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Abstract 
Objective: Female reproductive disorders (FRDs) are common health conditions that may 
present with significant symptoms. Diet and environment are potential areas  for FRD 
interventions. We utilized a knowledge graph (KG) method to predict factors associated with 
common FRDs (e.g., endometriosis, ovarian cyst, and uterine fibroids). 
Materials and Methods: We harmonized survey data from the Personalized Environment and 
Genes Study on internal and external environmental exposures and health conditions with 
biomedical ontology content. We merged the harmonized data and ontologies with 
supplemental nutrient and agricultural chemical data to create a KG. We analyzed the KG by 
embedding edges and applying a random forest for edge prediction to identify variables 
potentially associated with FRDs. We also conducted logistic regression analysis for 
comparison. 
Results: Across 9765 PEGS respondents, the KG analysis resulted in 8535 significant predicted 
links between FRDs and chemicals, phenotypes, and diseases. Amongst these links, 32 were 
exact matches when compared with the logistic regression results, including comorbidities, 
medications, foods, and occupational exposures.  
Discussion: Mechanistic underpinnings of predicted links documented in the literature may 
support some of our findings. Our KG methods are useful for predicting possible associations in 
large, survey-based datasets with added information on directionality and magnitude of effect 
from logistic regression. These results should not be construed as causal, but can support 
hypothesis generation. 
Conclusion: This investigation enabled the generation of hypotheses on a variety of potential 
links between FRDs and exposures. Future investigations should prospectively evaluate the 
variables hypothesized to impact FRDs. 
 
Key words: female reproductive disorders, knowledge graph, endometriosis, ovarian cysts, 
ontologies, random forest 
 

INTRODUCTION 
Female reproductive disorders (FRDs) such as endometriosis, uterine fibroids, and ovarian 
cysts significantly affect physical and emotional health, disability, and fertility for women and 
those assigned female at birth.[1] FRDs fall into a category of conditions that are often 
misdiagnosed and have prolonged diagnostic timeframes and limited therapeutic options.[2,3] 
Prevalence of common FRDs such as endometriosis is often underestimated given the clinical 
difficulty of identifying the condition without invasive laparoscopic surgery and the often years-
long lag between symptom onset and diagnosis.[2,4] Due to their widespread prevalence and 
substantial impact on daily life, ways to more easily identify FRDs as well as viable therapeutic 
approaches for FRDs are highly sought after.[5–7] Diet and environment have been proposed 
as potential intervention opportunities for FRDs,[8,9] but standard clinical recommendations on 
diet and exposures are limited. Focusing on modifiable features such as diet, lifestyle factors, 
and environmental exposures may offer new options for individuals and care providers to 
manage these common conditions and improve outcomes. We present an innovative approach 
for assessing survey-based data to predict links between nutrition, environmental exposures, 
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comorbidity, and medication and three common FRDs, namely endometriosis, uterine fibroids, 
and ovarian cysts. 
 
Common FRDs 
Endometriosis is the extrauterine growth of endometrial tissue (also called lesions) with hallmark 
symptoms that include pelvic pain, dysuria, dysmenorrhea, and sub- or infertility.[10] This FRD 
is estimated to occur in 10% of women.[11] Delays in diagnosis are common with 
endometriosis, and many individuals wait years for a conclusive diagnosis.[2,4] Accordingly, 
estimates of prevalence vary widely and are likely inaccurate. An estimated 35-50% of 
individuals diagnosed with endometriosis experience pain and/or infertility,[5] but approximately 
20-25% of individuals with endometriosis do not experience pelvic pain.[5,12,13] Because 
symptoms can be inconsistent, clinical diagnosis is difficult. Endometriosis is often diagnosed 
during treatment for fertility issues.[14,15] Endometriosis can present similarly to other 
gynecological disorders including primary dysmenorrhea, pelvic inflammatory disease, and 
pelvic adhesions presenting as chronic pelvic pain, painful menses, tubal pregnancies, and 
infertility.[2,3] Due to its inconsistent presentation, surgical visualization is needed to definitively 
diagnose endometriosis, which is a barrier to diagnosis and treatment.[2]  

Uterine fibroids, also called leiomyomas, are common benign tumors estimated to be present in 
70-80% of women by the age of menopause,[16] and approximately 20-25% of those individuals 
present with clinical symptoms.[17] The fibroids are composed of smooth muscle cells and 
fibrous extracellular matrix that is overproduced and creates tumors within the myometrium.[18] 
Many women with fibroids are not clinically diagnosed. Some have no symptoms, and some live 
with significantly burdensome symptoms without a clinical diagnosis. The high prevalence of 
undiagnosed fibroids means that prevalence may be underestimated when determined using 
clinical records. Common fibroid symptoms include heavy menses, pelvic pain, anemia, urinary 
incontinence, and infertility.[18–20] With symptomatic fibroids, pregnancy complications 
(placenta previa, intrauterine growth restriction, increased need for cesarean section) can be 
more common.[21] Diagnosis of fibroids is usually accomplished with a variety of imaging 
techniques, including transvaginal ultrasound, hysterosalpingography, saline infusion 
sonography, hysteroscopy, and MRI.[21–23] 

