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Summary 

Type 1 diabetes (T1D) is a chronic condition caused by autoimmune destruction of the 

insulin-producing pancreatic b-cells. While it is known that gene-environment 

interactions play a key role in triggering the autoimmune process leading to T1D, the 

pathogenic mechanism leading to the appearance of islet autoantibodies - biomarkers 

of autoimmunity – is poorly understood. Here we show that disruption of the 

complement system precedes the detection of islet autoantibodies and persists through 

disease onset. Our results suggest that children who exhibit islet autoimmunity and 

progress to clinical T1D have lower complement protein levels relative to those who do 

not progress within a similar timeframe. Thus, the complement pathway, an 

understudied mechanistic and therapeutic target in T1D, merits increased attention for 

use as protein biomarkers of prediction and potentially prevention of T1D.  
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Introduction 

Clinically onset of type 1 diabetes (T1D) is preceded by a period of islet autoimmunity 

(IA) that is marked by the appearance of circulating autoantibodies against islet 

autoantigens1-4. While there is a consensus that chronic b-cell autoimmune destruction 

is triggered by interactions of genetic, genomic, and environmental factors, the 

pathogenesis of the initiation and progression of the disease is still largely unknown. 

Identification of biomarkers that predict triggering of IA in at-risk individuals, as well as 

progression from IA to clinical diabetes, may give clues into the etiology of this complex 

disease. Dysregulation of the complement system can affect innate immunity and has 

been noted in macular degeneration5, cancer6, and autoimmune disorders, such as 

systemic lupus erythematosus7,8. Several non-hypothesis driven discovery studies have 

suggested that the complement system may play a role in the etiology of T1D9-13. For 

example, local production of complement component C3 is an important survival 

mechanism in β cells under a proinflammatory assault. In response to interleukin-1β 

and interferon-γ, C3 expression increases in rodent and human β cells14. This increased 

C3 expression may enhance autophagy - a protective response to β-cell stress - and 

improve β-cell function15. 

Proteomics is a core discovery technology utilized to identify biomarkers of disease, as 

well as gain insight into the molecular processes driving disease progression, that has 

been employed previously to study the pathogenesis of T1D9,11,12,16,17. These studies 

have focused on a combination of global and targeted analyses in cohorts evaluating 

time-based measurements in the progression of T1D. Changes in levels of multiple 

complement proteins, such as C4, C3, C2 and C1r, have been reported9,11, although the 
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directional changes varied and thus a cohesive pattern associated with the complement 

system and T1D is has not yet emerged. 

Here we present an investigation of the relationship specifically between the 

complement system and progression to IA and T1D. To accomplish this task, we 

analyzed complement proteins in a long-standing birth cohort of high-risk children, the 

Diabetes Autoimmunity Study in the Young (DAISY). DAISY defines high-risk status as 

having a first-degree relative with T1D or high genetic risk HLA (Human Leukocyte 

Antigen) genotype18,19. Complement proteins were measured as their constituent 

peptides using selected reaction monitoring (SRM)-based targeted proteomics20. In 

addition, multiple complement proteins, of which approximately half overlap with the 

SRM measured proteins, were also sent for quantitative complement testing using 

commercial immunoassays in a CAP/CLIA accredited laboratory21 (Exsera BioLabs), 

referred herein as Exsera. Both approaches are well established methods for 

quantitative proteomics and offer confirmatory evidence. 

Results 

A total of 172 children from the DAISY study with multiple plasma samples collected 

over time, with up to 23 years of follow-up, were characterized via proteomics analysis, 

Fig 1. Of the children there were 40 controls (Fig. 1A) and 132 cases (Fig. 1B-D). All 

132 cases had measurements across time relative to IA. Sampling was not consistent 

for all children. There were 47 of the children who had samples taken and evaluated 

prior to IA (Pre-IA), represented as p-xx (Fig. 1B), and 131 children had measurements 

at or after IA, but prior to diagnosis of clinical T1D (Post-IA), represented as i-xxx (Fig. 

