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ABSTRACT 

Background The ZFHX3 gene plays vital roles in embryonic development, cell 

proliferation, neuronal differentiation, and neuronal death. This study aims to explore the 

relationship between ZFHX3 variants and epilepsy. 

Methods Whole-exome sequencing was performed in a cohort of 378 patients with partial 

(focal) epilepsy. A Drosophila Zfh2 knockdown model was used to validate the association 

between ZFHX3 and epilepsy. 

Results Compound heterozygous ZFHX3 variants were identified in eight unrelated cases. 

The burden of ZFHX3 variants was significantly higher in the case cohort, shown by 

multiple/specific statistical analyses. In Zfh2 knockdown flies, the incidence and duration of 

seizure-like behavior were significantly greater than those in the controls. The Zfh2 

knockdown flies exhibited more firing in excitatory neurons. All patients presented partial 

seizures. The five patients with variants in the C-terminus/N-terminus presented mild partial 

epilepsy. The other three patients included one who experienced frequent nonconvulsive 

status epilepticus and two who had early spasms. These three patients had also 

neurodevelopmental abnormalities and were diagnosed as developmental epileptic 

encephalopathy (DEE), but achieved seizure-free after antiepileptic-drug treatment without 

adrenocorticotropic-hormone/steroids. The analyses of temporal expression (genetic 

dependent stages) indicated that ZFHX3 orthologs were highly expressed in the embryonic 

stage and decreased dramatically after birth. 



 

Conclusion ZFHX3 is a novel causative gene of childhood partial epilepsy and DEE. The 

patients of infantile spasms achieved seizure-free after treatment without 

adrenocorticotropic-hormone/steroids implies a significance of genetic diagnosis in precise 

treatment. The genetic dependent stage provided an insight into the underlying mechanism 

of the evolutional course of illness. 

Keywords: ZFHX3 gene, partial epilepsy, trio-based WES, developmental epileptic 

encephalopathy, genetic dependent stage 

WHAT IS ALREADY KNOWN ON THIS TOPIC 

The ZFHX3 protein plays an essential role in neurodevelopment. The relationship between 

ZFHX3 variants and human diseases remains unknown. 

WHAT THIS STUDY ADDS 

Eight pairs of compound heterozygous ZFHX3 variants were identified in eight unrelated 

patients with partial epilepsy, including two who evolved from early spasms. 

HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE OR 

POLICY 

The ZFHX3 gene is a novel pathogenic gene of childhood partial epilepsy and developmental 

epileptic encephalopathy. The development-dependent expression pattern of ZFHX3 explains 

the evolutional course of the illness, potentially being helpful in the management of the 

patients. 



 

INTRODUCTION 

Epilepsy is a common neurological disorder with age-dependent seizures. In children, the 

prevalence of epilepsy ranges from 0.5% to 1%,[1] and approximately 68% of childhood 

patients experience focal seizures.[2] In infants, epilepsy affects approximately 0.7% of the 

population,[3] and 10% of infantile patients with epilepsy are diagnosed as infantile spasms 

that is a common form of developmental epileptic encephalopathy (DEE).[4] Genetic 

factors are believed to be the main cause of epilepsy, accounting for approximately eighty 

percent of cases.[5] Previously, a number of causative genes were identified in children with 

partial (focal) epilepsy, such as DEPDC5,[6] GRIN2A,[7] UNC13B,[8] HCFC1,[9] 

LAMA5,[10] BCOR,[11] CELSR1,[12] BRWD3,[13] FAT1,[14] and ELP4.[15] The genes 

associated with infantile spasms include KCNQ2,[16] KCNT1,[17] GRIN2B,[18] 

STXBP1,[19] TBC1D24,[20] SCN1A,[21] CDKL5,[22] and ARX.[23] However, the etiology 

in most patients with childhood partial epilepsy and/or infantile spasms remains to be 

elucidated. 