Ovarian cysts affect approximately one in 25 women.[7] There are multiple types of ovarian 
cysts, but functional cysts are the most prevalent. Functional cysts occur when a follicle forms in 
the ovary but no ovulation ensues and the follicle does not rupture, creating a cyst.[24] The 
most frequently reported symptoms of ovarian cysts are pelvic pain, abdominal pressure, 
bloating, and infertility although asymptomatic ovarian cysts can occur.[25,26] Asymptomatic 
ovarian cysts can be left untreated and may not require intervention, with some cysts 
disappearing naturally. However, cysts affecting fertility, pelvic anatomy, or quality of life in a 
significant way can be surgically removed.[27]  

 
Ontologies 
Ontologies are a methodology for standardizing terminology in a computable fashion to support 
the creation of logical axioms between related terms. Prominent ontologies in the biomedical 
sciences include the Gene Ontology[28] and the Human Phenotype Ontology,[29] with many 
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others related to foods, chemicals, and diseases.[30–32] Knowledge graphs (KGs) are a 
method for representing knowledge such as ontology content and instance level data in a graph 
structure in which nodes and edges are explicitly connected via semantic relationships.[33] 
Because of their innate high dimensionality, data inquiries can be conducted using KGs. 
However, the dimensionality of KGs can be reduced through embedding so they can support 
other analytic methodologies.[34] In our investigation, we aligned heterogeneous data regarding 
health, environment, and internal exposures to ontology content for ingestion into a KG, which 
was subsequently embedded and analyzed using machine learning techniques.  
 
METHODS 
Data Sets 
The primary data for this project came from the Personalized Environment and Genes Study 
(PEGS, formerly known as the Environmental Polymorphisms Registry) conducted by the 
National Institute of Environmental Health Sciences (NIEHS),[35,36] which includes data from 
three respondent surveys, the Health and Exposure (self-reported diseases and phenotypes), 
Internal Exposome (foods, medications, supplements, and ingested exposures), and External 
Exposome (environmental exposures) surveys. Survey respondents are adult (aged 18 years or 
more) residents of North Carolina recruited for voluntary participation through health providers 
or events such as health fairs. The data included in this investigation were collected between 
2012 and 2020. This investigation was approved and deemed research with no human subjects 
(Category 4 exemption) by the Oregon State University (IRB-2021-1207). 
Additional publicly available data were included in this investigation. Agricultural Chemical 
Usage Program (ACUP) data from the United States Department of Agriculture (USDA) on 
fungicides, pesticides, and other chemicals applied to agricultural crops during 2016-2020 was 
included for all relevant questions in the PEGS data sets (e.g., data on chemicals applied to 
carrots was included as PEGS inquires about consumption of carrots). ACUP data were not 
included if there was no related PEGS question, and not all PEGS questions about diet had 
related ACUP data (e.g., consumption of combination foods such as hamburgers or foods 
without crop components, such as meat). Nutrient data for Foundation Foods from the USDA 
Food Data Central (FDC) was included when available with references to the FoodOn 
ontology.[32] This allowed for direct mapping to the selected ontology alignment (e.g., a survey 
question on intake of cottage cheese mapped to FOODON:03303720; and ‘cottage cheese 
(lowfat)’ mapped to FDC ID: 328841 and FDC nutritional content for ‘Cheese, cottage, lowfat, 
2% milkfat’). 
 
Knowledge Graph Data Preparation 
Combined, the PEGS surveys comprise 1842 questions. We assessed the survey questions for 
ontology alignment based on existing ontology content and complexity of the survey question as 
well as the primary topic area. We focused on questions related to diseases, phenotypes, 
dietary exposures, and environmental exposures. We then aligned feasible survey questions of 
interest (n = 341, with 135 from the External Exposure Survey, 131 from the Internal Exposure 
Survey, and 75 from the Health and Exposure Survey) to ontology terminology. An ontology 
curator (author LC) manually reviewed the data to map the PEGS survey questions to the 
coordinating ontology content. Free-response components of the PEGS surveys and other data 
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sets, including USDA ACUP data, were mapped to ontology terms using semi-automated 
curation with OntoRunNER,[37] followed by supplemental manual review by the curator. The 
‘survey question label’ selected for free response questions was assigned the mapped ontology 
term value of the response due to the list aggregation used to process data via OntoRunNER. 
When necessary, we requested new ontology terms in efforts to support the mappings needed 
for this data alignment. Primary requests were made to the Food Ontology (FoodOn)[32] and 
the Environmental Conditions, Treatments, and Exposures Ontology (ECTO).[38]  
 
Creating a KG 
We created the KG for this project with an extract, transform, load (ETL) pipeline constructed 
using the Knowledge Graph Hub project KG-template.[39] The KG-template offers a skeleton 
structure of data download, transformation, and merge scripts that we customized for this 
project. This pipeline was developed using Python (Version 3.9.10) and Koza,[40] a data 
transformation framework constructed by the Monarch Initiative. Transformations included the 
alignment of self-reported data for questions of interest with the ontology mappings generated 
manually or semi-automatically as described in Figure 1.  
We conducted each data transformation (e.g., disease, phenotype, medication, food) with a 
unique script that asserted the correct “predicate” (e.g., the phenotype transform created 
assertions such as ‘Person:1234’ ‘has phenotype’ ‘uterine leiomyoma’). We followed this 
process for all PEGS data and all supplemental data on food, chemical usage, and nutrient 
content. Figure 2 provides an example of the full mapping and transformation process, in which 
reusable nodes were generated for a respondent’s unique ID and their survey responses. In 
turn, all questions answered by a respondent were mapped to the same respondent node using 
their ID. Similarly, all respondents who answered the same question were mapped to the same 
question response node. In addition to the transformed respondent data, the full content of 
relevant ontologies (Human Phenotype Ontology (HPO), Mondo Disease Ontology (Mondo), 
Medical Actions Ontology (MAxO), Gene Ontology (GO), Environment Ontology (ENVO), 
Chemical Entities of Biological Interest (ChEBI), ECTO, and FoodOn) was merged to create the 
KG. Within the KG structure, each ontology term or survey participant was considered a “node”, 
with all relationships between each node considered an “edge”. 
 