1B-D). The control children were frequency matched on HLA genotypes and age and 
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sex (Table 1) with an observed lower frequency of first degree relatives within the 

control group versus the cases. The Pre- and Post-IA proteomics measurements 

highlighted in Fig. 1B-D were compared to the control samples in Fig 1A using a linear 

mixed model to evaluate association of complement proteins with these two important 

events in the progression of T1D. 

 

 

Fig. 1: Clinical age that samples were analyzed. For each child associated with the 

study key endpoints highlighted, including if the sample is prior to (x) or after (o) IA, the 

point of IA (●), the age of T1D diagnosis (■), and the single sample used for the 

machine learning (ML) analysis (□). Plot is separated into (A) 40 control samples, (B) 47 

pre-IA samples, of which 24 were not diagnosed with T1D during the study and 23 

were, and 46 of these 47 also had post-IA measurements, (C) 38 post-IA samples who 

were not diagnosed with T1D during the study, and (D) 47 post-IA samples who were 

diagnosed with T1D during the study.  
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Table 1: Demographics of the DAISY cohort for the Control, Pre-IA, Post-IA and 

Pre-T1D samples. The Pre-IA, Post-IA, and Pre-T1D are compared to control where 

sex, HLA and First Degree Relative are compared to the control group via c2 test of 

independence and age is compared via a two-sample-test. 

 CTRL 

(N=40) 

Pre-IA 

(N=47) 

P-value Post-IA 

(N=131) 

P-value 

Female; N(%) 16(40.0) 19(40.4) 0.968 63(48.1) 0.469 

HLA; N(%) 

DR3/3 or DR3/X 

DR3/4 

DR4/4 or DR4/X 

DRX/X 

 

6(15.0) 

11(27.5) 

22(55.0) 

1(2.5) 

 

5(10.6) 

15(31.9) 

21(44.7) 

6(12.8) 

 

 

 

 

0.309 

 

12(17.6) 

48(36.6) 

44(33.6) 

16(12.2) 

 

 

 

 

0.048 

First Degree 

Relative; N(%) 

9(22.5) 27(57.5) 0.001 83(63.4) <0.001 

Age (Machine 

Learning) 

2.976 3.024 0.107   

 

Association of SRM Complement Proteins with IA and T1D 

The SRM proteomics experiment measured 19 complement proteins, most of which 

were identified by at least two unique peptides. Protein level data is presented as the 

average of the measured peptides. The statistical results are presented visually as an 

average log2 fold-change at five different age ranges across all subjects. The 

association of the relationship of IA relative to control children shows a distinct decrease 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 16, 2023. ; https://doi.org/10.1101/2023.07.13.23292628doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.13.23292628


7 
 

for most complement proteins, Fig. 2. The overall pattern of a decrease in complement 

proteins is persistent both before and after the detection of autoantibodies. Of the 19 

proteins measured by SRM, 12 were significantly decreased between IA and T1D post-

IA (Fig. 2B) at a p-value threshold of 0.05 with a consistent pattern is also observed 

prior to IA with 5 of the 19 complement proteins significantly decreased (Fig. 2A). MBL2 

unique to the lectin pathway is the only protein in the complement pathways with 

increased abundance across the entire time course. No proteins specific to the 

alternative pathway are significant. The time-course plots for each SRM peptide with the 

difference over time by individual subject and data point are given in Supplemental Fig. 

1 and Supplemental Fig. 2, respectively, for the pre- and post-IA groups. 

Fig. 

2: Complement Protein log2 fold-change for each statistical comparison of (A) 

pre-IA (n=47) and (B) post-IA (n=131). Proteins with an asterisk are significant at a p-

value of 0.05 based on the full linear model. 
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To validate the SRM proteomics data in Fig. 2, we used previously collected data on 16 

complement proteins using immunoassays (Exsera)21 of which 10 were in common with 

the SRM identified proteins. Fig 3 shows the overall similarity in respect to log2 fold-

change between the two measurement types across all of the 10 common complement 

protein measurements made across all time points relative to control for both Pre- and 

Post-IA. C3 is the one complement protein that is significant (p-value < 0.05) for both 

the SRM and Exsera prior to IA and at or after IA. Of the remaining 9 proteins, prior to 

IA there is one (C4b) significant for SRM but not Exsera and one (MBL2) significant for 

Exsera but not SRM. For Post-IA, MBL2 is again significant for Exsera and although not 

statistically significant for SRM shows a similar pattern of increase relative to control. 

