlling for mean conditions in435

each location, these spatial fixed effects avoid conflating climate conditions with other436

geographic correlates.437

Second, γrm is a vector of region-by-month-of-year indicator variables, where regions438

are defined using the Global Burden of Disease (GBD) regional definitions of western,439

southern, central, and eastern Africa (see Figure 2 in ref.83). These spatiotemporal fixed440

effects account for region-specific seasonality in prevalence that may spuriously relate to441

seasonally-varying climatological conditions. We allow these seasonal controls to vary by442

region because of large differences in climatological seasonality and in malaria cyclicality443

across sub-Saharan Africa84, and we show below that our main findings are robust to444

more stringent seasonality controls defined at the country level (Figure S6). Third,445

hc(·) is a nonlinear, country-specific function that controls for country-specific gradual446

trends that may confound the malaria-climate relationship, particularly under historical447

conditions of anthropogenic climate change. In our main specification, we model hc(·) as a448

quadratic. Figure S6 shows that our results are robust to multiple alternative approaches449

to controlling for long-run trends that may vary across space.450

Finally, the indicator variables 1{intervention 1}mt and 1{intervention 2}mt are equal451

to one when an observation falls into the 1955-1969 or 2000-2015 period, respectively.452

These two periods saw substantial malaria intervention programs across the subconti-453

nent, leading to considerable declines in malaria that were unrelated to changes in the454

climate4,85. These indicator variables control for shocks to prevalence during these two455

periods, and the coefficients δ1 and δ2 allow for differential effectiveness of the two dis-456

tinct intervention periods. While these variables are highly statistically significant (Table457

S2), our main findings are robust to their exclusion (Figure S6).458

Together, these set of flexible controls imply that the residual variation in temperature459

and precipitation events used to identify the functions f(·) and g(·) is month-to-month460
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variation over time within the same location, after controlling for gradual country-specific461

trends, regional seasonality, and the aggregate effects of two substantial malaria preven-462

tion intervention programs. When reporting regression results directly (e.g., in Table463

S2), we cluster standard errors εicmt at the ADM1 level to account for serial correlation464

within the same location. When computing bootstrap samples (e.g., shown in Figure465

2), we repeatedly re-estimate Equation 1 after block-resampling the full dataset using466

ADM1-level blocks to account for this same serial correlation.467

Statistical model sensitivity and robustness468

In this section, we describe a set of model sensitivity analyses that probe the robustness469

of our empirical model. Specifically, we investigate sensitivity of our key findings to:470

alternative spatiotemporal controls; inclusion of dynamic temperature effects; alternative471

definitions of extreme rainfall events; and alternative functional forms for the prevalence-472

temperature relationship.473

Alternative spatiotemporal controls474

Our preferred empirical specification in Equation 1 includes first administrative unit fixed475

effects (i.e., indicator variables), region-by-month-of-year fixed effects, country-specific476

quadratic time trends, and two indicator variables for each of two malaria intervention477

periods (1955-1969 and 2000-2015). Figure S6 shows that our estimated prevalence-478

temperature relationship is highly robust to many alternative spatial and temporal con-479

trols. All panels in this figure include ADM1 fixed effects to control for time-invariant480

characteristics that may confound the relationship between prevalence and temperature,481

but each panel varies in the additional spatial and/or temporal controls included in the482

regression. A tabular version of these results is shown in Table S2. While the temper-483

ature at which prevalence peaks changes slightly across model specifications, it remains484

within a degree of the 24.9◦C value from our preferred specification for most models,485

particularly those including time trends that are spatially differentiated (note that peak486

temperatures indicated in Figure S6 are rounded to the nearest degree for display pur-487

poses). Predictably, stringent controls, such as region-by-year and country-by-month488

fixed effects, tend to increase statistical uncertainty. However, overall the estimated489

shape and magnitude of the prevalence-temperature relationship remain robust to alter-490

native spatial and temporal controls.491

Dynamic temperature effects492

Our preferred empirical specification estimates contemporaneous (within one month) and493

lagged (up to three months) effects of extreme rainfall on malaria prevalence, but only494

contemporaneous effects of temperature. While it is possible that temperature also ex-495

hibits lagged effects, we show in Figure S7 that the cumulative effect of temperature on496