Embedding the KG 
As with many KGs, the KG for this project was a high-dimensional object with a large number of 
nodes and edges, making it less amenable to machine learning. Lower-dimension forms of a 
KG allow for improved generalization of knowledge, as the latent representation places 
dissimilar nodes farther away from one another and nodes with greater similarity closer to each 
other. To reduce the dimensionality of the KG in preparation for machine-learning techniques, 
we embedded the KG using Graph Representation leArning, Predictions and Evaluation 
(GRAPE)[41] and its embedding library. We used only the largest component of the KG, which 
eliminated data from 691 (7.1%) survey respondents due to insufficient data. The generated 
embedded representations included ontology terms, exposures, clinical variables, FRDs, and 
respondents. As such, the resulting representations embedded the topological relationships 
between the different types of entities populating the KG in a Euclidean space. Additional details 
can be found in the Supplemental Methods. 
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For the following machine learning methods, we generated two edge-embedding versions, a 
training embedding and a full data embedding. The training embedding included a ‘Training’ 
portion comprising 70% of the graph and a ‘Test’ portion comprising the remaining 30%. We 
created the test portion by selecting and holding out edges that, when removed from the full 
embedding, did not create a new component and thus kept the primary component of the graph 
intact. This avoided a biased estimation of the edge prediction results for the test set (see the 
GRAPE github repository for a full description of the method[42]). Edges in the training set were 
not specifically selected as “positive” responses (e.g., edges documenting an FRD-variable 
relationship), in efforts to train the model for edge prediction based on the entire topology of the 
graph. The full embedding included all available data. Figure 3 summarizes the analytical 
methods. 
 
Machine Learning Analyses 
Random forests (RF)[43] are machine-learning classifiers used for computing medical 
predictions due to their inherent explainability and interpretability and the availability of methods 
(although preliminary) to convert them into a checklist of rules.[44,45]  
Our primary machine-learning task was generating link predictions between variables (e.g., 
food, nutrient, environmental exposure, disease, phenotype) and the FDRs of interest. We then 
trained an RF model (501 trees, 15 maximum depth) using the embeddings of the training data 
(with holdouts). The standard machine-learning performance metrics indicated the model was 
trained successfully and suitable for our analysis (area under the receiver operating 
characteristic (AUROC) = 0.915 for the ‘Test’ portion of the training data). To produce 
actionable results, we then retrained the model on the full dataset to obtain a set of predicted 
links between the FRDs and other variables. In the output, predicted links were represented by 
two node values—the “source” (independent variable) and “destination” (dependent variable) 
nodes of the link—and a “prediction” score indicating the strength of the predicted link between 
the two nodes. Utilizing the full graph embedding, we selected prediction outcomes from the 
model that included an FRD (e.g., endometriosis, ovarian cysts, uterine fibroids) as the “source” 
and the resulting “destination”. We retained pairs with a prediction score >0.8, resulting in a list 
of predicted variables for each FRD of interest. 
 
Logistic regression analysis 
For additional comparison of our KG findings, we conducted a secondary analysis using elastic 
nets, RFs, and logistic regression models to provide feature explanations (in terms of feature 
importance in prediction) and interpretations (in terms of the directionality of risk scores 
associated with each feature). We conducted this analysis in R, version 4.2.2. We cleaned the 
primary PEGS data on health conditions and internal and external exposures to include female 
participants only. We then excluded participants who did not complete all three surveys to 
improve data quality, given the lower response rates to the Internal and External Exposure 
Surveys versus the Health and Exposure Survey. For the regression analysis, we utilized only 
survey questions that aligned with the KG analysis (see KG Data Preparation) to maintain 
consistency and enable comparison. We imputed missing data using the missForest algorithm, 
which has exhibited superior performance in previous work.[44,46]   
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To select the features with the strongest relationships with the FRDs of interest, we leveraged 
an explainable machine-learning technique,[47] to account for the class imbalance affecting the 
FRD datasets and to produce both importance scores and their directionality concerning the risk 
of disease. We developed a model that applied a first step of supervised feature selection on 
the training set and then selected features used to train an RF classifier. The model then 
computed permutation-based feature importance scores based on the RF classifier that were 
used to select the most important variables for FRD prediction. Features regarded as important 
by an RF are not characterized by directionality and magnitude, which is important for a medical 
context.[48] To assess these characteristics, we then trained logistic regression classifiers, 
whose learned odds ratios and P values indicate the significance and directionality of risk 
scores. We ran the model three times, each time utilizing a different FRD as the primary 
outcome. We adjusted the P values obtained in the logistic regression analyses for 
endometriosis, ovarian cysts, and uterine fibroids using Bonferroni correction to account for the 
family-wise false discovery rate (FDR). 
Based on the KG and logistic regression model results, we identified the most influential 
features for each FRD. We compared both the KG and logistic regression outputs for exact 
matches for each FRD. Details of additional methods can be found in the Supplemental 
Methods. 
 