Similarly, C1q, C2, C4b, C5, CFH are significant for SRM, and although not statistically 

significant for Exsera show a common pattern of decreased abundance relative to 

control. Of the six proteins measured by immunoassays that do not overlap with the 

SRM dataset, three (C3a, C5a, C5b) were significantly decreased both for Pre-IA and 

Post-IA, again showing the same pattern of decreased abundance relative to controls. 

The presence of C3a and C5a is observed in both controls and cases, significant for the 

Exsera dataset22-27.  
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Fig. 3: Average Exsera log2 fold-change in comparison to the average log2 fold-

change of the SRM measurements across time for the 10 proteins measured by 

both technologies. The * indicates that the protein measurement was significant based 

on the full linear model at a p-value of 0.05. 
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The effect size for each protein based on the statistical model measures the strength of 

the relationship between the protein abundance and the outcome. As seen in Fig. 4, 

most of the SRM and Exsera quantitatively measured proteins have a negative effect 

size, meaning that the effect of Pre-IA or Post-IA decreases on average relative to the 

controls. This matches with the observed log2 fold-changes in Figs 2-3. We observe 

that most proteins, with exception of MBL2, have a negative effect size. For the proteins 

measured by Exsera we observe that 68.8% and 87.5% of the proteins have a negative 

effect size for Pre- and Post-IA, respectively, similar to results observed for SRM. To 

evaluate the likelihood that this could be observed by chance, we simulated effect sizes 

from a uniform distribution randomly ranging from -1 to 1 for each of the 19 proteins and 

computed the proportion of negative values. We repeated this process 100 times and as 

expected the median was near 50%, specifically 47.4%. A Wilcoxon rank sum test was 

used to evaluate the null hypothesis that our random distribution could have the same 

median as our observed data. In all cases, our percentage of negative effect sizes was 

larger than expected by chance with a p-value less than 1.0E-7. We extended this 

analysis to also include a random p-value computational and evaluating the percentage 

with a p-value less than 0.05 and a negative effect. The likelihood of observing both the 

number of significant proteins and a negative directional change by chance is extremely 

small, less than 2.6E-20, both in the SRM and Exsera datasets.  
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Fig. 4: Effect size based on the statistical comparisons either prior to or at or after 

IA with proteins sorted based on complement pathway. Number in the boxes are 

the effect size from the linear mixed model comparing the difference of protein 

abundance between Control and the Pre-IA and Post-IA groups. A negative effect size 

indicates strength of the relationship between the protein abundance and the outcome 

compared, a positive effect means that Pre- or Post-IA increases the abundance on 

average relative to control and a negative effect is the contrary. 
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Prediction of Progression based on Complement Proteins 

To further explore the utility of the complement protein quantitation data to screen for 

children that will develop islet autoantibodies the 40 control and 47 Pre-IA children were 

down-selected to a single sample time point for machine learning. For the 40 control 

children this was the earliest sample collected and for the 47 Pre-IA children it was a 

random selection of the first or second time point prior to the detection of autoantibodies 

to assure the age distributions were not significantly different, average ages of the two 

groups are given in Table 1. Of the 47 children in the Pre-IA group 23 of them are 

diagnosed with T1D as of the last follow-up. All 25 proteins from both the SRM and 

Exsera measurements highlighted in Fig. 4 were included in the initial dataset.  