PfPR2−10 is very similar whether zero, one, two, or three months of lagged temperatures497

are accounted for. The prevalence response to temperature does become slightly stronger498
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with three months of lags, suggesting that our historical and future climate predictions499

shown throughout the main text may be somewhat conservative. However, overall these500

findings suggest that climate change impact predictions are unlikely to change meaning-501

fully under different assumptions of the lag structure of temperature exposure.502

Alternative definitions of extreme rainfall events503

Our main empirical specification defines drought as months for which total precipitation504

is less than or equal to 10% of the long-run location- and month-specific mean. Flood is505

analogously defined as months for which total precipitation is greater than or equal to 90%506

of the long-run location- and month-specific mean. Here, we investigate the sensitivity507

of our main findings to these definitions. To do so, we systematically vary both the508

drought and flood cutoff values, ranging from <1% to <20% for drought and from >85%509

to >95% for flood. Figure S8 shows that the relationship between malaria prevalence and510

temperature is insensitive to the definition of drought and flood events. Figure S9 shows511

that under most drought and flood definitions, extremely low precipitation events have512

a negative effect on prevalence with a lag of 1-2 months. However, this effect is rarely513

statistically significant. Figure S10 shows that extremely high rainfall events increase514

prevalence with a lag of 2-3 months, a result that is statistically significant and highly515

robust to alternative drought and flood definitions. In general, these sensitivity analyses516

show that our main findings are not sensitive to the specific definitions of drought and517

flood used in estimation of Equation 1.518

Alternative functional forms for the prevalence-temperature relationship519

Following from theoretical and laboratory-based literature (e.g., refs.6,7), we model the520

prevalence-temperature relationship as quadratic. However, Figure S11 shows that this521

relationship is similar when more flexible functional forms are used. In particular, the522

temperature at which prevalence peaks changes little when higher order polynomials are523

estimated. Estimating higher order polynomials increases uncertainty, particularly in the524

tails of the temperature distribution, but point estimates are similar across the majority525

of the observed temperature range.526

Predictions527

In both historical and future simulations, we apply the estimated panel regression to528

calculate the effect of climate change on Pf PR2−10. Our predictions capture the full529

range of statistical uncertainty (1,000 bootstrapped model estimates) and climate model530

uncertainty (10 climate models), producing a total of 10,000 estimates of historical or531

future impacts in any given scenario. Each of these 10,000 estimates is normalized to a532

long-run baseline (past: 1901-1930; present: 2015-2020) before estimates are averaged,533

creating an estimate of climate change impacts relative to that baseline. In our historical534

analyses, we only use these models to estimate changes in prevalence attributable to535

climate change: while the panel regression model accounts for other historical drivers536
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through the fixed effects structure, these are not the focus of our analysis, and so we537

choose not to estimate total prevalence including these effects. Similarly, we elect not538

to make assumptions about non-climate drivers of malaria prevalence in the future, and539

thus do not apply the model to predict future trends in overall prevalence.540

For overall trends (e.g., reported in Figures 2D, 3D, and 4D), we generated continent-541

wide averages or four regional averages using the unweighted average of estimates for each542

ADM1 unit. This is a deliberate oversimplification, as we do not adjust averages based543

on either ADM1 units’ land area or the estimated population they contain; we made this544

decision based on the challenges of reconstructing historical population density at fine545

scales, as well as the need to otherwise make assumptions about how disease burden is546

allocated over space (e.g., the distribution of transmission across rural or urban areas).547