In this study, we conducted trio-based whole-exome sequencing (WES) in a cohort of 378 

unrelated children with partial epilepsy. Compound heterozygous variants of ZFHX3 were 

identified in eight unrelated patients with partial epilepsy, including one with frequent 

nonconvulsive status epilepticus and two who evolved from early spasms; the three patients 

with severe seizures also had neurodevelopmental abnormalities and were diagnosed as 

DEE early. However, all patients became seizure-free. A Drosophila model with Zfh2 

knockdown was established to investigate the association between ZFHX3 and epilepsy. To 



 

explore the underlying mechanism of favorable outcomes, the genetic-dependent stages 

(GDS)[14, 24] of ZFHX3 orthologs were investigated, for which the gene expression in flies 

and mice was determined by RT-qPCR and that in humans was analyzed by using data from 

the Brainspan database. This study suggested that the ZFHX3 gene is a novel causative gene 

of partial epilepsy of childhood and DEE. The development-dependent expression pattern of 

ZFHX3 explains the evolutional course of the illness. 

MATERIALS AND METHODS 

Patients 

Patients were identified in a cohort of 378 unrelated children with partial epilepsy without 

acquired causes who were recruited from five hospitals from 2019 to 2022, including the 

Second Affiliated Hospital of Guangzhou Medical University, Guangdong General Hospital, 

Shenzhen Children's Hospital, Shantou Chaonan Minsheng Hospital, and the Affiliated 

Brain Hospital of Nanjing Medical University. The clinical information of the affected 

individuals was collected, including sex, seizure onset age, seizure types and frequency, 

response to antiepileptic drugs (AEDs), family history, and general and neurological 

examinations. Long-term video-electroencephalography (EEG) was performed to monitor 

epileptic discharges. Brain magnetic resonance imaging (MRI) scans were performed to 

detect structural abnormalities. Epileptic seizures and epilepsy syndromes were diagnosed 

according to the criteria of the Commission on Classification and Terminology of the ILAE 

(1989, 2001, 2010, 2017, and 2022). 



 

Trio-based whole-exome sequencing and genetic analysis 

Genomic DNA was extracted from blood samples of the probands and their parents (trios) 

and other available family members by using the Flexi Gene DNA Kit (Qiagen, Hilden, 

Germany). Trio-based WES was performed with NextSeq500 sequencing instruments 

(Illumina, San Diego, CA, USA). Detailed sequencing methods were described in our 

previous studies.[8] A case-by-case analytical approach was adopted to identify candidate 

causative variants in each trio.[8] Primarily, the rare variants were prioritized with a minor 

allele frequency (MAF) < 0.005 in the gnomAD database (gnomad.broadinstitute.org). Then, 

potentially pathogenic variants were retained, including frameshift, nonsense, canonical 

splice site, initiation codon, in-frame variants, missense, and synonymous variants predicted 

to impact splicing. Last and importantly, possibly disease-causing variants in each 

individual were screened under five models: 1) epilepsy-associated gene; 2) de novo variant 

dominant; 3) autosomal recessive inheritance, including homozygous and compound 

heterozygous variants; 4) X-linked; and 5) cosegregation analysis, if available. To identify 

novel potential epilepsy genes, genes with recurrently identified de novo, biallelic, 

hemizygous, and cosegregated variants were selected for further studies. ZFHX3 appeared 

to be a candidate gene associated with recurrent compound heterozygous variants in this 

cohort. All the ZFHX3 variants identified in this study were validated by Sanger sequencing 

and annotated based on the transcript NM_006885.4. 

Analysis of the burden of variants 



 

Three specific statistical methods were used to analyze the association between ZFHX3 and 

epilepsy incidence, namely, recessive burden analysis,[25] aggregate frequency of 

variants,[26] and frequency of compound heterozygous variants. 

For the burden of recessive variants, the P value was calculated as [1-cumulative binomial 

probability [(n-1, N, R)] according to a previous report,[25] where n is the observed 

biallelic variant number for ZFHX3, N is the number of trios (378 in this cohort), and R is 

the rate of ZFHX3 variants by chance in populations. Considering that all patients were Han 

Chinese, the cutoff was set according to the MAF in the ExAC-East Asian population. The 

Bonferroni correction was used to adjust the P value. 

For aggregate frequency analysis, the frequencies of identified variants between the case 

cohort and the controls were compared, including general and East Asian populations in the 

gnomAD database, general populations in the ExAC database, and the 33,444 persons 

without known neuropsychiatric conditions in the Epi25 WES Browser 

(https://epi25.broadinstitute.org/). 