RESULTS 
A total of 16039 surveys were completed (External Exposome = 3579, Internal Exposome = 
3034, Health and Exposure = 9426) by 9765 unique individuals, including 2773 individuals who 
completed all three surveys. In the study population, there was reported prevalence of 7% for 
endometriosis, 15% for uterine fibroids, and 13% for ovarian cysts. Translation keys for all 
survey questions of interest and their coordinating ontology content, including OntoRunNER 
generated mappings, can be found in Supplementary Tables 1A-D (Supp Table 1D is also 
available on github[49]). The majority of survey respondents were female, with an average age 
between 49.9 and 54 years depending on the survey (Table 1). Further information such as 
race/ethnicity, pregnancy history, age at menarche, and health care access level were not 
available in this dataset.  
 
Table 1. Demographics for PEGS survey data 
 

 Health and Exposure 
(n = 9426) 

External Exposures 
(n = 3579) 

Internal Exposures (n 
= 3034) 

BMI (mean,  
% missingness) 

28.1 (0.02) NA NA 

Gender (% female,  
% missingness) 

67.1% (0) NA NA 

Age (mean,  
% missingness) 

49.9 years (0.01) 54 years (0) 53.9 years (0) 
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The KG created for this project has 308.60K heterogeneous nodes and 696.68K edges in total. 
The graph contains 28.44K connected components (of which 28.41K are disconnected nodes), 
with the largest one containing 280.03K nodes and the smallest one containing a single node. 
Figure 4 shows the resulting full graph embedding after selecting for the largest component and 
excluding single note components.  
 
 
We identified a list of significant variable features from both the KG and logistic regression 
analyses. All survey labels were coded for a “Yes” response to the question, indicating the 
presence of an exposure or condition. Table 2A-C shows the significant features (P < 0.05) 
identified from logistic regression. Supplemental Tables 2A-C provide a full list of variables 
identified from logistic regression. A full list of significant variables discovered as part of the KG 
link prediction methodology can be found in Supplemental Table 3 (Supp Table 3 is also 
available on Github[50]). Significant features from both analyses are indicated in bold in Tables 
2A-C below.  
 
Table 2A-C. Significant features identified via logistic regression. Variables that are direct 
matches in the significant KG results are displayed in bold. Unreported Mean Variance Inflation 
Factor (VIF) scores indicate inadequate information available to calculate the score.  
 
Table 2A: Endometriosis logistic regression analysis, p-values are Bonferroni adjusted.  
 

Odds 

95% 

CI 

lower 

limit 

95% CI 

upper 

limit 
Standard 

Error 
Survey question 

topic Class ID p-value 
Mean 

prevalence 
Sd 

prevalence 
Missingness 

rate 
Mean 

VIF 

2.71 1.55 4.80 0.29 Migraine HP:0002076 5.12E-04 0.25 0.43 0.01 1.47 

6.84 2.37 23.46 0.58 Uterine polyps MONDO:0006195 8.44E-04 0.06 0.24 0.00 1.54 

0.70 0.55 0.90 0.13 
Carrot 

consumption ECTO:0070046 6.33E-03 2.83 1.02 0.02 1.79 

2.91 1.33 6.47 0.40 Ovary removal MAXO:0001067 7.99E-03 0.15 0.36 0.00 2.75 

2.19 1.21 4.00 0.30 Ovarian cysts HP:0000138 9.75E-03 0.22 0.41 0.00 1.63 

2.44 1.22 4.94 0.36 Hysterectomy MAXO:0001058 1.20E-02 0.20 0.40 0.00 2.32 

22.18 2.47 >50 1.24 
Metoprolol 

succinate use CHEBI:6905 1.23E-02 0.04 0.19 0.00  

0.22 0.06 0.73 0.62 Osteoporosis HP:0000939 1.35E-02 0.04 0.19 0.01 1.67 

1.69 1.08 2.66 0.23 
Pesticide 

Exposure ECTO:0000530 2.21E-02 0.44 0.50 0.05 1.36 

0.78 0.63 0.96 0.11 
Dark chocolate 

consumption ECTO:0070138 2.22E-02 2.39 1.12 0.02 1.53 

0.09 0.01 0.61 1.09 Metoprolol use CHEBI:6904 3.04E-02 0.05 0.22 0.00  
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5.95 1.36 42.05 0.84 

Desiccated 

thyroid extract 

use CHEBI:9584 3.29E-02 0.01 0.12 0.00 1.36 

0.23 0.05 0.83 0.69 
Occupational 

alcohol exposure ECTO:9000026 3.36E-02 0.19 0.39 0.11  

4.41 1.13 20.13 0.72 

Occupational 

isopropanol 

exposure ECTO:9000099 4.02E-02 0.14 0.35 0.00  

0.75 0.57 0.99 0.14 Tofu consumption ECTO:0070185 4.20E-02 1.56 0.91 0.02 1.70 

1.92 1.01 3.69 0.33 Thyroid disease MONDO:0003240 4.71E-02 0.17 0.38 0.01 1.57 

 
Table 2B: Uterine fibroid logistic regression analysis, p-values are Bonferroni adjusted.  
 