To identify the most predictive features a model-agnostic approach, Feature Importance 

Ranking Measure (FIRM)28 was utilized in conjunction with a linear Support Vector 

Machine (SVM). Analysis was performed using a 75/25 train/test split with repeated 10-

fold cross-validation (CV)29-31. The accuracy of the model is quantified by a Receiver 

Operating Characteristic curve (ROC), specifically the area under this curve (AUC), for 

which the final average AUC as computed on the test data is 0.82. Fig. 5A gives the 

importance of each of the measured proteins from both the SRM and Exsera 

technologies ordered from the most important based on the results of FIRM. The most 

important features are C1r measured by SRM and C3a measured by Exsera, both of 

which are highly significant and as can be seen in Fig 5B visually separate the two 

groups fairly well. Evaluate of the data using an alternative approach, Recursive 

Feature Elimination performed repeatedly with 3-fold CV also found C1r was selected 
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as the last feature to remove from the model in 100% of the RFE iterations and C3a 

was the second to the last to be removed in 99 of the 100 RFE iterations.  

 

Fig. 5: Machine learning results and scatter plot of the two most important 

features. (A) Feature importance values from most to least. (B) Scatter plot of the top 

two features shows a visual separation of control from Pre-IA. 

 

Discussion 

There is an overwhelming pattern of a decrease in complement proteins prior to 

appearance of islet autoantibodies as well as after the seroconversion in children 

progressing to clinical diabetes in both the SRM and Exsera datasets. As seen in Fig. 4, 

except for MBL2, the overall pattern is a decrease across the entire set of complement 

proteins when compared to control. The classical and lectin pathways show the 

strongest decrease in complement proteins, observed both by statistical and machine 

learning analyses. This is consistent with prior findings of decreased abundance in 

specific complement proteins, such as C3 and C4, associated with T1D32,33. The one 
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distinct complement protein MBL2 is the lead of the lectin pathway and despite its 

increase, the C4a and C4b proteins are significantly decreased by SRM and show a 

similar decrease in Exsera, although not statistically significant. These findings for an 

increase in MBL2 related to onset of T1D have been observed previously34,35. The 

membrane attack complex, also referred to as the terminal complement complex, is the 

result of the host’s complement system, and as seen in Fig. 4, all proteins in this 

complex are decreased, approximately half of them are significant at a p-value 

threshold of 0.05 for the three comparisons based on the results of the linear model. In 

general proteins associated with the Terminal pathway show a significant trend with 

60% of the measurement significantly decreased. The Alternative pathway does not 

have any significant proteins and has mixed directional change based on the two types 

of measurements. 

Complement levels are driven by several factors, including genetic polymorphisms 

driving transcriptional rates, responses to acute phase activators, and consumption 

through any of the three activation mechanisms. The observation that the activation 

products C5a, C3a and the membrane attack complex are all similarly decreased 

suggests that the causal relationships are likely not due to consumption by cleavage of 

the precursor molecules (C5 and C3) but rather to factors that regulate transcription, 

translation, and secretory pathways. Additional studies will be necessary to understand 

the causes of the decreases. An increase in complement activation has been shown to 

occur in pancreas of individuals with T1D36. However, it is unlike that deposition of 

complement proteins into islets would cause detectable reductions in levels of such 

abundant plasma proteins. Endogenous production of C3 by β cells is protective 
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through an intracellular mechanism37. Exogenously added C3 protein also has a 

protective effect on human islets and rodent β cell line INS-1E against cytokine-induced 

apoptosis14. Therefore, it is likely that complement cascade represents protective 

mechanism for β cells, and that the lower levels of circulating complement proteins fail 

to provide protection against the autoimmune response. However, understanding how 

C3-mediated protection relates to systemic levels of complement proteins and whether 

lower circulating levels are reflective of an inadequate endogenous response to stress 

will require further study. 

MBL2 is a pattern recognition molecule that engages the lectin pathway, and for which 

deficiencies are associated with infectious complications38. Why its levels would be 

discordant from the other complement factors is not readily understood but may reflect 

other functions of the molecule. In addition, the complement system as an innate 

immune pathway is intimately involved in the response to infection. In principle, a lower 

system could result in an inadequate response to pathogens or pathobionts that have 

been increasingly implicated in the development of T1D39,40. 
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Methods 

DAISY Study cohort 

DAISY follows prospectively 2,547 children at increased risk for T1D. The cohort 

consists of first-degree relatives of patients with type 1 diabetes and general population 

children with T1D susceptibility HLA DR-DQ genotypes identified by newborn 

screening18, recruited between 1993 and 2004. Follow-up results are available through 

April 4, 2022. Written informed consent was obtained from subjects and parents. The 

Colorado Multiple Institutional Review Board approved all protocols. 