For similar reasons, we chose not to estimate the effect of prevalence changes on overall548

malaria incidence. Although some studies have attempted this using a linear conver-549

sion with total population86, proper estimation of incidence (and the effects of treatment550

variables, through prevalence, on case burden) requires malaria transmission models that551

require substantially more demographic assumptions85. Future work could explore both552

of these methodologically-complex directions, and potentially generate finer-scale esti-553

mates of how many cases of childhood malaria, and resulting deaths, are attributable to554

climate change.555
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Figure 1: Malaria prevalence observations from 1900 to 2015. (A) The total number
of malaria prevalence surveys in children ages 2 to 10 in the 20th and early 21st century, as
measured by Snow et al.4 and aggregated to the first administrative unit (ADM1). (B) Mean
reported prevalence of childhood malaria over the entire sample (1900-2015, with temporal cov-
erage varying across space). (C) Observed trends in malaria prevalence, broken down by Global
Burden of Disease Study regions (see main text): each point is a single survey in the original
dataset, while generalized additive models are used to construct estimated trend lines (shown
in solid blue, with grey shading showing the model’s 95% confidence interval). Pink vertical
bars indicate notable periods of successful malaria prevention intervention: the Global Malaria
Eradication Programme (1955-1969) and the modern period including the Roll Back Malaria
programs and Global Technical Strategy (2000-2014).
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Figure 2: Empirical estimates of prevalence-climate relationships and predictions of
climate change impacts from 1901 to 2100. (A) The estimated relationship between tem-
perature and prevalence (point estimate in black; bootstrapped estimates in red). (B,C) The
effects of extreme precipitation events (flood and drought) in the month they occur (0 lag) and
after time has passed (1, 2, 3 month lags), as well as the cumulative impact across the first
three months; point estimates from the main model (black) are accompanied by bootstrap esti-
mates (blue, brown). (D) Predicted change in prevalence attributable to anthropogenic climate
change in the recent past (real historical climate given in blue; counterfactual without anthro-
pogenic warming in grey) and in the future for low (blue: SSP1-RCP2.6), intermediate (pink:
SSP2-RCP4.5), and high (green: SSP5-RCP8.5) emissions scenarios. Thick lines are the median
estimates across all 10,000 simulations; shading indicates the 5th and 95th percentiles of this
distribution, and is truncated at the lower axis limits for visualization purposes only (the full
interval is shown in Figure S5A). Historical estimates are shown relative to an average baseline
across 1901 to 1930. Future estimates are shown relative to a baseline across 2015 to 2019, added
to the end-of-historical baseline (2010 to 2014). Years with incomplete predictions due to lag
effects (1901 and 2015) are not displayed.
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Figure 3: Historical changes in malaria prevalence attributable to anthropogenic
climate change from 1901 to 2014. (A) Estimated change in prevalence attributable to
anthropogenic climate change in each administrative unit, based on the difference between the
historical climate in 2010-2014 and a counterfactual scenario for the same period simulated with-
out anthropogenic warming. Sign uncertainty is the percentage of the 10,000 simulations that
estimate an increase (for positive point estimates) or decrease (for negative point estimates) in
prevalence due to anthropogenic climate change. An uncertainty of 0% implies that all models
predict a positive or negative trend, while an uncertainty close to 100% indicates a near-even split
of simulations showing an increase or decrease in prevalence. (B) Estimated change in prevalence
attributable to anthropogenic climate change (difference between factual and counterfactual sce-
nario in 2010-2014) in each administrative polygon, compared to the baseline mean temperature
at the start of the 20th century (averaged over 1901-1930); error bars indicate both 90% (thicker
lines) and 95% (thinner lines) confidence intervals. Points and lines are colored based on the 90%
confidence interval: blue for negative effects, red for positive effects, and grey for non-significant
effects. (C) Estimated change in prevalence attributable to anthropogenic climate change in
each administrative polygon, compared to average elevation; error bars indicate both 90% and
95% confidence intervals, colored as in (B). (D) Predicted historical changes in prevalence by
year, broken down by region. As in Figure 2, predictions based on true historical climate (blue)
are compared to counterfactual predictions without anthropogenic warming (grey), relative to
a 1901 to 1930 baseline. Thick lines are the median estimate across all 10,000 simulations; for
visualization purposes, shading indicates the 90% confidence interval, and is truncated at the
upper and lower axis limits. Plots begin in 1902 with the first full year of predictions (due to lag
effects).
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Figure 4: Projected future changes in malaria prevalence driven by climate change
from 2015 to 2100. (A) Projected climate-driven changes in prevalence by the end of the
century (2096-2100), compared to the present day (2015-2020), for an intermediate emissions
scenario (SSP2-RCP4.5). Sign uncertainty is the percentage of the 10,000 simulations that
estimate an increase (for positive point estimates) or decrease (for negative point estimates) in
prevalence due to future climate change. An uncertainty of 0% implies that all models predict
a positive or negative trend, while an uncertainty close to 100% indicates a near-even split of
simulations showing an increase or decrease in prevalence. (B) Projected change in prevalence
due to climate change by the end of the century (2096-2100) in each administrative polygon,