Odds 

95% CI 

lower 

limit 

95% CI 

upper 

limit 
Standard 

Error 
Survey question 

topic Class ID p-value 
Mean 

prevalence 
Sd 

prevalence 
Missingness 

rate 
Mean 

VIF 

4.20 2.58 6.94 0.25 Hysterectomy MAXO:0001058 1.20E-08 0.20 0.40 0.00 2.04 

5.01 2.47 10.94 0.38 Uterine polyps MONDO:0006195 1.90E-05 0.06 0.24 0.00 1.27 

3.71 1.77 8.35 0.39 Omeprazole CHEBI:7772 8.29E-04 0.05 0.22 0.00 1.62 

1.69 1.16 2.49 0.20 
Iron deficiency 

anemia HP:0001891 7.04E-03 0.24 0.43 0.00 1.26 

1.71 1.16 2.54 0.20 Hypertension HP:0000822 7.27E-03 0.29 0.45 0.00 1.92 

1.70 1.13 2.56 0.21 Menopause GO:0042697 1.04E-02 0.50 0.50 0.01 2.10 

1.69 1.12 2.54 0.21 Ovarian cysts HP:0000138 1.19E-02 0.22 0.41 0.00 1.41 

1.22 1.04 1.43 0.08 
Orange 

consumption ECTO:0070029 1.37E-02 2.53 1.05 0.02 1.63 

1.69 1.07 2.68 0.23 
Magnesium 

supplementation ECTO:9000210 2.46E-02 0.16 0.37 0.01 1.43 

2.58 1.11 6.34 0.44 Kidney infection HP:0012330 3.25E-02 0.05 0.22 0.01 1.30 

1.42 1.02 1.96 0.17 
Vitamin D 

supplementation ECTO:9000133 3.53E-02 0.51 0.50 0.01 1.55 

3.97 1.12 18.82 0.70 Duloxetine CHEBI:36796 4.82E-02 0.01 0.12 0.00 1.40 

0.57 0.32 1.00 0.29 Gallbladder disease MONDO:0005281 4.91E-02 0.10 0.31 0.01 1.42 
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Table 2C: Ovarian cysts logistic regression analysis, p-values are Bonferroni adjusted.  
 

Odds 

95% CI 

lower 

limit 

95% CI 

upper 

limit 
Standard 

Error 
Survey question 

topic Class ID p-value 
Mean 

prevalence 
Sd 

prevalence 
Missingness 

rate 
Mean 

VIF 

4.17 2.30 7.75 0.31 Ovary removal MAXO:0001067 3.92E-06 0.15 0.36 0.00  

1.31 1.12 1.54 0.08 
Spinach 

consumption ECTO:0070060 9.94E-04 2.61 1.11 0.03 1.59 

0.13 0.04 0.43 0.63 

Occupational 

methanol 

exposure ECTO:9000028 1.35E-03 0.07 0.25 0.00  

3.14 1.58 6.66 0.36 Uterine polyps MONDO:0006195 1.73E-03 0.06 0.24 0.00 1.19 

0.42 0.23 0.72 0.29 Hysterectomy MAXO:0001058 2.22E-03 0.20 0.40 0.00  

4.03 1.62 11.68 0.50 Tylenol CHEBI:46195 4.96E-03 0.03 0.17 0.00 1.21 

0.80 0.68 0.93 0.08 
Bell pepper 

consumption ECTO:0070042 4.99E-03 2.80 1.04 0.02 1.39 

1.12 1.04 1.22 0.04 
Coffee 

consumption ECTO:0070134 5.11E-03 3.57 1.94 0.03 1.21 

1.22 1.05 1.41 0.07 
Butter spread 

consumption ECTO:0070013 7.84E-03 1.72 1.10 0.02 1.23 

0.57 0.37 0.87 0.22 Menopause GO:0042697 9.31E-03 0.50 0.50 0.01  

1.66 1.13 2.44 0.19 Migraine HP:0002076 9.34E-03 0.25 0.43 0.01 1.21 

0.77 0.63 0.94 0.10 Tofu consumption ECTO:0070185 1.22E-02 1.56 0.91 0.02 1.45 

2.69 1.25 6.20 0.40 Bupropion CHEBI:3219 1.46E-02 0.05 0.21 0.00 1.18 

2.53 1.22 5.48 0.38 X-ray exposure ECTO:8000046 1.49E-02 0.08 0.27 0.00 1.42 

4.19 1.40 15.67 0.60 
Vitamin D 

supplement CHEBI:27300 1.72E-02 0.03 0.16 0.00 1.22 

1.63 1.09 2.45 0.21 Uterine fibroids HP:0000131 1.76E-02 0.24 0.43 0.00 1.26 

3.13 1.17 8.67 0.51 

Occupational 

isopropanol 

exposure ECTO:9000099 2.47E-02 0.14 0.35 0.00  

2.11 1.11 4.11 0.33 Kidney stones HP:0000787 2.52E-02 0.07 0.26 0.01 1.22 

1.58 1.04 2.43 0.22 
Probiotic 

consumption ECTO:0070000 3.32E-02 0.19 0.39 0.01 1.33 

3.54 1.19 13.00 0.59 
Desiccated thyroid 

extract use CHEBI:9584 3.32E-02 0.01 0.12 0.00 1.20 

2.34 1.09 5.38 0.40 Fibromyalgia MONDO:0005546 3.55E-02 0.05 0.22 0.01 1.30 

0.84 0.71 0.99 0.09 
Blueberry 

consumption ECTO:0070025 3.70E-02 2.58 1.09 0.02 1.55 
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0.16 0.03 0.84 0.87 
Occupational 