Autoantibodies were tested at 9, 15, and 24 months and, if negative, annually 

thereafter; autoantibody-positive children were retested every 3–6 months. 

Radiobinding assays for insulin (IAA), GAD (GADA), insulinoma-associated protein 2 

(IA-2A), and/or zinc transporter 8 (ZnT8A) autoantibodies were conducted as previously 

described41,42. Subjects were considered persistently islet autoantibody positive if they 

had two or more consecutive confirmed positive samples, not due to maternal islet 

autoantibody transfer, or had one confirmed positive sample and developed diabetes 

prior to next sample collection. Diabetes was diagnosed using American Diabetes 

Association criteria.  

Targeted Proteomic Measurements 
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Protein digestion was carried out in an Eppendorf epMotion 5075 Liquid Handler. Five 

microliters of plasma from each donor were loaded into 96-well plates and 45 μL of 8M 

urea in 50 mM NH4HCO3 was added to each sample. Samples were reduced by adding 

5 μL of 100 mM dithiothreitol and shaking at 1200 rpm for 1 h at 37 °C. Samples were 

alkylated by adding 5.5 μL of 400 mM iodoacetamide and shaking at 1200 rpm in the 

dark for 1 h at 37 °C. Samples were diluted by adding 300 μL 50 mM NH4HCO3 and 

were supplemented with 1 M CaCl2 to a final concentration of 1 mM and trypsin 

(Promega Sequencing Grade Modified Trypsin) to a final ratio of 1/50 (enzyme/protein). 

Proteins were digested for 6 h at 37 °C with shaking at 1200 rpm. Reactions were 

quenched by adding 10% trifluoroacetic acid to a final concentration of 0.1%. Samples 

were desalted in C18 solid phase extraction plates (Phenomenex) and dried in a 

vacuum centrifuge. Samples were dissolved in 100 μL of water and assayed with BCA 

(Thermo Fisher) to determine peptide concentration. Peptides were spiked with internal 

standards comprised of synthetic versions of the targeted peptides with heavy-isotope-

labeled amino acid residues at their C-termini (Vivitide, previously known as New 

England Peptide) and diluted to 0.2 μg/μL for mass spectrometry analysis. Assays were 

tested in different ratios of human and chicken plasma to ensure they were in linear 

response range. 

Two microliters of peptides were loaded into a reverse phase column (Peptide BEH 

C18, 130 A 1.7um 0.1x100mm, Waters) connected to an Acquity M-Class Nano UHPLC 

system (Waters). The column temperature was set at 45 °C and peptides were 

separated with a gradient of water (solvent A) and acetonitrile (solvent B) both 

containing 0.1% formic acid. Eluting peptides were analyzed online by selected-reaction 
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monitoring (SRM) in a triple quadrupole mass spectrometry (TSQ Altis, Thermo Fisher). 

The electrospray voltage was set to 2.1 kV and the source temperature at 350 °C. The 

LC-SRM raw data are available on MassIVE (https://massive.ucsd.edu); 

MSV000090848. Data quality was monitored using an in-lab developed tool name 

Q4SRM43.  

All the LC-SRM data were imported into the Skyline software (MacLean et al., 2010) 

and the peak boundaries were manually inspected to ensure correct peak assignment 

and peak boundaries. There were 333 peptides representing 169 proteins measured in 

the final assay, and each peptide were monitored by 2-3 precursor-fragment ion pairs 

(i.e., transitions). The information about specific transitions were deposited within the 

Skyline files and can be accessed at https://panoramaweb.org/DAISY_SRM_PNNL.url. 