For the control of compound heterozygous variants, we established a cohort of 1942 

asymptomatic parents from trios, in whom the compound heterozygous variants were 

identified by detecting one of the paired variants in the child, based on the fact that one of the 

paired variants in a parent would transmit to the child. The frequency of identified compound 

heterozygous ZFHX3 variants in the case cohort was compared with that in the controls, 

including the 1942 asymptomatic parent controls and the variant co-occurrence data from 

gnomAD.[27] 



 

Molecular structural analysis 

Protein modeling was performed to predict the effects of missense variants on the molecular 

structure by using the I-TASSER tool (https://zhanggroup.org/I-TASSER/). Protein 

structures were visualized and analyzed by using the PyMOL Molecular Graphics System 

(version 2.5; Schrödinger, LLC; New York, USA). Changes in the protein stability of the 

missense variants were predicted by using the I-Mutant Suite 

(https://folding.biofold.org/cgi-bin/i-mutant2.0.cgi). 

Drosophila experiments 

Flies were reared at 25°C and 60-70% humidity with a standard cornmeal diet under a 12:12 h 

light and dark cycle. The UAS-Zfh2-RNAi line (CG1449, TH01656.N) was purchased from 

the TsingHua Fly Center. The tub-Gal4 driver line and Canton-s line were donated by Prof. 

Liu Ji-Yong (Guangzhou Medical University, Guangzhou, China). Zfh2 knockdown flies 

were generated by crossing the UAS-Zfh2-RNAi line with the tub-Gal4 driver line. Canton-s 

was the wild-type line. The knockdown efficiency was detected by using reverse transcription 

quantitative PCR (RT-qPCR). 

To evaluate the role of Zfh2 deficiency in development, the body length of the fly larvae was 

assessed as described in our previous study.[28] A bang sensitivity assay was conducted on 

flies 3-5 days after eclosion to evaluate the seizure-like behavior.[8] The duration and 

percentage of seizure-like behavior were recorded as described in our previous study.[8] To 

determine the impact of Zfh2 knockdown on neuronal excitability, the electrophysiological 



 

activity of projection neurons was recorded.[29] Spontaneous activity was assessed using a 

700B amplifier, 1440B Digital Analog converter, and pClamp 10.5 software (Molecular 

Devices, San Jose, CA, USA). A cell with an access resistance of <30 MΩ was used for 

analysis. Spontaneous EPSP (sEPSP) data > 1 mV were analyzed by Mini Analysis 

software.[8] 

Assessment of the ZFHX3 ortholog expression profile 

The mRNA expression levels of ZFHX3 orthologs in different developmental stages in flies 

and mice were determined by RT-qPCR. For flies, the whole mRNA was extracted in five 

developmental stages, including third instar larvae, pupae, early adult (day 1), middle adult 

(day 5), and later adult (day 10). For mice, the mRNA of the frontal cortex was extracted in 

eight developmental stages, including the fetus, neonate (1 day), infant (1 week), 

toddle-period (2 weeks), preschool (4 weeks), juvenile-adult (10 weeks), middle-age (15 

weeks), and old-age (32 weeks). The sequences of the primers used in this study are listed in 

Table S1. Total RNA was extracted by using the HiPure Universal RNA Mini Kit (Magen 

Biotechnology, Guangzhou, China). Reverse transcription was performed with the HiScript 

III RT SuperMix for qPCR (+gDNA wiper) (Vazyme, Nanjing, China) kit, and qPCR was 

subsequently performed with Taq Pro Universal SYBR qPCR Master Mix (Vazyme, Nanjing, 

China) and the LightCycler 480 System (Roche) tool. 

Human RNA-seq data at different developmental stages (from 8 postconceptional weeks to 

40 years) for multiple brain areas were obtained from the Brainspan database 



 

(http://www.brainspan.org/). RNA expression was normalized to the reads per kilobase 

million (RPKM) value. The temporal expression curve was fitted by third-order polynomial 

least squares to interpret the expression pattern of ZFHX3 by GraphPad Prism 9. 

Statistical analysis 

R statistical software (v4.0.2) and GraphPad Prism 9 were used for statistical analysis. All 

the quantitative data are presented as the mean ± standard error of the mean (SEM). The 

number and aggregated frequencies of ZFHX3 variants in this cohort and controls were 

compared by a two-tailed Fisher’s exact test. Student’s t test was used to compare two 

independent samples, and the Mann-Whitney test was used to assess nonparametric data. 