butanol exposure ECTO:9000424 3.74E-02 0.01 0.11 0.00 1.17 

4.25 1.21 20.24 0.70 

Occupational 

cleaning liquid 

exposure ECTO:0500011 3.78E-02 0.29 0.45 0.05  

2.85 1.09 8.18 0.51 

Occupational 

chloroform 

exposure ECTO:9000042 3.89E-02 0.06 0.23 0.00  

8.66 1.50 164.37 1.08 Tramadol CHEBI:9648 4.62E-02 0.01 0.10 0.00 1.16 

 
DISCUSSION 
Our work developing a KG with survey-based data and conducting machine learning to predict 
variables associated with FRDs is the first of its kind. The logistic regression model we 
developed for comparison supports our findings using this novel approach. Comparing the 
logistic regression and KG models resulted in numerous exact matches for medical conditions 
and procedures, environmental exposures, medications, and dietary exposures for the 
considered FRDs. Endometriosis and ovarian cysts were significantly associated with other 
gynecological conditions and procedures. Positive responses to questions regarding 
hysterectomy, ovary removal, and ovarian cysts were all associated with endometriosis. A 
possible explanation for the procedure associations is that ovary removal and hysterectomy are 
offered as endometriosis treatment options when other therapies have been 
unsuccessful.[51,52] However the timing of disease onset and medical procedures in this 
dataset was unavailable. Endometriosis can present as an ovarian endometrioma, an 
endometriotic cyst in the ovary,[53] which may be related to the significant endometriosis and 
ovarian cyst association identified. It is important to note that screening for any of these 
gynecological conditions may contribute to the identification of another gynecological 
comorbidity due to increased potential for detection.  
Use of duloxetine was significantly associated with uterine fibroids in this study. Duloxetine is a 
medication primarily used for treatment of major depressive disorder, generalized anxiety 
disorder, chronic musculoskeletal pain, and fibromyalgia.[54] While duloxetine does not have a 
documented relationship with FRDs in current literature, there is a strong association between 
depression and mental health concerns in individuals with FRDs. Individuals with uterine fibroids 
have been documented to experience higher rates of depression and anxiety compared to 
controls, particularly amongst individuals who experience pain symptoms or who have 
undergone a hysterectomy.[55] Given the increased prevalence of mental health conditions 
amongst individuals with FRDs, individuals with these conditions may be more likely to take 
antidepressants or similar medications which may be related to this finding.  
Omeprazole use was associated with increased odds of uterine fibroids. Omeprazole is a proton 
pump inhibitor, used to treat gastroesophageal reflux disease (GERD), ulcers, and other 
conditions characterized by excessive stomach acid.[56] Omeprazole has no reported side 
effects related to uterine fibroid development, but bulk-related symptoms may present due to 
uterine fibroids as the enlarged fibroids can distort the abdominal anatomy and cause 
abdominal bloating and pressure.[57] Uterine fibroids have been denoted as an associated 
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disorder for individuals with Barrett’s esophagus, a gastrointestinal complication of 
GERD.[58,59] 
We identified multiple associations between diet and FRDs. Tofu consumption was associated 
with significantly decreased odds of endometriosis. Tofu, a processed soybean curd, is often 
studied for its health benefits related to its high isoflavone content.[60] Isoflavones are of 
interest given their known antioxidant properties.[61] It is hypothesized that excessive 
inflammation observed with endometriosis may be mitigated through isoflavone 
exposure.[61,62] Supporting the findings of the present study, prior work has reported an 
inverse relationship between urinary isoflavone concentration and severe endometriosis.[63] 
However, a set of case studies investigating excessive soy consumption found high soy intake 
to be related to dysmenorrhea, endometriosis, and uterine fibroids.[64] Because of the higher 
rates of soy consumption among Asian individuals compared to other groups,[65] it is notable 
that prevalence of endometriosis is higher in Asian populations than in other racial 
groups.[66,67] However, data on race were unavailable for analysis. Notably, soy isoflavones 
are also phytoestrogens, given their ability to bind to estrogen receptors and contribute to 
estrogenic activity in humans[61]. Isoflavones have been denoted as potential endocrine 
disruptors, however these long term mechanistic effects are not fully elucidated.[60] While our 
results are inconclusive, further research evaluating soy consumption and endometriosis may 
be helpful for guidance on prevention and management. 
Carrot consumption was also significantly associated with decreased odds of endometriosis. 
Consumption of fruits and vegetables has been identified as protective against endometriosis, 
potentially due to the anti-inflammatory properties of dietary components, including vitamins C 
and E.[68,69] Carrots contain high levels of antioxidant carotenoids, which may reduce the 
inflammatory responses that occur in individuals with endometriosis.[70] The effects of carrot 
consumption are inconsistent in the literature, with multiple investigations reporting no 
significant associations between carrots and endometriosis.[71,72] Further exploratory work is 
needed.  
By utilizing a novel KG methodology and comparing the results with those from a traditional 
logistic regression model, we generated and corroborated multiple hypotheses of the effects of 
modifiable lifestyle factors on FRDs. The KG method presented here is an effective hypothesis-
generation strategy, but the results should not be construed as causal as in other survey-based 
methodologies. The logistic regression approach indicated directionality for survey variables, 
which cannot be calculated using existing KG methods. The KG model identified an unranked 
list of predicted significant factors that require further assessment to identify variables of 
interest. Given the novelty of applying the KG method in survey-based data, its successful 
application in the present work showcases the potential of computational survey investigations 
using biomedical ontologies. Collecting data with ontology alignment in mind or retroactively 
performing ontology alignment for secondary data analysis will provide opportunities to apply 
KG study designs for hypothesis generation. 
 