Peak detection and integration were determined based on two criteria: 1) the same LC 

retention time and 2) approximately the same relative peak intensity ratios across 

multiple transitions between the endogenous peptides and heavy isotope-labelled 

internal peptide standards. The total peak areas of endogenous peptides and their 

ratios to the total peak areas of the corresponding heavy isotope-labelled internal 

peptide standards were exported directly from the Skyline software. No further data 

manipulation was performed. This information can also be found with the deposited 

Skyline files.  

Exsera Complement Factor Measurements 

Immunological complement analysis at Exsera BioLabs was performed in plasma that 

had not been previously thawed by a combination of multiplex and single assay 
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methods. For the multiplex analysis the human complement bead-based xMAP 

technology (Luminex Corp, Northbrook IL) and commercially available kits (EMD 

Millipore, Milliplex Map, Burlington, MA) were used to measure thirteen complement 

proteins, spanning all three activation arms and the terminal pathway of complement. 

Measurements were made on a MagPix Luminex instrument. The Millipore Panel #1 

was used to measure C2, C4b, C5a, C9, FD, MBL and Factor I (FI). Panel #2 was used 

to measure C1q, C3, C3b & iC3b, C4, FB, Factor H (FH), and P. In addition, the 

complement activation markers Bb, C3a and the soluble terminal complement complex, 

sC5b-9 were measured by ELISA (Quidel Corp, San Diego CA). All testing methods had 

been optimized and validated within Exsera BioLabs, a College of American 

Pathologists (CAP) and Clinical Laboratory Improvement Amendments (CLIA) certified 

laboratory 

All analysis was performed in duplicate with the resulting mean values report. For the 

multiplex Luminex data the mean fluorescent intensity was the raw value and for the 

ELISA analysis the raw values were optical density. Standard curves were utilized with 

a four-parameter parametric curve fit used to calculate the absolute quality in ng/mL or 

mg/mL, as appropriate. Three quality controls (QC) were included in each run, including 

at least one laboratory developed and characterized QC. The QCs were monitored for 

performance and for all testing in the study the values returned were within required 

parameter, demonstrating assay performance. No further data manipulation was 

performed. Human reference ranges for the analytes tested have been determined 

within Exsera by the measurement of normal individuals. 
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Statistical Analyses  

A linear mixed model comparing the difference of peptide or protein abundance 

between CTRL and the Pre-IA and Post-IA groups, adjusting for sex, HLA group, and 

first-degree relative status with a nested random effect for subject and plate number 

was performed44. Statistical analysis was performed in MatLab® using the ‘fitglme’ 

function, from which p-values and effect size can be extracted as output arguments. 

The average log2 abundance values of all Pre-IA, Post-IA and control samples for each 

subject within the age range was used to compute log2 fold-changes. For all 

comparisons, the original data is available in Supplemental Dataset 1 and the final 

statistics, effect sizes and log2 fold-changes are given on the statistics tabs in the 

Supplemental Dataset 2.      

Machine Learning 

A linear support vector machine (SVM) was employed for machine learning with model-

agnostic feature importance ranking metrics generated by Feature Importance Ranking 

Measure (FIRM)28 using the tidymodels R package. The choice of the hyperparameters 

for the SVM was determined as the combination that yielded the highest average Area 

Under a Receiver Operator Curve (AUC) across repeated 10-fold cross-validation. The 

final parameters used for the SVM was a margin of 09 and cost of 0.0132. To rank the 

features, FIRM is based on Individual Conditional Expectation (ICE) curves45. Briefly, 

ICE curves measure the effect of a predictor (or small subset of predictors) on the 

estimated prediction surface. Predictors that have no effect on the response correspond 
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to flat ICE curves. Thus, to quantify importance, the FIRM approach averages the 

computed variances of the ICE values for a continuous predictor.  

Data Availability 

The raw mass spectrometry data can be found at https://massive.ucsd.edu 

(MSV000090848) and the processed data is in Skyline 

(https://panoramaweb.org/DAISY_SRM_PNL.url). Source data used to generate all 

statistics and machine learning results are available upon reasonable request to the 

authors. 

Code Availability 

For statistical analyses, all functions are available in Statistics and Machine Learning 

Toolbox in the MatLab platform. The machine learning analyses used functions 

available in R using the tidymodels package. 
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