The P value < 0.05 was considered statistically significant. 

RESULTS 

Identification of ZFHX3 variants 

Compound heterozygous variants in ZFHX3 were identified in eight unrelated cases with 

partial epilepsy (Table 1 and Figure 1). The eight pairs of compound heterozygous variants 

consisted of eleven missense variants, one frameshift truncation, and one in-frame deletion. 

The missense variant p.Ser3482Ile was recurrently identified in two cases (Cases 7 & 8), and 

the variant p.Pro3618Gln was recurrently identified in three cases (Cases 2, 5, & 8). All of the 

ZFHX3 compound heterozygous variants were inherited from their asymptomatic parents, 

consistent with the Mendelian autosomal recessive inheritance pattern. 

The identified variants were absent or presented with low frequencies in the gnomAD 



 

database (MAF < 0.005) (Table S2). Six variants were not present in the normal control of the 

Epi25 WES Browser, while the other seven variants presented with extremely low 

frequencies (MAF < 0.0005). None of the variants were presented as homozygous states in 

gnomAD. 

When the burden of recessive variants was analyzed,[25] the number of recessive ZFHX3 

variants identified in this cohort was significantly greater than the expected number by 

chance in the East Asian population (ExAC-MAF < 0.001; P = 8.52 × 10−7, P = 0.017 after 

Bonferroni correction). The aggregate frequency of variants identified in the case cohort was 

significantly higher than that in the controls, including the controls of the gnomAD-all 

population (P = 2.30×10-13), the controls of the gnomAD-East Asian population (P = 

4.36×10−2), the general population of the ExAC database (P = 2.34×10-13), and the normal 

controls of the Epi25 WES Browser (P = 3.56×10-18) (Table S2). The eight pairs of 

compound heterozygous ZFHX3 variants did not co-occur in gnomAD, and the frequency 

of compound heterozygous ZFHX3 variants in the case cohort was significantly higher than 

that in the controls, including the control cohort of 1942 asymptomatic parents (8/378 vs 

5/1942, P = 2.80×10-4) and the variant co-occurrence in gnomAD (8/378 vs 2/125748, P = 

2.70×10-19). 

None of the eight patients had pathogenic or likely pathogenic variants in the genes known 

to be associated with epileptic phenotypes.[30] 

Clinical features of the cases with ZFHX3 variants 



 

The detailed clinical characteristics of the eight unrelated cases with ZFHX3 variants are 

summarized in Table 1. The onset age of seizures ranged from 5 months to 13 years, with a 

median age of onset of 5 years. The patients presented with partial epilepsy. However, two 

patients experienced frequent spasms (Cases 4 & 6) in the early stage of the illness, and one 

patient experienced nonconvulsive status epilepticus (Case 7). These three cases had 

neurodevelopmental abnormalities and were diagnosed as DEE. The other five cases 

exhibited only infrequent (yearly) partial seizures or focal-origin generalized tonic-clonic 

seizures (Cases 1-3, 5, and 8). Focal, multifocal, and/or diffuse epileptic discharges were 

recorded in their EEG (Figure 1C-F). The brain MRI was normal in all cases. A seizure-free 

status was achieved in all eight patients after prompt antiepileptic-drug treatment, including 

the two cases with infantile spasms, who did not use adrenocorticotropic-hormone 

(ACTH)/steroids (Table 1). 

Damaging effects of ZFHX3 variants 

The ZFHX3 protein contains 23 zinc finger motifs and 4 homeodomains. Two variants, 

p.Glu807Lys and p.Ala1376del, were located in the zinc finger motifs, and other variants 

were scattered between zinc fingers and/or homeodomains (Figure 2A). The variant 

p.Pro3618Gln, located in the last part of the C-terminus, was repetitively identified in three of 

five mild cases (Cases 2, 5, & 8). Similarly, the frameshift variant (p.Pro3195LeufsTer44), 

which truncates the C-terminus, was also identified in a mild case (Case 3). The remaining 

mild case (Case 1) had two variants located in the N-terminus. The specific location of the 

variants in mild cases indicated a possible molecular subregional effect.[31] 



 

The damaging effect of missense variants was analyzed by protein modeling. Two missense 

variants, p.Glu807Lys and p.Ala896Thr, were predicted to alter hydrogen bonding with 

surrounding residues. Six variants were predicted to decrease protein stability with a ��G 

value less than -0.5 kcal/mol (Figure 2B). All the variants were predicted to be damaging by 

at least one in silico tool (Table S3). 