Limitations 
This work has limitations due to the nature of the PEGS dataset, namely the North Carolina-
specific population and the lower percentage of individuals with FRDs compared to national 
prevalence estimates. Additionally, the dataset lacks information on temporality. PEGS 
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participants are asked to describe their current eating habits, past and current exposures, and 
whether they have been diagnosed with an FRD. Given the lack of context for when onset of a 
condition occurred, it is difficult to identify the true impact of diet or environmental exposures, as 
they may have occurred before or after symptom presentation and disease diagnosis. Use of a 
survey design that includes temporality questions and collects information on gynecological 
history, demographics, and other potential confounders may improve the interpretation of 
findings. 
Of note, our investigation used a binary variable of food consumption for individuals to indicate 
that they either do or do not consume a particular food. This approach was consistent for all 
food exposures, with no distinctions made between low and high consumption. Given the 
potentially wide range of consumption levels, this binary approach reduces the ability to 
decipher the impacts of dietary factors using the KG model. Binning data into “low”, “medium”, 
or “high” consumption levels should be considered for future work. Further, our named entity 
recognition approach to mapping string responses to survey questions can be improved by 
grouping similar medications (e.g., regular versus extended-release formats). Additionally, 
machine learning approaches that consider specific values for dietary intake (e.g., the number 
of apples consumed per week) when creating link predictions in a KG model would greatly 
benefit future nutrition investigations of this variety. 
The performance of our KG model resulted in a substantial list of findings, many with similarly 
high prediction scores. While edge prediction provides prediction values between 0 and 1, 
equally ranked results make prioritization for hypothesis generation challenging. As such, efforts 
should be made to improve the prioritization of KG findings to enable hypothesis development. 
While areas for improvement exist in this study design, we identified multiple predicted 
variables, including modifiable lifestyle factors, for FRD. Additional results, including those 
resulting exclusively from KG analysis, may result in meaningful hypotheses in future 
investigations of FRDs. 
 
CONCLUSION 
FRDs are highly impactful conditions for women globally, and there is a need to identify 
modifiable factors associated with these disorders. Limited investigations using ontologies or 
KG structures for investigations of FRDs have been conducted, and most existing studies have 
not accounted for modifiable lifestyle factors such as diet and environmental exposures. Using 
KG and logistic regression approaches, we identified a variety of potential intervention points for 
FRDs that can be pursued in future work. Because they are based on open-source, biomedical 
ontologies and computational resources, the novel methodologies used in this study can be 
repurposed for additional investigations. 
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SUPPLEMENTAL METHODS 
OntoRunNER 

OntoRunNER is a named entity recognition (NER) tool that reads strings of written 
content, which is then compared to a designated term list to identify what content is an exact or 
close match to the term list provided. For this project, we used OntoRunNER to coordinate 
strings of data input primarily regarding chemicals (medications or agricultural chemicals) to 
Chemical Entities of Biological Interest (ChEBI) Ontology terms. OntoRunNER allowed for both 
exact matches of the primary ChEBI label as well as synonyms of ChEBI content. It also 
allowed the string and ontology term to be considered a “match” if there were four or fewer 
different characters between them. Following use of OntoRunNER, we hand-reviewed 
terminology mappings for accuracy, which included additional manual mapping creation for 
common misspellings (e.g., ‘aderall’ versus ‘adderall’). We excluded from the dataset any string 
that could not be confidently mapped using OntoRunNER or manual means in an effort to avoid 
introducing inaccuracies. 
 
Knowledge graph preparation for embedding 

To prepare the graph for embedding using GRAPE, we removed all disconnected 
(singleton) nodes that shared no edges with other nodes as they provided little to no information 
for our link prediction model. We then selected the largest component of the graph, or the 
subgraph of the knowledge graph with the most nodes. Components were connected subgraphs 
of the primary graph, with the largest component the one with the highest number of nodes and 
thus offering the greatest capacity to develop link predictions. Using only the largest component 
removed 7.1%  of respondents (n = 691) from the final analysis. As these respondents were not 
included in the largest component, it is likely the data available from their survey responses was 
insufficient for informing significant link predictions.  