estimated for SSP2-RCP4.5, compared to the baseline mean temperature at the start of the
20th century; error bars indicate both 90% (thicker lines) and 95% (thinner lines) confidence
intervals. Points and lines are colored based on the 90% confidence interval: blue for negative
effects, red for positive effects, and grey for non-significant effects. (C) Projected change in
prevalence due to climate change by the end of the century (2096-2100) in each administrative
polygon, estimated for SSP2-RCP4.5, compared to average elevation; error bars indicate both
90% and 95% confidence intervals, colored as in (B). (D) Projected changes in prevalence by
year across all scenarios by region. Projections are given relative to the mean from 2015-2019,
and as in Figure 2, and line color indicates scenario (blue: SSP1-RCP2.6; pink: SSP2-RCP4.5;
green: SSP5-RCP8.5). Thick lines are the median estimate across all 10,000 simulations; for
visualization purposes, shading indicates the 90% confidence interval, and is truncated at the
upper and lower axis limits. Plots begin in 2016 with the first full year of predictions (due to lag
effects).
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Figure S1: Malaria prevalence follows biological expectations. (A) The theoretical
expectation for R0(T ), the scaled partial response of the basic reproduction number to temper-
ature, estimated based on laboratory experiments (black line)6. Transmission peaks around an
estimated optimum of 25.6 ◦C (grey dashed line). (B) Observed malaria prevalence data from
Snow et al.4 matched to monthly temperature from CRU weather station data, summarized and
smoothed using a generalized additive model. The observed optimum temperature (red dashed
line) closely matches expectations based on laboratory experiments (grey dashed line). (C) Main
panel regression estimate for prevalence response to temperature (also shown in Figure 2A). The
modeled optimum temperature (red dashed line) is slightly lower than in laboratory experiments
(grey dashed line). (D) Histogram of optimum temperatures derived from 1,000 bootstrapped
estimates of the panel regression model shown in panel (C). The mean optimum temperature
across all bootstrap samples (red dashed line) is identical to the optimum shown in panel C.
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Figure S2: Historical changes in malaria prevalence attributable to anthropogenic cli-
mate change from 1901 to 2014. Map shows the estimated change in prevalence attributable
to anthropogenic climate change in each administrative unit, based on the difference between
the historical climate in 2010-2014 and a counterfactual scenario for the same period simulated
without anthropogenic warming. Polygons with a black solid outline indicate areas with changes
that were statistically significant (α = 0.05) based on the sign of 10,000 bootstrapped simula-
tions. Mean estimates shown here provide the same information as in Figure 3, but on a single
color scale (i.e., no uncertainty visualization).
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Figure S3: Projected future changes in malaria prevalence driven by climate change
from 2015 to 2100. Maps show the estimated change in prevalence due to anthropogenic cli-
mate change (in percentage points) in low-emissions (SSP1-RCP2.6; A,B), moderate-emissions
(SSP2-RCP4.5; C,D), and high-emissions (SSP5-RCP8.5; E,F) scenarios, projected to mid-
century (2048-2052; A,C,E) or the end of the century (2096-2100; B,D,F). Projections are re-
ported as differences relative to a present-day baseline (2015-2019). Mean estimates in panel
D provide the same information as in Figure 4, but on a single color scale (i.e., no uncertainty
visualization).
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Figure S4: Historical impacts of climate change decomposed by variable. Partial
predictions of changes in malaria attributable to anthropogenic climate change are made based
on all climate variables (top row), temperature (second row), flood shocks (third row), and
drought shocks (fourth row). As in Figure 2, predictions based on true historical climate (blue)
are compared to counterfactual predictions without anthropogenic warming (grey), relative to a
1901 to 1930 baseline. Thick lines are the median estimate across all 10,000 simulations; shading
indicates the 5th and 95th percentiles. Plots begin in 1902 with the first full year of predictions
(due to lag effects).
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Figure S5: Future impacts of climate change decomposed by variable. Partial predic-
tions of changes in malaria attributable to future climate change are made based on all climate
variables (top row) temperature (second row), flood shocks (third row), and drought shocks
(fourth row). Projections are shown relative to the mean prevalence from 2015-2020, and as
in Figure 2, line color indicates emissions scenario (blue: SSP1-RCP2.6; pink: SSP2-RCP4.5;
green: SSP5-RCP8.5). Thick lines are the median estimate across all 10,000 simulations; shading
indicates the 5th and 95th percentiles. Plots begin in 2016 with the first full year of predictions
(due to lag effects).
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Figure S6: Sensitivity of the PfPR2−10-temperature relationship to alternative spa-
tiotemporal controls. All panels show the estimated relationship between malaria prevalence
for children aged 2-10 and monthly average temperature and all include fixed effects (i.e., dummy
variables) at the scale of the first administrative unit (i.e., ADM1). All temperature responses
are plotted relative to the model-specific temperature at which prevalence is maximized; this
peak temperature is indicated in grey text and with a vertical grey line in each panel. From
top-left to bottom-right, model controls are: country, year, and month fixed effects; country-
specific quadratic time trends and month fixed effects; country-specific quadratic time trends
and country-by-month fixed effects; country-specific quadratic time trends and intervention pe-
riod and month fixed effects; country-specific quadratic time trends and intervention period and