Knockdown of Zfh2 in Drosophila led to increased susceptibility to seizures 

To validate the association between ZFHX3 and epilepsy, a Drosophila model of Zfh2 

knockdown was established, with a knockdown efficiency of approximately 66% (Figure 

3A). The larval development of Zfh2 knockdown flies was initially investigated. The larval 

body length of the Zfh2 knockdown flies was similar to that of the UAS-Zfh2-RNAi control 

flies (Figure 3B). 

A bang sensitivity assay was performed on Zfh2 knockdown flies and UAS-Zfh2-RNAi 

control flies to assess susceptibility to seizures. The three phases of seizure activity, seizure, 

paralysis, and recovery, were observed in the Bang-sensitivity test (Figure 3C). The 

percentage of seizure-like behaviors in the Zfh2 knockdown flies was significantly higher 

than that of UAS-Zfh2-RNAi control flies [18.66 ± 2.09% (n = 15) vs 4.06 ± 0.87% (n = 9); P 

< 0.0001], Canton-s control flies [18.66 ± 2.09% (n = 15) vs 6.88 ± 0.89% (n = 7); P = 

0.0013], and tub-Gal4 control flies [18.66 ± 2.09% (n = 15) vs 3.56 ± 1.03% (n = 7); P < 

0.0001] (Figure 3D). The duration of seizure-like behavior in Zfh2 knockdown flies was also 

longer than that of the controls (Figure 3E). 



 

The effect of Zfh2 deficiency on the electrophysiological activity of projection neurons, 

which are important excitatory neurons in the central nervous system of Drosophila,[32] was 

examined (Figure 4A, B). The frequency of sEPSPs in Zfh2 knockdown flies was 

significantly higher than that in wild-type flies [0.6312 ± 0.06 Hz (n = 7) vs 0.09907 ± 0.01 

Hz (n = 7); P < 0.0001] (Figure 4C). There was no significant difference in the amplitude of 

sEPSPs between the Zfh2 knockdown flies and WT flies [1.405 ± 0.2039 mV (n = 7) vs 1.228 

± 0.1486 mV (n = 7), P = 0.0888] (Figure 4D). 

The temporal expression stage of ZFHX3 orthologs 

Infantile spasms are generally a severe form of epilepsy with a poor prognosis in most 

cases.[33] In this study, the two patients with early spasms presented with favorable 

outcomes. Recent studies have indicated that the genetic-dependent (expression) stage 

(GDS) is associated with the evolutional course and outcomes of illness.[14, 24] We thus 

analyzed the temporal expression pattern of ZFHX3 orthologs. In Drosophila, the expression 

of Zfh2 was high in larvae, decreased in pupae and early adults, and increased in later adults 

(Figure 5A). In mice, the expression level of Zfhx3 was high in the fetus, decreased 

dramatically after birth, and slightly increased in later adults (32 weeks) (Figure 5B). We 

further analyzed the temporal expression pattern of ZFHX3 in the human brain by using data 

from BrainSpan. ZFHX3 was also highly expressed in the embryonic stage, decreased 

dramatically in childhood, with a nadir at approximately 10 years of age, and slightly 

increased at approximately 30 years of age (Figure 5C). 



 

DISCUSSION 

The zinc finger homeobox 3 gene (ZFHX3, OMIM *104155), also known as AT 

motif-binding transcription factor 1 gene (ATBF1), encodes a transcription factor with 4 

homeodomains and 23 zinc finger motifs. In this study, we identified compound 

heterozygous ZFHX3 variants in eight unrelated patients presented with partial epilepsy, 

including three patients diagnosed as DEE. The ZFHX3 gene exhibited significantly higher 

excesses of variants in the case cohort than in the control cohort according to 

multiple/specific statistical analyses. Knockdown of Zfh2 in flies increased susceptibility to 

seizures and abnormal firing of neurons. All patients achieved seizure-free status after prompt 

treatment, including the three patients with DEE. Analysis of the temporal expression profile 

indicated that ZFHX3 orthologs were highly expressed in the embryonic stage and decreased 

dramatically in childhood, which was correlated with favorable outcomes of the patients. 