We used the DeepWalkSkipGram approach to learn the latent representations of the 
nodes within this graph network. This approach uses the Deep Walk deep learning approach, 
where nodes within the graph are treated like words, and random walks between nodes can be 
taken to create sentences [36]. The Skip-gram component includes inputting a single node and 
then contextualizing and classifying the word based on other words from the same sentence, 
allowing for projections of words coming both before and after the single word (node) of interest 
[42]. This approach to embedding allows for the creation of sentence structure using nodes and 
then the assessment of which nodes should be located near each other in the low-dimensional 
embedding visualization.  
 
Logistic regression analysis 

In more detail, the first two steps of supervised feature selection and random forest (RF) 
training were applied on 50 external stratified holdouts (train:test ratio 0.9:0.1). The variables 
that, on the average of all the holdouts, had an RF importance score greater than zero were 
chosen as the most important features. 

For the first step of supervised feature selection on the training set, we ran preliminary 
experiments to choose among univariate feature selection techniques (where variables showing 
significant correlation with the label were selected), Boruta feature selection [49], permutation-
based RF importance, and elastic nets (where the value of the elastic-net regularization 
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parameter � is set via internal five-fold cross-validation and the � parameter balancing the 
amount of lasso and ridge constraints is set to 0.5) [50]. Given the comparable preliminary 
results, we opted for elastic nets due to their higher regularization capability, which results in a 
lower number of selected features. To avoid overfitting, we trained the RF by balancing the 
samples used to choose each split (sampsize) and chose the RF parameters (number of trees 
for the RF and the number “mtry” of variables considered to define each split) by a grid search 
on 100 internal rebalanced holdouts (train:test ratio = 0.9:0.1) to maximize the area under the 
precision-recall curve, which is appropriate in the case of imbalanced classes. 

Next, for the directionality of scores, the important variables were used to train logistic 
regression classifiers. Considering how rare events resulting in highly imbalanced datasets may 
cause sharp logistic regression underestimates [48], we ran logistic regression on 100 holdouts 
rebalanced by undersampling. We averaged the results of the 100 iterations (odds and P 
values) to get the final estimates. We also calculated the variance inflation factor (VIF) and 
mean prevalence for each variable. These values are reported with the full logistic regression 
results in Supplemental Tables 2A-C. Of note, variables with a large VIF (>4) or a low mean 
prevalence score (0.001) may not be reliable regression outcomes due to colinearity or lack of 
sufficient data to determine the influence of a variable on the outcomes of interest.  
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Figure 1. Translating survey questions to ontology content. In efforts to coordinate PEGS 
survey questions with ontology content, a combination of manual and semi-automated 
mappings were conducted. For questions with binary or categorical, finite responses, manual 
curation was used to align a single ontology term to the question (binary) or to each variable 
response option (categorical) (Fig 1A/B). For free response questions, the named entity 
recognition tool, OntoRuNER was used to create mappings to ontology terms for unique answer 
fields (Fig 1C). Ontology abbreviations: FOODON, Food Ontology. CHEBI, Chemical Entities of 
Biological Interest.  
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Figure 2. Coordinating respondent data to ontology content. Following completion of a 
survey question, the responses are used to generate an appropriate mapping of the response to 
an ontology term. During this process, nodes are established for each respondent as well as 
each positively answered survey question. Only unique nodes are generated, meaning only one 
node is created for each respondent and each survey question. Ontology terms have a 
corresponding hierarchy within the ontology that is also coordinated to the survey question and 
response. Unique “transformation” steps for each question type (e.g., medication, environmental 
exposure, disease) are used to then create a three part relationship including a subject,  
predicate, and object. As seen in this example question regarding medication usage, following a 
response of “lansoprazole”, Person:1234 had their response mapped using the semi-automated 
OntoRunNER tool to the appropriate ontology term and then the transformation step created a 
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relationship result of “Person:1234 affected by Lansoprazole (CHEBI:6375)”. Given 
lansoprazole is contained within a hierarchy in the Chemical Entities of Biological Interest 
ontology, it is subsequently associated with a variety of terms in the taxonomy. As ontology 
content that is identified to have the same label, or shared synonyms will be mapped to the 
same node within a KG, a positive response of lansoprazole usage by the brand name 
Prevacid, similarly allows for the resulting relationship of “Person:3456 affected by 
lansoprazole”. 
 
 

 
 
Figure 3: Computational methods overview. Two comparative analytical approaches were 
used to evaluate the Personal Environment and Genes Study survey data regarding internal 
and external exposures and personal health. The KG model included encoding all survey data 
with biomedical ontology content and creation of a KG structure, followed by embedding of the 
KG to create a low dimensional format for use in the random forest model to assess predicted 
links between FRDs of interest and exposures or health variables. The comparison logistic 
regression analysis system supported data interpretation by including data cleaning, application 
of elastic nets to improve regularization, a random forest based feature importance selection 
(explainability), and logistic regression to evaluate significance and directionality (interpretability) 
of the associations between exposures, health conditions, and FRDs. Ontology acronyms: 
Chemical Entities of Biological Interest (ChEBI), Environmental Conditions, Treatments, and 
Exposures Ontology (ECTO), Gene Ontology (GO), Human Phenotype Ontology (HP), Medical 
Actions Ontology (MAxO), Mondo Disease Ontology (Mondo).  
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Figure 4. KG visualization. The KG embedding produced using the GRAPE 
DeepWalkSkipGram method, displays a variety of node types represented in the graph. Distinct 
separation between the colors within the embedding displays the clustering of similar node 
types.  
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