region-by-month fixed effects; country-specific quadratic time trends and intervention period and
country-by-month fixed effects; region-by-year and region-by-month fixed effects; region-by-year
and country-by-month fixed effects; and region-by-year and region-by-month fixed effects and
country-specific linear time trends. The preferred specification used throughout the main text is
the center panel, which includes country-specific quadratic time trends and intervention period
and region-by-month fixed effects. In all panels, “region” refers to the Global Burden of Disease
regional definitions of western, southern, central, and eastern Africa. All standard errors are
clustered at the first administrative unit (e.g., province) level.
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Figure S7: Cumulative effect of contemporaneous and lagged temperature on
PfPR2−10. All panels show the estimated relationship between malaria prevalence for chil-
dren aged 2-10 and monthly average temperature and are plotted relative to a monthly average
temperature of 25◦C. The first panel shows the effect of monthly average temperature on the
same month’s average prevalence (this is the main estimate used throughout the main text). The
second panel shows the cumulative effect of contemporaneous temperature and the prior month’s
temperature on prevalence, while the last two columns show analogous results for two and three
months of lags, respectively. In all specifications, three months of lagged precipitation extremes
are included, as well as all other controls shown in Equation 1. All standard errors are clustered
at the first administrative unit (e.g., province) level.
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Figure S8: Sensitivity of PfPR2−10-temperature relationship to alternative drought
and flood definitions. All panels show the estimated relationship between malaria prevalence
for children aged 2-10 and monthly average temperature and are plotted relative to a monthly
average temperature of 25◦C. Cutoff values for drought and flood definitions are given in the
titles of each panel. For example, the first panel in the upper left defines drought as monthly total
precipitation that falls below 1% of the long-run location- and month-specific mean, and defines
flood as monthly total precipitation that falls above 85% of the long-run location- and month-
specific mean. In all specifications, three months of lagged precipitation extremes are included,
as well as all other controls shown in Equation 1. The main specification used throughout the
paper uses a drought cutoff of 10% and a flood cutoff of 90%. All standard errors are clustered
at the first administrative unit (e.g., province) level.
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Figure S9: Sensitivity of PfPR2−10-drought relationship to alternative drought and
flood definitions. All panels show the estimated relationship between malaria prevalence for
children aged 2-10 and contemporaneous and lagged drought events. Point estimates are given by
solid circles, while vertical bars indicate 95% confidence intervals. Cutoff values for drought and
flood definitions are given in the titles of each panel. For example, the first panel in the upper
left defines drought as monthly total precipitation that falls below 1% of the long-run location-
and month-specific mean, and defines flood as monthly total precipitation that falls above 85%
of the long-run location- and month-specific mean. In all specifications, three months of lagged
precipitation extremes are included, as well as all other controls shown in Equation 1. The main
specification used throughout the paper uses a drought cutoff of 10% and a flood cutoff of 90%.
All standard errors are clustered at the first administrative unit (e.g., province) level.
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Figure S10: Sensitivity of PfPR2−10-flood relationship to alternative drought and
flood definitions. All panels show the estimated relationship between malaria prevalence for
children aged 2-10 and contemporaneous and lagged flood events. Point estimates are given by
solid circles, while vertical bars indicate 95% confidence intervals. Cutoff values for drought and
flood definitions are given in the titles of each panel. For example, the first panel in the upper
left defines drought as monthly total precipitation that falls below 1% of the long-run location-
and month-specific mean, and defines flood as monthly total precipitation that falls above 85%
of the long-run location- and month-specific mean. In all specifications, three months of lagged
precipitation extremes are included, as well as all other controls shown in Equation 1. The main
specification used throughout the paper uses a drought cutoff of 10% and a flood cutoff of 90%.
All standard errors are clustered at the first administrative unit (e.g., province) level.
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Figure S11: Alternative functional forms for the PfPR2−10-temperature relationship.
All panels show the estimated relationship between malaria prevalence for children aged 2-10
and monthly average temperature and are plotted relative to a monthly average temperature of
25◦C. Starting in the upper left, the first panel shows the paper’s main specification, a quadratic
functional form for the prevalence-temperature relationship. The second panel shows a cubic
functional form, the third a quartic, and the fourth a quintic. All standard errors are clustered
at the first administrative unit (e.g., province) level.
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Figure S12: Non-linearities in the PfPR2−10-precipitation relationship. All panels
show the estimated relationship between malaria prevalence for children aged 2-10 and monthly
cumulative precipitation and are plotted relative to a month with no rainfall. All relationships
are estimated for contemporaneous monthly precipitation. All standard errors are clustered at
the first administrative unit (e.g., province) level.
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Region Scenario 2048-2052 2096-2100
Estimate 95% CI Estimate 95% CI