This study suggested that ZFHX3 is a novel causative gene of childhood partial epilepsy and 

DEE. 

The ZFHX3 gene is highly conserved with homologs in flies, zebrafish, mice, and humans. It is 

ubiquitously expressed, especially in the developing brain. ZFHX3 plays vital roles in 

multiple biological processes, including embryonic development, cell proliferation, neuronal 

differentiation, and neuronal death.[34-36] In mice, homozygous knockout of Zfhx3 led to 

prenatal lethality with complete penetrance, while heterozygous knockout resulted in growth 

restriction and postnatal lethality with incomplete penetrance.[37] In zebrafish, knockdown of 

Zfxh3 caused significantly increased pentylenetetrazol-induced seizures.[38] In flies, previous 



 

studies have shown that the majority of knockout/knockdown Zfh2 lines exhibited preadult 

lethality (http://flybase.org/reports/FBgn0004607#phenotypes). This study identified biallelic 

ZFHX3 variants in patients with partial epilepsy and DEE. The Zfh2 knockdown in Drosophila 

led to increased susceptibility to seizures and abnormal firing of neurons. The recurrent 

epileptic and/or neurodevelopmental phenotypes across species supported the associations 

between ZFHX3 and epilepsy and neurodevelopmental abnormalities. 

ZFHX3 is intolerant to loss-of-function (LOF) variants, as indicated by constraint indices such 

as the probability of being LOF intolerant (pLI),[39] the LOF observed/expected upper bound 

fraction (LOEUF),[39] and the probability of haploinsufficiency (pHaplo).[40] The ZFHX3 

gene has a pLI of 0.997 (> 0.9), a LOEUF of 0.147 (< 0.35), and a pHaplo of 1 (≥ 0.86), all 

indicating that ZFHX3 is intolerant to heterozygous LOF variants. Considering the recurrent 

lethal and neurodevelopmental/epileptic phenotypes of Zfhx3 knockout/knockdown animals, 

it is possible that severe ZFHX3 deficiency, such as biallelic null variants, may cause early 

lethality, while moderate ZFHX3 deficiency, such as heterozygous null variants or biallelic 

missense variants with moderate damaging effects, is potentially associated with epilepsy 

and/or neurodevelopmental abnormalities. In this study, most of the variants were located 

outside the functional domains and were predicted to be without hydrogen bond alterations 

with surrounding residues, indicating mild damaging effects, which potentially explain the 

pathogenesis of compound heterozygous variants. Three of the patients with a mild phenotype 

had the identical variant p.Pro3618Gln, which was located in the last part of the C-terminus 

and presented a low MAF (0.000301) (instead of absent) in the general population, indicating 



 

a potentially mild damaging effect. One patient with a mild phenotype had a frameshift 

variant with truncation at the C-terminus, which was inherited from the asymptomatic father 

and presented with a low MAF (instead of absent), thus potentially resulting in mild damage. 

These findings suggested a potential genotype-phenotype correlation. 

The ZFHX3 protein is a transcription factor that contains 23 C2H2-type zinc fingers and 4 

homeodomains and belongs to the C2H2-type zinc finger protein family, which plays an 

essential role in neurodevelopment.[41] Previously, ZFHX3 de novo variants were 

occasionally detected in patients with neurodevelopmental disorders, including four variants in 

autism spectrum disorder,[42-44] three variants in developmental disorder,[45] and one variant 

in developmental and epileptic encephalopathy (Table S4),[46] suggesting a potential role in 

neurodevelopmental disorders. To date, 112 genes have been defined as causative genes of 

DEE (www.omim.org). In the present study, neurodevelopmental abnormalities were observed 

in three patients who were diagnosed as DEE. These data suggested that ZFHX3 is a novel 

pathogenic gene of DEE. 

Recently, a study suggested that ZFHX3 binds to the promoter regions of human neural stem 

cells, especially those implicated in the regulation of the expression of genes in the Hippo/YAP 

and mTOR pathways.[47] The Hippo/YAP pathway plays vital roles in multiple stages of 

neuronal development;[48] while genes in the mTOR pathway, such as TSC1, TSC2, DEPDC5, 

and SZT2, have been identified as common genes involved in epilepsy/neurodevelopmental 

diseases.[6, 49, 50] Dysfunction of ZFHX3 could disrupt the signal transduction of the 

Hippo/YAP and mTOR pathways and might be involved in neurodevelopmental 



 

diseases/epilepsy, which warrant further studies. 

Infantile spasms is a common form of DEE that generally presents severe epilepsy with 

poor outcomes.[4] Clinically, approximately 33% of patients with spasms present with 

favorable outcomes,[33] but the underlying mechanism is unknown. Our recent study 

showed that GDS is associated with the evolutional course and outcomes of diseases.[14, 24] 

In this study, two patients with early spasms achieved seizure-free after prompt 

antiepileptic-drug treatment without ACTH/steroids, which were commonly used for 

treatment of infantile spasms but potentially with severe side effects. The genetic diagnosis 

thus implies a significance in precise treatment of the patients with ZFHX3 variants. Studies 

on the temporal expression stage showed that ZFHX3 orthologs were highly expressed in the 

embryonic stage and decreased dramatically in childhood, which is potentially one of the 

explanations for these favorable outcomes. Considering that the expression of ZFHX3 

slightly increased at approximately 30 years of age, long-term follow-up is needed to observe 

the future progression of this disease. 

In conclusion, this study suggested that ZFHX3 is a novel causative gene of childhood partial 

epilepsy and DEE. The disclosed genotype-phenotype correlation explained the phenotypic 

variation. The patients with infantile spasms achieved seizure-free after prompt treatment 

without ACTH/steroids, implying a significance in precise treatment of the patients. The 

correlation between the outcome and GDS provided an insight into the underlying mechanism 

of the evolutional course of the illness, potentially being helpful in the management of the 

patients. 
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Figure legends 

 

Figure 1 Genetic data and representative EEG recordings of the cases with ZFHX3 

variants. (A) Pedigrees of eight cases with compound heterozygous ZFHX3 variants and 

their corresponding phenotypes. PE, partial epilepsy; FS, febrile seizures; NCSE, 

nonconvulsive status epilepticus; NDD, neurodevelopmental delay. (B) DNA sequencing 

chromatogram of ZFHX3 variants. Arrows indicate the position of the variants. (C) EEG of 

case 2 showed right frontal-centro-temporal sharp-slow waves. (D) EEG of case 5 showed 

right temporal spike-slow waves. (E) EEG of case 6 showed right frontal spike-slow waves 

(left) and generalized poly-spike-slow waves (right). (F) EEG of case 8 showed bilateral 

occipital-temporal sharp-slow waves. 

 

Figure 2 Schematic illustration of ZFHX3 variants. (A) Schematic illustration of zinc 

finger homeobox protein 3 and the locations of the ZFHX3 variants identified in this study. 

Two variants of the same height were a pair of biallelic variants. The red color represents 

cases with severe partial epilepsy with neurodevelopmental abnormalities. The blue color 

represents cases with mild partial epilepsy. (B) Hydrogen bond changes (red) and free energy 

stability changes (△△G, Kcal/mol) of the variants from the present study. 

 

Figure 3 Functional studies on Zfh2 knockdown flies. (A) Relative Zfh2 mRNA 

expression levels of the knockdown flies and the UAS-Zfh2-RNAi controls. (B) The body 

length of Zfh2 knockdown and UAS-Zfh2-RNAi control larvae. (C) Behavior in the 



 

 

Bang-sensitive test; the three phases observed in Zfh2-knockdown flies were seizure, 

paralysis, and recovery. (D) Seizure-like behaviors occurred at a higher rate in Zfh2 

knockdown flies (tub-Gal4 > UAS-Zfh2-RNAi) than in the UAS-Zfh2-RNAi line. (E) The 

recovery time from seizure-like behaviors of Zfh2 knockdown flies was longer than that of 

the controls. 

 

Figure 4 Zfh2 knockdown induces increased neural excitability in projection neurons. 