Sub-Saharan Africa
(continent-wide)

SSP1-RCP2.6 -0.0856 (-0.411, 0.169) -0.0942 (-0.497, 0.160)
SSP2-RCP4.5 -0.148 (-0.570, 0.204) -0.433 (-1.371, 0.249)
SSP5-RCP8.5 -0.244 (-0.803, 0.261) -1.89 (-4.846, -0.065)

East Africa
SSP1-RCP2.6 0.112 (-0.179, 0.466) 0.0984 (-0.248, 0.449)
SSP2-RCP4.5 0.131 (-0.268, 0.543) 0.131 (-0.577, 0.846)
SSP5-RCP8.5 0.157 (-0.371, 0.688) -0.603 (-2.715, 0.951)

Central Africa
SSP1-RCP2.6 -0.0346 (-0.354, 0.205) -0.0605 (-0.430, 0.242)
SSP2-RCP4.5 -0.0212 (-0.471, 0.385) -0.231 (-1.192, 0.514)
SSP5-RCP8.5 -0.109 (-0.690, 0.444) -1.43 (-4.361, 0.371)

Southern Africa
SSP1-RCP2.6 0.321 (-0.094, 0.836) 0.339 (-0.062, 0.925)
SSP2-RCP4.5 0.507 (-0.055, 1.104) 0.844 (-0.185, 1.940)
SSP5-RCP8.5 0.846 (-0.079, 1.810) 0.492 (-2.313, 2.547)

West Africa
SSP1-RCP2.6 -0.448 (-0.952, -0.135) -0.449 (-1.087, 0.065)
SSP2-RCP4.5 -0.694 (-1.290, -0.232) -1.51 (-3.045, -0.481)
SSP5-RCP8.5 -1.04 (-1.860, -0.358) -4.25 (-8.780, -1.519)

Table S1: Projected future impacts of climate change on PfPR2−10. Estimates
and confidence intervals are all given as percentage point changes from a 2015-2020
baseline, estimated across 10,000 simulations.
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