(A) Whole-cell recording in the fly brain. (B) Representative traces of projection neuron 

sEPSPs in Canton-s wild-type (WT) flies and Zfh2 knockdown flies. (C) The frequency of 

sEPSPs was significantly higher in Zfh2-knockdown flies than in wild-type flies. (D) There 

was no difference in the amplitude of sEPSPs between Zfh2-knockdown flies and wild-type 

flies. 

 

Figure 5 The temporal expression profile of ZFHX3 orthologs. (A) Schematic illustration 

of the developmental stages of Drosophila melanogaster (left) and the temporal expression of 

Zfh2 in flies (right). The mRNA levels of Zfh2 were examined by RT-qPCR. The Zfh2 mRNA 

levels were normalized to the mRNA levels in the third instar larvae. (B) Schematic 

illustration of the developmental stages of mice (left) and the temporal expression of Zfhx3 in 

the frontal cortex of mice (right). The Zfhx3 mRNA levels were normalized to the mRNA 

levels in fetal mice. (C) Temporal expression pattern of ZFHX3 in the human brain. RPKM, 

reads per kilobase per million mapped reads. 



 

 

Table 1. Clinical features of the individuals with ZFHX3 variants 
Case Variants 

(NM_006885.4) 
Sex/Onset age Sz course Sz-free 

duration 
Effective 
AEDs 

EEG Development Diagnosis 

Case 1 
c.314C>T/p.Pro105Leu 
c.2282G>C/p.Gly761Ala 

M/childhood 
sGTCS, 1-2 times/yr 1 yr LEV Bilateral spike-slow waves with 

frontal dominance 
Normal PE 

Case 2 
c.2419G>A/p.Glu807Lys 
c.10853C>A/p.Pro3618Gln 

F/childhood 
sGTCS, 1-5 times/mo 1.5 yr LTG Right frontal-centro-temporal 

sharp-slow waves 
Normal PE 

Case 3 
c.2671T>C/p.Phe891Leu 
c.9583_9584insT/p.Pro3195Le
ufsTer44 

M/toddler 
CPS, 2-3 times/yr 1 yr OXC Spike-slow waves in bilateral 

frontal-central area with right 
dominance 

Normal PE 

Case 4 
c.2686G>A/p.Ala896Thr 
c.10439C>T/p.Ala3480Val 

M/infant 
Spasms, CPS >10 times/day 2 yr LEV, LTG Poly-spike-slow waves 

GDD DEE 

Case 5 
c.4125_4127del/p.Ala1376del 
c.10853C>A/p.Pro3618Gln 

M/childhood 
sGTCS, 3 times for 2 yrs; 
CPS, twice at for 1 yr 

5 yr OXC, VPA Right temporal spike-slow waves 
Normal PE 

Case 6 
c.5152A>C/p.Met1718Leu 
c.10510G>C/p.Val3504Leu 

M/toddler 
Spasms 5-7 times/day for 4 
mos; then CPS 0-10 
times/day 

9 yr VPA, LEV, 
LTG 

Right frontal spike-slow waves 
with tendency of generalization GDD DEE 

Case 7 
c.6161C>T/p.Ala2054Val 

c.10445G>T/p.Ser3482Ile 
M/infant 

FS, 3 times; sGTCS and 
CPS twice/week; NCSE 2-3 
times for 1 yr 

6 mo VPA, PER, 
LEV  

Left frontal, temporal, and 
occipital 1.5-2 Hz spike-slow 
waves; Diffused 1.5-2.5 Hz 
spike-slow waves 

GDD DEE 

Case 8 
c.10445G>T/p.Ser3482Ile 
c.10853C>A/p.Pro3618Gln 

F/childhood 
sGTCS, 2 times for 2 yr 1.5 yr TPM Bilateral occipital-temporal 

sharp-slow waves 
Normal PE 

Abbreviations: AEDs, antiepileptic drugs; CPS, complex partial seizures; DEE, developmental epileptic encephalopathy; GDD, global 

developmental delay; EEG, electroencephalogram; FS, febrile seizures; LEV, levetiracetam; LTG, lamotrigine; NCSE, nonconvulsive status 

epilepticus; OXC, oxcarbazepine; PE, partial epilepsy; PER, perampanel; Sz, seizures; sGTCS, secondary generalized tonic-clonic seizures; TPM, 

topamax; VPA, valproate; mo, month; yr, year 

 












